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In current models of electron transport through proteins and other polymers, calculations are
performed by finding a single path which dominates. This model may not be applicable for certain
proteins, in which disorder caused by differences in couplings between sites or the length of paths
lead to a wide distribution of Green’s functions. As in other disordered systems, the quantity which
is averaged over disorder has a fundamental effect on the physical picture. We examine two different
experimental regimes and comment on the role of disorder. [S0031-9007(96)02039-X]

PACS numbers: 87.15.—v

Electron transfer (ET) reactions play a key role inlinear (single pathway tube) bridge. We include, how-
several biological processes such as photosynthesis aeder, the possibility of disorder for the electronic cou-
throughout cell metabolism [1]. Starting with the “path- pling between bridge orbitals, given rise to the possibility
ways” approach by Beratan and Onuchic [2], several nevof a breakdown of the constant per bond decay assump-
theoretical advances have tried to predict how details ofion. Depending on the level of disorder, a transition is
the protein environment control the coupling between thebserved from the “pathways” limit with an exponential
donor and acceptor sites [3,4]. Going beyond the isotropidecay in time with a rate proportional to the square of
description, the pathways approach used the fact that elethe average tunneling matrix element to a nonexponential
tron tunneling mediated through bonds are longer rangdecay that at short times is controlled by the strong cou-
than interactions through space. Thus, it is convenient tpling molecules and at long times by the weak coupling
break this coupling into through space and through bondnes. These effects are due to the fact that an ensemble
steps. The pathways strategy estimates the coupling & molecules are measured experimentally. Moreover, the
the product of decay factors along the strongest couplingonexponential decay described by Milktral. [8] is per-
route (one-dimensional virtual connection) between donohaps due to these effects. In Section Ill, a more relevant
and acceptor. This approach is successful as long assituation for proteins, with donor and acceptor sites in-
single pathway or tube of orbitals dominates the couplingteraction via several pathway tubes, is analyzed. In this

The reasons for pathways success are also the causeaafse, the transition from a single to many pathways in a
its main weaknesses. For example, the decay per borgingle molecule is analyzed.
in covalent networks are taken as a constant value, inde- (I) Disorder in electron transport—Most biological
pendently of the bond type and of the local environmentelectron transfer rate¢kgr) are described successfully
However, for certain systems, one would expect that diswith a nonadiabatic formulation due to a large separation
order is important and cannot be ignored. Also, pathwaybsetween donor (D) and acceptor (A) sites (and, therefore
assumes that a single pathway tube dominates the couplirige tunneling matrix elemerfip, is small), so
without a quantitative justification of why contributions of 27 _,
the remaining of the protein can be neglected. No fur- ker = I Tpa(FC), (1)
ther understanding of how the protein environment medi
ates electron tunneling will be possible without addressin ed with the nuclear modes activation barrier.

these questions. Even though some initial work has starte Tpa reflects how the protein environment couples the

to ldeal Vr\]"th the ISSUes d'?S’SLéssed ar?ove,'su?:h as thehml‘g[ectronic states between the donor and acceptor sites.
tiple pathways question [ . J not eoretical approach gy yejjeq understanding of this coupling proved elusive

deal with both of the questions above, dlffere_nt decay pay il recent theoretical and experimental advances [1,9].
rameters and multiple paths, is presently available. Moresy,q early simple models completely neglected the details

over, in addition to the rele;vance to proteins_, a many patlaf the protein medium and assumed that this coupling
theory can be compared with considerably simpler systems id decay exponentially with distance

sugh as dle_:n_drirr:eri [.5]’ Whifhh ?rhe nOV\t’J under St(;‘c:y [6]'d We will discuss both the single and many path regimes.
eneraiizing techniques that have been used 1o undeyy, analyses of both of these cases begins with the matrix
stand complex landscapes and disorder in physical sy$ . ents of a particular patiip,, which are directly

tems [7].' we develop a framewor_k that may be use elated to the D-A bridge Green'’s function,
to quantitatively address the questions raised above. In

