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Solitary Vortex Pairs in Viscoelastic Couette Flow
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(Received 8 November 1996)

We report experimental observation of a localized structure, which is of a new type for dissipative
systems. It appears as a solitary vortex pair (“diwhirl”) in Couette flow with highly elastic polymer
solutions. In contrast to the usual solitons the diwhirls arestationary. It is also a new object in fluid
dynamics—a pair of vortices that build a single entity. The diwhirls arise as a result of a purely elastic
instability through a hysteretic transition at negligible Reynolds numbers. It is suggested that the vortex
flow is driven by the same forces that cause the Weissenberg effect. [S0031-9007(97)02429-0]

PACS numbers: 47.54.+r, 47.50.+d, 61.25.Hq, 83.50.Eb
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Stable spatially localized structures have been observ
in many conservative and weakly dissipative system
[1,2]. They have a form of waves with a spatially modu
lated amplitude. These solitary waves are stabilized by
balance between the wave dispersion and nonlinearity.
weakly dissipative systems they usually arise as a res
of a hysteretic transition, while the dissipation is selectin
a unique amplitude profile and group velocity [3]. Quite
recently, oscillatory solitary structures have been found
strongly dissipative parametrically driven systems [4,5
We report here the observation of a new type of localize
structure which isstationaryand appears as a pair of vor-
tices in rotating Couette flow. These solitary vortex pair
arise as a result of a purely elastic instability (at very low
Reynolds numbers), if the working fluid is a highly elas
tic polymer solution. Like in Refs. [4,5], the system is
highly dissipative and the transition is strongly hysteretic

A Couette-Taylor (CT) column is a simple arrangemen
of two coaxial cylinders with a working fluid in the
annular gap between them. If the fluid is Newtonian
the outer cylinder is stationary, and the inner cylinder
rotating, at some rotation velocityVT a pattern of toroidal
vortices appears on the background of the basic pure
azimuthal flow (Couette flow) [6]. These Taylor vortices
are stationary and build an axially periodic axisymmetri
array. They arise because the balance between
centrifugal force experienced by the rotating fluid and th
radial pressure gradient is unstable with respect to rad
motion of the fluid. This instability is locally symmetric
with respect to the fluid motion outwards (outflow) and
inwards (inflow), so inflow and outflow in the Taylor
vortices look rather similar.

The behavior of viscoelastic liquids in the CT geometr
can be quite different from that of the usual Newtonia
fluids. If, for example, a vertical rotating rod is inserted
in a beaker with a highly elastic polymer solution
the liquid starts to climb up on it, instead of being
pushed outward by the centrifugal force. The reaso
for this “rod climbing” (Weissenberg effect) [7,8] is that
the rod rotation produces a shear flow, which stretch
the polymer molecules around the rod in the azimuth
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direction. These elongated molecules act as stretch
rubber rings that push the liquid towards the rod (“hoo
stress”). In other words, one can say that stretchin
of the polymer molecules along the streamlines lea
to a negative normal stress differenceN1 ­ suu 2 srr ,
where r, u, and z are cylindrical coordinates. Since
the cylindrical geometry is curvilinear, this negativeN1

produces a volume force acting inwards in the radi
direction that causes the rod climbing.

Therefore, it is natural to suppose that for a highly ela
tic polymer solution the character of instability in the Cou
ette flow will be different as well. In particular, shear rate
and solution elasticity, instead of the fluid velocity and
density, should now come into play. A possible instabilit
mechanism was proposed by Larson, Shaqfeh, and Mul
[9]. To describe the polymer solution rheology, they use
the elastic dumbbell model [7], where a polymer molecu
is modeled by two beads connected by a spring. For t
Couette flow it givesN1 , kR2

r l st Ùgrud2. HerekR2
r l is the

average square of ther component of the vector$R con-
necting the beads of a dumbbell,Ùgru is shear rate, andt
is the polymer relaxation time.kR2

r l is proportional to the
temperature of the liquid and is not affected by the Cou
ette flow. The nondimensional combinationt Ùgru is called
the Deborah numberDe, so the azimuthal stretching of
the dumbbells and the hoop stress are proportional tokR2

r l
andDe2. Any radial fluid motion in the CT column im-
plies regions with positive≠yry≠r that corresponds to an
elongational flow. Such a flow stretches the dumbbells
the radial direction and increaseskR2

r l. This radial stretch-
ing is coupled to the strong primary shear flow and caus
additional azimuthal elongation and growth ofN1 and the
hoop stress. This increased hoop stress reacts back on
flow driving the radial motion.

An important feature of this mechanism that was no
discussed in Ref. [9] is its asymmetry with respect t
the radial motion outwards and inwards. A fluid particle
that starts its radial motion in any direction should b
first accelerated. This implies positive≠yry≠r, radial
stretching of the dumbbells, and local growth ofN1
and hoop stress. This increased local hoop stress w
© 1997 The American Physical Society
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accelerate a fluid particle moving inwards and slow do
the outward motion. Therefore, one can expect the vor
patterns to have major differences between the inflow a
the outflow.

