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In current models of electron transport through proteins and other polymers, calculation
performed by finding a single path which dominates. This model may not be applicable for ce
proteins, in which disorder caused by differences in couplings between sites or the length of
lead to a wide distribution of Green’s functions. As in other disordered systems, the quantity w
is averaged over disorder has a fundamental effect on the physical picture. We examine two di
experimental regimes and comment on the role of disorder. [S0031-9007(96)02039-X]
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Electron transfer (ET) reactions play a key role
several biological processes such as photosynthesis
throughout cell metabolism [1]. Starting with the “pat
ways” approach by Beratan and Onuchic [2], several n
theoretical advances have tried to predict how details
the protein environment control the coupling between
donor and acceptor sites [3,4]. Going beyond the isotro
description, the pathways approach used the fact that e
tron tunneling mediated through bonds are longer ra
than interactions through space. Thus, it is convenien
break this coupling into through space and through bo
steps. The pathways strategy estimates the couplin
the product of decay factors along the strongest coup
route (one-dimensional virtual connection) between do
and acceptor. This approach is successful as long
single pathway or tube of orbitals dominates the coupli

The reasons for pathways success are also the cau
its main weaknesses. For example, the decay per b
in covalent networks are taken as a constant value, in
pendently of the bond type and of the local environme
However, for certain systems, one would expect that d
order is important and cannot be ignored. Also, pathw
assumes that a single pathway tube dominates the cou
without a quantitative justification of why contributions o
the remaining of the protein can be neglected. No f
ther understanding of how the protein environment me
ates electron tunneling will be possible without address
these questions. Even though some initial work has sta
to deal with the issues discussed above, such as the
tiple pathways question [3–5], no theoretical approach
deal with both of the questions above, different decay
rameters and multiple paths, is presently available. Mo
over, in addition to the relevance to proteins, a many p
theory can be compared with considerably simpler syste
such as dendrimers [5], which are now under study [6]

Generalizing techniques that have been used to un
stand complex landscapes and disorder in physical
tems [7], we develop a framework that may be us
to quantitatively address the questions raised above.
Sections I and II, we explore the simplest possible pr
lem where donor and acceptor sites are connected b
0031-9007y96y78(1)y146(4)$10.00
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linear (single pathway tube) bridge. We include, how
ever, the possibility of disorder for the electronic cou
pling between bridge orbitals, given rise to the possibili
of a breakdown of the constant per bond decay assum
tion. Depending on the level of disorder, a transition
observed from the “pathways” limit with an exponentia
decay in time with a rate proportional to the square
the average tunneling matrix element to a nonexponen
decay that at short times is controlled by the strong co
pling molecules and at long times by the weak couplin
ones. These effects are due to the fact that an ensem
of molecules are measured experimentally. Moreover,
nonexponential decay described by Milleret al. [8] is per-
haps due to these effects. In Section III, a more relev
situation for proteins, with donor and acceptor sites i
teraction via several pathway tubes, is analyzed. In t
case, the transition from a single to many pathways in
single molecule is analyzed.

(I) Disorder in electron transport.—Most biological
electron transfer ratesskET d are described successfully
with a nonadiabatic formulation due to a large separati
between donor (D) and acceptor (A) sites (and, therefo
the tunneling matrix elementTDA is small), so

kET ­
2p

h̄
T2

DAsFCd , (1)

where sFCd is the Franck-Condon nuclear factor assoc
ated with the nuclear modes activation barrier.

TDA reflects how the protein environment couples th
electronic states between the donor and acceptor si
A detailed understanding of this coupling proved elusi
until recent theoretical and experimental advances [1,
The early simple models completely neglected the deta
of the protein medium and assumed that this coupli
would decay exponentially with distance.

We will discuss both the single and many path regime
The analyses of both of these cases begins with the ma
elements of a particular pathTDA, which are directly
related to the D-A bridge Green’s function,

TDA ­
X
i,j

nDiGijsEdnjA , (2)
© 1996 The American Physical Society
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where nD and nA are the donor and acceptor state
respectively. For the simplified case of a linear brid
of l orbitals and neglecting backscattering, (see Fig. 1)

GsEd ,
1

E 2 aB1

lY
i­121

yi,i11

E 2 aBi11

, (3)

where E is the energy of the tunneling electron an
aB is the energy of the orbital [10], and for notation
simplicity, we will assume that the constantE 2 aB is
included in the couplingsy. Note that backscattering ove
a single bond can be trivially included in this model by
redefinition ofy ! yy1 2 y2; in fact, this approximation
works well fory , 0.38.