Sections | and Il, we explore the simplest possible prob- Tpa = Z vpiGii(E)vja (2)
lem where donor and acceptor sites are connected by a i '

where (FC) is the Franck-Condon nuclear factor associ-
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where vp and v, are the donor and acceptor states, (A) Single path between donor and accepteiVe
respectively. For the simplified case of a linear bridgestart with the simplest case: a linear set of orbitals
of [ orbitals and neglecting backscattering, (see Fig. 1) connecting donor and acceptor. In this case, we must
1 ! Vi averageP (r) over disorder, which means calculating
G(E) - l_[ i,i+1 . (3) "
E— ap ;22 E — ap,, (P(t)) = ] dG P(G) exp(—G?1). (5)
where E is the energy of the tunneling electron and 0
ag is the energy of the orbital [10], and for notational Examining the form of (5), it is easy to make an
simplicity, we will assume that the constait— ap is  analogy to a nondisordered statistical system, in which
included in the couplings. Note that backscattering over (P(¢)) is a partition function, the realizations of disorder
a single bond can be trivially included in this model by aare the statesG? is the energy, and is the inverse
redefinition ofv — v/1 — v?; in fact, this approximation temperature. ThusP(G) is the density of states, and
works well forv < 0.38. one can view exp-G?t) as a Boltzmann weight. This
As for the nature of disorder, in this work, we employ aanalogy also allows some simple qualitative arguments.
log normal distribution?(G) for the Green’s function of For example, at high temperatures (smdjl we expect
a given path, entropy to dominate and partition functiofP(z)) is
dG (ING/G,)? dominated by the most common realizations of disorder.
P(G)dG = o exl{—zizm}, (4)  For small temperature (largg, we expect only the lowest
GVamo 7 energy states (realizations of disorder with the smallest
or in other words, the probability distribution for =  rate G?) to contribute. Thus, the measurement Rff)
InG/G,, is normal, whereG,, is the mean ofG; for  vyields essentially the partition function of this system at
notational simplicity, we takeG, = 1 and thusG and 3 range of temperatures. As one cannot calculate the
o are unitless. integral (5) exactly, we approximate it in several regimes.
There are two types of disorder for which this approxi-  First, while it is tempting to perform a smaillexpan-
mation holds. (1)Disorder in couplings:for paths with  sjon of P(¢), calculate the integral for each term (which
fixed length/ and random coupling® (and therefore are just Gaussian integrals), and then re-sum all terms, the
random Inw), InG = Zf Inv;, and (for long enough resulting series converges only asymptotically, for small
chains, [ > 1) the probability distribution for I is  Another approach is to calculate the integral (5) by mean
normal, due to the central limit theorem. (@)sorder field and then add fluctuations to Gaussian order. This as-
in lengths: while the couplings are constant, there is asumes thatP(x) exp(—e>t) looks Gaussian in = InG.
Gaussian distribution of path lengtlisand thus a log This is reasonable up to the very large disorder limit, as

normal distribution of Green’s functions’. We will  we will discuss below.
also consider another form of disorder which involves We calculateP (1)) = [ dx exd f(x)], where
the overall sign of the paths’ Green’s functions (which 2
depends on whethdris odd or even) in the many path flx) = S exp(2x)t
regime. ' 20
The first question in any theoretical analysis of disor- 52 1,
dered systems is what quantity do we average over dis- ~ oz it o] (6)

order. Of course, averaging different quantities yields

different physical interpretations. In the following sec- Performing the Gaussian integral oveyields
tions, we examine two cases which have clear experimen- 202t

tal meanings; in analogy with other disordered systems, (P(1)) = ex;{—t +1 }[1 +4021] 712

we examine the annealed and quenched cases in Sections

Il and Ill, respectively. (7)