We conducted our experiments in a temperatu
controlled CT column with the inner cylinder radiu
R1 ­ 34 mm, the gap d ­ 7 mm, and the length
L ­ 516 mm. As an elastic liquid, we used a 300 pp
solution of high molecular weight PAAm [10] in a
viscous Newtonian solvent which was a 63% soluti
of saccharose in water. Solution viscosity and rela
tion time were measured with the aid of a commerc
viscometer [10]. In the explored temperature region
5 37.5 ±C the ratio of the solution viscosity to the solve
viscosity was practically constant athyhs ­ 1.82, while
hs changed from 0.35 to 2.9 P. The polymer relaxati
time t approximately followedt , hsyT3 (T is the
absolute temperature). Thus, by changing the tempera
in the CT column from 37.5 to 5±C we could changet
from 0.28 to 3.1 s.

The flow in the CT column was visualized by thre
different methods. Adding to the working liquid
moderate amount of light reflecting flakes (0.6% of t
Kalliroscope liquid) we observed the flow in the ambie
illumination. In order to visualize the flow profile acros
the gap in r-z cross section, we used the light she
technique. A small amount of the light reflecting flak
(0.1% of Kalliroscope) was added to the working liqu
and a laser beam expanded by a cylindrical lens to
sheet of light parallel to the column axis was used
illumination. We also directly measured axial and rad
components of the fluid velocity with the aid of a las
Doppler velocimeter (LDV).

The sequence of flow patterns in the CT column w
the same in the whole studied region oft (Fig. 1). As
the rotation velocity was raised, at some critical val
V0 the basic Couette flow became unstable and a p
tern of chaotically oscillating vortices appeared in the c
umn [Fig. 1(a)]. This pattern (“disordered oscillations
was described in Ref. [10]. The transition was abrupt a

FIG. 1. Various flow patterns that are observed asV de-
creases fromV0 to Vc. The flow was visualized with the
aid of the light sheet technique. The top and the bottom
each strip correspond to the outer and the inner cylinders,
spectively. (a)V ­ V0; (b) V ­ 0.75V0; (c) V ­ 0.69V0;
(d) V ­ 0.59V0; (e) V ­ 0.48V0. Vc ­ 0.47V0.
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strongly hysteretic. IfV was lowered afterwards, first
the vortex motion became concentrated close to the inn
cylinder except for the regions near black spindle-shape
cores [Fig. 1(b)]. Then, at a lower velocity, the pattern
became spatially inhomogeneous [Fig. 1(c)]. The osci
lating vortices were localized inside separate strips wit
a core in the middle. As the rotation velocity was de
creased further, these oscillatory strips became narrow
[Fig. 1(d)] until at someV the oscillations ceased and
stationary vortex structures appeared [Fig. 1(e)]. The st
tionary structures decayed and the Couette flow final
recovered at a rotation velocityVc that could be as low
as 0.45V0. These stationary localized structures show
in Fig. 1(e), which we call solitary vortex pairs or “di-
whirls,” are the subject of this Letter.

A typical pattern of diwhirls in the CT column is shown
in Fig. 2. The diwhirls appear as randomly spaced ax
symmetric dark rings. The dark color here, just as th
dark color of the spindle-shaped cores of the diwhirl
in Fig. 1(e), indicates regions of intensive radial flow
Figure 3 presents a typical dependence of the rad
velocity yr on the axial position. A typical distribution of
the axial velocityyz along the cylinder axis in an isolated
diwhirl is shown in Fig. 4. yz exponentially decreases
toward the diwhirl edges with a characteristic length o
about0.7d. Figure 5 shows a schematic drawing of the
flow lines of a diwhirl in therz plane, as it follows from
Figs. 1(e), 3, and 4. They somewhat resemble the fie
lines of a magnetic dipole. One can see that every diwh
is really a pair of vortices having a common core—a
narrow region, about0.5d in width, of fast fluid motion
inwards. The outflow is slow and spreads over regions o
about2.5d at both sides of the core, decaying at the vorte
edges. The diwhirls are, thus, localized within strips o
about5d along the column axis, the flow between them
being just the unperturbed Couette flow. The velocit
profiles of different diwhirls are strikingly similar (Fig. 3).
They are symmetric (which implies that the vortices in th
diwhirls are just mirror images of each other), have th
same width and height, and even the same peculiarities
the outward velocity—local minima at about0.75d from
the center. This form of the diwhirl velocity profile was
also independent oft.

The axial position of an isolated diwhirl can be quite
stationary, changing by less than 0.1 mm per hour. I

FIG. 2. A photograph of the CT column with a diwhirl
pattern. A similar pattern was reported in a different polyme
solution [12].
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FIG. 3. Radial component of the fluid velocityyr , measured
by LDV at a constant radius (near the middle of the gap, whe
yr is maximal), as a function of position along the column axi

however, the distance between two diwhirls is less th
about 5d, they move towards each other and finall
coalesce (Fig. 6). It is quite noticeable that the “daughte
diwhirl has the same shape as both its “parents,” which
another manifestation of the universality of the diwhi
profiles. One can also see that the daughter diwh
inherited the two vortices that used to be at the out
sides of the parent diwhirls, while those two which use
to be at their inner sides just annihilated. The ener
of the vortices that disappear is first transferred to
wavy motion [Fig. 6(d)] and then dissipates [Fig. 6(e)
Dependence of the distance between the diwhirl cent
on time was identical for different merging events, whic
occurred at a particulart and V. It is shown in Fig. 7,
where the distance is plotted as a function of time for fiv
distinct mergings. Quite naturally, the diwhirl interactio
becomes stronger as they get closer.