As for the nature of disorder, in this work, we employ
log normal distributionP sGd for the Green’s function of
a given path,

P sGd dG ­
dG

G
p

2ps2
exp

"
2

sln GyGmd2

2s2

#
, (4)

or in other words, the probability distribution forx ;
ln GyGm is normal, whereGm is the mean ofG; for
notational simplicity, we takeGm ­ 1 and thusG and
s are unitless.

There are two types of disorder for which this approx
mation holds. (1)Disorder in couplings:for paths with
fixed length l and random couplingsy (and therefore
random lny), ln G ­

Pl
i ln yi, and (for long enough

chains, l ¿ 1) the probability distribution for lnG is
normal, due to the central limit theorem. (2)Disorder
in lengths: while the couplings are constant, there is
Gaussian distribution of path lengthsl and thus a log
normal distribution of Green’s functionsyl . We will
also consider another form of disorder which involv
the overall sign of the paths’ Green’s functions (whic
depends on whetherl is odd or even) in the many pat
regime.

The first question in any theoretical analysis of diso
dered systems is what quantity do we average over
order. Of course, averaging different quantities yiel
different physical interpretations. In the following se
tions, we examine two cases which have clear experim
tal meanings; in analogy with other disordered system
we examine the annealed and quenched cases in Sec
II and III, respectively.

(II) Many realizations of disorder.—When one per-
forms time-dependent ET experiments, one measures
decay with time of the density of occupation of the don
state. For a distribution of “identical” molecules, a sing
rate will exist and gives rise to the following deca
probability vs time:Pstd , expf22pT2

DAsFCdtyh̄g. (As-
suming that the back rate is small compared to the forw
rate.) Initially, we consider the measurement ofPstd in
a sample which contains many molecules, each with
ferent realizations of disorder. We first examine the ca
when there is only a single path between donor and
ceptor, although the Green’s functions for this path var
over the molecules in the sample.
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(A) Single path between donor and acceptor.—We
start with the simplest case: a linear set of orbita
connecting donor and acceptor. In this case, we m
averagePstd over disorder, which means calculating

kPstdl ­
Z `

0
dG P sGd exps2G2td . (5)

Examining the form of (5), it is easy to make a
analogy to a nondisordered statistical system, in wh
kPstdl is a partition function, the realizations of disorde
are the states,G2 is the energy, andt is the inverse
temperature. Thus,P sGd is the density of states, and
one can view exps2G2td as a Boltzmann weight. This
analogy also allows some simple qualitative argumen
For example, at high temperatures (smallt), we expect
entropy to dominate and partition functionkPstdl is
dominated by the most common realizations of disord
For small temperature (larget), we expect only the lowest
energy states (realizations of disorder with the small
rate G2) to contribute. Thus, the measurement ofPstd
yields essentially the partition function of this system
a range of temperatures. As one cannot calculate
integral (5) exactly, we approximate it in several regime

First, while it is tempting to perform a smallt expan-
sion of Pstd, calculate the integral for each term (whic
are just Gaussian integrals), and then re-sum all terms,
resulting series converges only asymptotically, for smalt.
Another approach is to calculate the integral (5) by me
field and then add fluctuations to Gaussian order. This
sumes thatP sxd exps2e2xtd looks Gaussian inx ; ln G.
This is reasonable up to the very large disorder limit,
we will discuss below.

We calculatekPstdl ­
R

dx expffsxdg, where

fsxd ­ 2
x2

2s2
2 exps2xdt

ø 2
x2

2s2
2 t

√
1 1 2x 1

1
2

4x2

!
. (6)

Performing the Gaussian integral overx yields

kPstdl ­ exp

"
2t 1 t

2s2t
1 1 4s2t

#
f1 1 4s2tg21y2.

(7)

At ts2 ø 1, we get modifications to exponential deca
For t greater than1ys2, we expect this approximation
to break down, as exps2G2td begins to deformP sxd
away from Gaussian. To a reasonable approximati
we can assume that this deformation is essentially
truncation of the Gaussian. In terms of our physic
analogy, we are examining the partition function at a ve
low temperature, and we are running out of states. W
need only take the low energy (smallG2) states up to
some cutoff, as in the long time limit, all states with fa
rate (largeG) have already contributed. As time ente
into the formulas by the weight expf2 exps2x 1 ln tdg,
integration over a truncated Gaussian yields
147
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FIG. 1. Schematic diagram of a donor and an acceptor bo
to a linear bridge of orbitals with disordered couplings.