(1) Many realizations of disorder—When one per- At to> < 1, we get modifications to exponential decay.
forms time-dependent ET experiments, one measures tifor ¢ greater thanl /o, we expect this approximation
decay with time of the density of occupation of the donorto break down, as eXxp G*t) begins to deform?(x)
state. For a distribution of “identical” molecules, a singleaway from Gaussian. To a reasonable approximation,
rate will exist and gives rise to the following decay we can assume that this deformation is essentially a
probability vs time:P (1) ~ exd —27T3A(FC)t/h]. (As-  truncation of the Gaussian. In terms of our physical
suming that the back rate is small compared to the forwardnalogy, we are examining the partition function at a very
rate.) Initially, we consider the measurementRif) in  low temperature, and we are running out of states. We
a sample which contains many molecules, each with difneed only take the low energy (smaif’) states up to
ferent realizations of disorder. We first examine the cassome cutoff, as in the long time limit, all states with fast
when there is only a single path between donor and adate (largeG) have already contributed. As time enters
ceptor, although the Green'’s functions for this path variesnto the formulas by the weight ekp exp2x + Inz)],
over the molecules in the sample. integration over a truncated Gaussian yields

1 + 402t
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A VoV pending on the number of molecules. If most of the decay
Vi d takes place before freezing, then the process will appear
E Aé@@ ® to be controlled by a single rate.
v ® (B) Many paths between donor and acceptef-or
D1 E %‘A many (p) paths between a single donor and acceptor,
@ T % @ we sum over the paths in the Green'’s function. Upon

squaring the Green'’s function, we get a correlator between
Green'’s function of the paths,

FIG. 1. Schematic diagram of a donor and an acceptor bound
w P )4
(P(1)) = f dG, P(Gy) exp[ -> G,'G.,-t:| .9
i.j

to a linear bridge of orbitals with disordered couplings.

0 k=1
(P(1)) = l|:1 — erf( In¢ ﬂ (8) Moreover, p depends on many aspects, including the
2 2042 geometry of the molecule and, in general, should

increase with the separation of donor and acceptor. Also,

However, there is yet another possible regime. As anpne must consider that the Green’s functions for these
real system is finite, eventually all molecules will have paths may have different signs. Thus, while the square
contributed taP(z), except® (1) molecules at the very tail of the total Green’s function will, of course, be positive,
of the spectrum. Thus?(r) eventually “freezes,” i.e. the the correlator in (9) will have varying signs based upon
decay time becomes sample dependent, analogous tioe sign of the product of the Green’s functions. We
glassy systems below the glass temperature. This freez®w incorporate this into our model. This means that
occurs always forr ~ 1/a? (however, the exact posi- the P(G) we have been using (log normal distribution)
tion of this freeze depends on the number of molecules)s really aP(|G]), i.e., a probability distribution for the
Notice thatl/r is equivalent to temperature in a conven-magnitude. In the simplest case discussed nExtG,|)
tional thermodynamic system. Therefore, for times longeis the same for all paths. We also assume that the sign of
than 1/02 nonexponential decay takes place, and, as ththe Green’s function is random.
time increases, smaller values Gf (equivalent to small When we move ta = In |G| space, the sign o6 just
energies) dominaté’(r). Freezing can occur in either means that each; has a parity attached to j{; € *1.
the modified exponential or the error function regime, qe-'l'hus, we get fopro? < 1

o P )4
(P(1)) = dxy T(xk)ex{_tZXiex’Xjex/} (10)
k=1 i
© P P2
~ dxi2mo?) '/ ex —22—'2 — 1| X% + Xp D> xixi2 + x) + D xixixixg | |
—® =1 i <0 ; ij

where ¥ = 37 v;/p and we have used the fact that In the p — 1 limit, we retrieve the single path result (7).
x? = 1. The Gaussian integral yields In the region in which we can safely ignore the power

_ _ 22 1z 2-1.7 _ 1 law contribution (smalk limit), we can rescale (11) to get
(P() = exil pz),f t+ b A b—zln exactly the single path form by — 1 ando/p — 0.
X def(a?A)], Thus, the multipath case has effectivelya faster rate,
with the matrixA;; = 8;;(c ™2 + 2xxipt) + 2xix;t and  but with a width shrunk by a factor df/ p.
the vectorb;, = —2Yxipt. Unfortunately, the determi- For the smally limit, we have contributions tQP(z))

nant and inverse of are not of a simple form. However, from the exjp—p*x*] term and
they can be brought |nto'a'3|mple form by looking at per- de(azﬁ] ~[1 + 2po?t]
turbations from various limits.