The final diwhirl separation depends on the flow
history. If the rotation velocity is quenched from abov
V0 to slightly aboveVc, at first a lot of closely spaced
diwhirls are produced. The diwhirls then start to mov
towards each other and merge. This merging continu

FIG. 4. Axial component of the fluid velocity in a diwhirl
yz as a function of axial position (thick grey curve).yz was
measured by LDV at a constant radius near the inner cylind
where it is maximal. The velocity at the diwhirl edges is fitte
by exponents1.36yd and21.64yd (thin black lines).
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FIG. 5. Schematic drawing of the flow lines in a diwhirl.

until the distance between neighboring diwhirls reache
the “safe” value of about5d. In general, the number
of diwhirls at fixedV varied from one to about a dozen
depending on the flow history.

Strong evidence for the elastic origin of the diwhirls
is that, in the explored region oft, the Deborah number
at Vc, Dec ­ VctR1yd, remained constant (up to 5%) at
about 10. It means that the diwhirls always decayed at th
same value of the hoop stresses. In the same region
t, the Reynolds number atVc decreased from 33% to
0.4% of its critical value corresponding toVT , making
the inertial instability mechanism completely irrelevant
Further, the maximal radial velocity in diwhirls was found
to be inversely proportional to the elastic relaxation time
so thatyr ,max . 0.5dyt at Vc.

The major asymmetry between the inflow and outflow
in diwhirls (Fig. 3) was conceived above from the genera
properties of the elastic instability mechanism. The force
driving the diwhirl flow can be understood in more details
from the following arguments. Although in the labora-
tory frame the flow in a diwhirl appears as stationary
in the reference frame of moving fluid (Lagrangian co
ordinates) the rate of strain changes periodically as a flu
particle moves along the flow lines (Fig. 5). Since confor
mation of a polymer molecule depends on the history o
deformations of the fluid element inside which the mole
cule resides, it is the Lagrangian coordinates that shou
be used for estimation of the elastic stresses. When a flu
particle starts its radial motion, it is in a region of positive
≠yry≠r in both inflow and outflow (Fig. 5).yr becomes
maximal near the middle of the gap, and after crossin
the point of maximalyr the fluid particle enters the re-
gion of negative≠yry≠r and contractional flow. The

FIG. 6. The consecutive stages of coalescence of two close
spaced diwhirls (the visualization technique was the same as
Fig. 1).
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FIG. 7. Distance between the diwhirl centers as a function
time for five separate merging events (gray and black curve
The initial distances were different; the moment of coalescen
was taken ast ­ 0.

characteristic time of these variations in≠yry≠r experi-
enced by the particle is justdyyr , whereyr is a typical
radial velocity. In the diwhirl outflow the radial motion is
slow, so thatdyyr ¿ t and the radial elongation of the
polymers always corresponds to the current≠yry≠r. It
implies that the average elongation across the gap is ze
since the regions of elongational flow (positive≠yry≠r)
are exactly compensated by the contractional flow regio
Therefore, the additional hoop stresses produced by
outflow are averaged to zero, when integrated across
gap, and have small influence on this slow flow. If, how
ever, the radial flow is fast enough, so thatdyyr . t, like
in the diwhirl inflow, there exists a significant phase la
between≠yry≠r and the radial polymer elongation. The
kR2

r l depends not only on≠yry≠r but also on its time in-
tegral. The latter is always positive, since the elongati
always comes before the contraction as a fluid partic
moves along the radius. Thus, the additional hoop stre
averaged across the gap is positive in this case, which
sults in a radial force that acts in the inward direction an
drives the inflow.

The narrow diwhirl core turns out to be the regio
where the energy is pumped into the diwhirls. In th
Lagrangian coordinatesyryd plays a role of frequency,
which should be large enough to assure a nonzero aver
radial elongation. That is why diwhirls arise as a resu
of
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of a hysteretic transition and have finiteyr before their
decay atVc. Analyzing statistical distributions ofyr in
the chaotic oscillatory flows shown in Figs. 1(a)–1(d)
we found that the major asymmetry between the inflow
and the outflow is present there as well. Therefore, w
believe that this asymmetry is a general feature of the flo
instabilities driven by the hoop stress and the propose
instability mechanism has wide applicability.

Pattern formation in many dissipative systems has be
successfully described by the amplitude equation [1
This equation, however, does not have stationary localiz
solutions and, thus, cannot be adequate for the diwhir
Nevertheless, such solutions can exist if the amplitud
equation describes a hysteretic transition and is coupl
to another dynamic equation for a slow mode [11]. In ou
case, this slow mode could represent the elastic stres
which drive the fluid motion.
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