kPstdl ø
1
2

"
1 2 erf

√
ln t

2s
p

2

!#
. (8)

However, there is yet another possible regime. As a
real system is finite, eventually all molecules will hav
contributed toPstd, exceptO s1d molecules at the very tai
of the spectrum. Thus,Pstd eventually “freezes,” i.e. the
decay time becomes sample dependent, analogou
glassy systems below the glass temperature. This fre
occurs always fort , 1ys2 (however, the exact posi
tion of this freeze depends on the number of molecule
Notice that1yt is equivalent to temperature in a conve
tional thermodynamic system. Therefore, for times long
than 1ys2 nonexponential decay takes place, and, as
time increases, smaller values ofG2 (equivalent to small
energies) dominatePstd. Freezing can occur in eithe
the modified exponential or the error function regime, d
,
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pending on the number of molecules. If most of the dec
takes place before freezing, then the process will app
to be controlled by a single rate.

(B) Many paths between donor and acceptor.—For
many spd paths between a single donor and accept
we sum over the paths in the Green’s function. Upo
squaring the Green’s function, we get a correlator betwe
Green’s function of the paths,

kPstdl ­
Z `

0

pY
k­1

dGk P sGkd exp

"
2

pX
i,j

GiGjt

#
. (9)

Moreover, p depends on many aspects, including th
geometry of the molecule and, in general,p should
increase with the separation of donor and acceptor. Al
one must consider that the Green’s functions for the
paths may have different signs. Thus, while the squa
of the total Green’s function will, of course, be positive
the correlator in (9) will have varying signs based upo
the sign of the product of the Green’s functions. W
now incorporate this into our model. This means th
the P sGd we have been using (log normal distribution
is really aP sjGjd, i.e., a probability distribution for the
magnitude. In the simplest case discussed next,P sjGkjd
is the same for all paths. We also assume that the sign
the Green’s function is random.

When we move tox ; ln jGj space, the sign onG just
means that eachxi has a parity attached to itxi [ 61.
Thus, we get forpts2 ø 1
kPstdl ­
Z `

2`

pY
k­1

dxk P sxkd exp

"
2t

pX
i,j

xie
xi xjexj

#
(10)

ø
Z `

2`

pY
k­1

dxks2ps2d21y2 exp

"
2

pX
i

x2
i

2s2
2 t

√
x2p2 1 xp

X
i

xixis2 1 xid 1
X
ij

xixjxixj

!#
,

t

r

.
r

he
where x ;
Pp

i xiyp and we have used the fact tha
x

2
i ­ 1. The Gaussian integral yields

kPstdl ­ expf2p2x2t 1
1
2

$b ? bA21 ? $b 2
1
2 ln

3 detss2bAdg ,

with the matrixAij ; dijss22 1 2xxiptd 1 2xixjt and
the vectorbi ­ 22xxipt. Unfortunately, the determi-
nant and inverse ofbA are not of a simple form. However
they can be brought into a simple form by looking at pe
turbations from various limits.

For the j x j ­ 1 limit (all x the same), Aij ;
dijss22 1 2ptd 1 2t and vectorbi ­ 22pt. As the
eigenvalues of a matrix of the forma0dij 1 a1 of dimen-
sion d are a single eigenvaluea0 1 da1 and asd 2 1d-
degenerate eigenvaluea0. Thus, the determinant is
simply ad21

0 sa0 1 da1d. Also, the sum of the elements
of the inverse of this matrix isdysa0 1 da1d. Thus,

kPstdl ­ exp

"
2p2t 1 p2t

2ps2t
1 1 4ps2t

#
(11)

3 f1 1 2ps2tg2sp21dy2f1 1 4ps2tg21y2.
-

In the p ! 1 limit, we retrieve the single path result (7)
In the region in which we can safely ignore the powe
law contribution (smallt limit), we can rescale (11) to get
exactly the single path form byp ! 1 and syp ! s.
Thus, the multipath case has effectively ap2 faster rate,
but with a width shrunk by a factor of1yp.