For the || =1 limit (all y the same),A;; = + 2y po’i[l + 2(p — )o’i]
8ij(c™2 + 2pt) + 2t and vectorb; = —2pt. As the b-A b~ y2pi?
eigenvalues of a matrix of the formyd;; + a; of dimen- _

) ; ; J 4po? 2p*xtott
siond are a single eigenvalu@ + da; and a(d — 1)- % — )
degenerate eigenvalug,. Thus, the determinant is 1+ 8po?t (1 +2pot)?

simply al Yap + da,). Also, the sum of the elements

of the inverse of this matrix id/(agp + da;). Thus, Note that for fixedy =0, b - A™' - b and the expo-
2ot nential term ratep>y? vanish and the only contributions
(P(t)) = ex;{—pzz + p%piz} (11)  come from the power la¥P (1)) = (1 + 2pa?t)~'/2.
I +4post Thus, we find many distinct regimes depending on the
X [1 4+ 2pc?t] V21 + 4po?e] /2 width of disordero and the nature of interferencg.
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This can be used, for example, to describe the propertigerent signs (for the type of disorder of this section) will
of an ensemble of chains. Moreover, these regimes araso lead to a new level of complexity.
fundamentally different from the pathways approximation While the pathways model has been successful in
and thus reflect this difference #(z). describing the electron transport in many proteins, there
(Il Many copies of a given disordered molecsle. are some proteins which are not well described. In the
In this section, we examine the behavior of a typicalprevious sections, we have begun to detail how multiple
disordered molecule in which there are many pathgathway tubes and disorder, in both the length of paths
between donor and acceptor. Moreover, we consider thas well as the couplings between sites, can lead to
ideal case in which each of these paths are like thoskbehavior very different from the pathways regime. The
described in section lIA, i.e., all Green’s functions haveimportance of these effects for understanding electron
the same sign and are taken from the distribut®(G) transfer in proteins is unquestionable. For example,
described in Eq. (4). With this model, we now examinerecently we have computed electron transfer between
the single to multipath transition. Experimentally, this donor and acceptor bound to different strands in azurin,
can be realized (1) as biology provides us with the abilitya 8-barrel protein [3]. Because of the multiple hydrogen
to make macroscopic amounts of a particular moleculdonds coupling the two strands, if one considers all the
(proteins for example) that for electron transfer purposesouplings equivalents, several equivalent pathways (via
we can neglect differences among them; (2) by singlalifferent hydrogen bonds) dominate the tunneling matrix
molecule spectroscopy. In this case, we do not averagelement. Is this the correct picture or does disorder in the
over P(r), as this models the best path of all possiblecouplings (the hydrogen bonds are not exactly the same,
molecules. Instead, we average over the logarithm of théor example) choose one or a few of these paths to be
rate (square of the Green’s function). We appeal to thehe most important? Similar behavior may appearder

arguments of self averaging: sincedG,, = 2:1 Inv;, helical motifs. These questions have to be answered if
InG is the sum of many random variables and thus thex more quantitative understanding, necessary for new ET
width of InG divided by!/ vanishes in thé — oo limit. protein design, is to be achievable.

This situation is analogous to the averaging of the free The work was supported by the National Science
energy in spin glass systems [7]. Thus, we can maké&oundation (Grant No. MCB 96-16186) and the UC/
anotherphysical analogy (completely different from that Los Alamos Research (CULAR) Initiative. V.S.P. ac-
of the previous section), as we can view the different pathknowledges support through MIT's CMSE (NSF Grant
are the stateg;; is the Boltzmann weight of the path, and No. DMR 90-22933).
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