For the smallx limit, we have contributions tokPstdl
from the expf2p2x2tg term and

detfs2bAg ø f1 1 2ps2tg
1 2x2p2s2tf1 1 2sp 2 1ds2tg

$b ? bA21 ? $b ø x2p2t2

3

"
4ps2

1 1 8ps2t
2

2p2x2s4t
s1 1 2ps2td2

#
.

Note that for fixedx ­ 0, $b ? bA21 ? $b and the expo-
nential term ratep2x2 vanish and the only contributions
come from the power lawkPstdl ø s1 1 2ps2td21y2.

Thus, we find many distinct regimes depending on t
width of disorders and the nature of interferencex.
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This can be used, for example, to describe the propert
of an ensemble of chains. Moreover, these regimes
fundamentally different from the pathways approximatio
and thus reflect this difference inPstd.

(III) Many copies of a given disordered molecule.—
In this section, we examine the behavior of a typic
disordered molecule in which there are many pat
between donor and acceptor. Moreover, we consider
ideal case in which each of these paths are like tho
described in section IIA, i.e., all Green’s functions hav
the same sign and are taken from the distributionP sGd
described in Eq. (4). With this model, we now examin
the single to multipath transition. Experimentally, thi
can be realized (1) as biology provides us with the abili
to make macroscopic amounts of a particular molecu
(proteins for example) that for electron transfer purpos
we can neglect differences among them; (2) by sing
molecule spectroscopy. In this case, we do not avera
over Pstd, as this models the best path of all possib
molecules. Instead, we average over the logarithm of t
rate (square of the Green’s function). We appeal to t
arguments of self averaging: since lnGyGm ­

Pl
i­1 ln yi ,

ln G is the sum of many random variables and thus t
width of lnG divided byl vanishes in thel ! ` limit.

This situation is analogous to the averaging of the fr
energy in spin glass systems [7]. Thus, we can ma
anotherphysical analogy (completely different from tha
of the previous section), as we can view the different pat
are the states,Gi is the Boltzmann weight of the path, and
kln Gtl ­ klnf

Pp
i expsxidgl is the quenched free energy. I

we were to averageG instead, the best paths from the be
molecules would dominate, analogous to the annealed f
energy.

Thus, to average the “free energy” over Gaussi
disorder, we make a cumulant expansion,

k2 ln Gtl ­2 ln p 1
1
p

X
i

k2xi 1 x2
i l 2

X
i,j

kxixjl

­2 ln p 1 s2sp 2 1dyp, (12)
where Gt ;

Pp
i Gi is the total Green’s function and

Gi ­ expsxid is the Green’s function for pathi.
This form is directly analogous to the free energy in th

random energy model [11]. Thus, we have the competiti
between the entropy lnp versus the benefits of low energy
(i.e., high rate) of a few pathss2sp 2 1dy2p. We see
that for large enoughs2 compared to the “entropy” lnp,
the main contribution comes from a fewO s1d fast paths
instead of theO spd paths with the mean rate.

While this simple model qualitatively demonstrates
single to multiple pathway transition, it is far from quan
titative predictions. In this direction, one needs consi
erably more realistic descriptions for the distribution o
disorderP sGd. This consists of many factors, including
the distribution of lengths of paths (which is essential
of a purely geometrical nature) as well as the disorder
the values for the couplingsy. The consideration of the
regime in which different Green’s functions may have di
ies
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ferent signs (for the type of disorder of this section) wi
also lead to a new level of complexity.

While the pathways model has been successful
describing the electron transport in many proteins, the
are some proteins which are not well described. In t
previous sections, we have begun to detail how multip
pathway tubes and disorder, in both the length of pat
as well as the couplings between sites, can lead
behavior very different from the pathways regime. Th
importance of these effects for understanding electr
transfer in proteins is unquestionable. For examp
recently we have computed electron transfer betwe
donor and acceptor bound to different strands in azur
a b-barrel protein [3]. Because of the multiple hydroge
bonds coupling the two strands, if one considers all t
couplings equivalents, several equivalent pathways (
different hydrogen bonds) dominate the tunneling matr
element. Is this the correct picture or does disorder in t
couplings (the hydrogen bonds are not exactly the sam
for example) choose one or a few of these paths to
the most important? Similar behavior may appear fora-
helical motifs. These questions have to be answered
a more quantitative understanding, necessary for new
protein design, is to be achievable.
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