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Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent
Density-Functional Theory
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We present a generalized time-dependent density-functional theory (TDDFT) for the optical response
of metal clusters where both core polarization and valence responses are treated microscopically. It
is shown that the valence electrons response is described by an effective external field and residual
interaction that are those of the standard TDDFT modified by the self-consistent contributions of the
array of polarizable ionic cores. As an application the equations are solved within the adiabatic local-
density approximation for silver clusters, where core4d electrons greatly influence the optical response.
The experimental data are well reproduced by the present theory. [S0031-9007(97)02517-9]
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The optical properties of simple metal clusters reflect t
structure and dynamics of their set of delocalized electro
This set is formed by the loosely boundvalenceelectrons
that each atom gives to the aggregate. The rest, compo
of the more tightly bound electrons and atomic nucle
constitutes the array of ionic cores. This array forms
positive charge background responsible for most of t
binding forces on valence electrons. In addition to th
static-binding effect the ionic cores may influence directl
the optical response of the cluster when the energy
a core-level excitation is comparable to the energy f
the collective motion of delocalized electrons. When th
occurs the valence collective states are greatly influenc
by the dynamic polarization of the array of ionic cores. I
the present Letter we address the consistent microsco
treatment of these core-valence interactions.

In alkali metal clusters such as those of Na and K th
core response is at energies much higher than the col
tive surface oscillation or plasmon resonance. Thus,
these clusters the main effect of the ionic cores is just
a confining background, which in first approximation ma
be modeled by a uniformjellium charge distribution or
by using pseudopotentials; while the plasmon energy
almost totally controlled by the valence electron intera
tions that are well described within the adiabatic time
dependent local-density approximation (TDLDA) [1,2]
A different situation is found in transition and noble meta
clusters [3]. For instance, in Ag clusters the core4d elec-
trons form a size-dependent polarizable background t
strongly screens the valence electron interactions. Th
core polarization effects are also critical for materials wi
shallow cores (as II-VI and III-V semiconductors) [4].

The optical response of Ag clusters has recently draw
much interest because of the observed deviation from
behavior of alkali clusters. The most clear manifestatio
observed for isolated Ag1N clusters [5] is the blueshift of
the plasmon energy as the size of the cluster decrea
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A similar deviation was observed in the wave-vector plas-
mon dispersion of an infinite planar Ag surface. In this
context Liebsch has proposed a semiempirical model [6
which includes effects associated to the polarization of
the core4d electrons of Ag by means of the experimen-
tal effective dielectric functionedsvd of the bulk metal.
This edsvd is used in the Poisson equation to obtain the
effective potential for valence electrons. The model, by
ending the dielectric volume at a distanced from the sur-
face, takes into account that the metallic layer close to
the surface is actually less polarizable than the inner part
As shown in Refs. [5–8] thisdielectric modelis able
to reproduce qualitatively the basic new features of the
response of Ag clusters. However, from the theoretica
point of view, a major drawback of the model lies on the
different treatment given to core and valence responses
In fact, while valence response is treated microscopically
within the TDLDA theory, core response is only consid-
ered in a macroscopic approach by means of the inpu
function edsvd. Here a microscopical formalism includ-
ing core-polarization effects for the optical response of
finite systems like clusters, nanostructures, and quantum
dots is developed. Our method is similar to the one in
Ref. [3] for bulk metals but, by working in real space,
we are able to obtain the general set of equations govern
ing the cluster response. The theory can be applied to a
metal and semiconductor clusters and keeps the great a
vantage of working only with the set of valence electrons
for the ground state and optical response.

In time-dependent density-functional theory (TDDFT)
the relation between the total effective potentialftot

and the induced densitydr is given by the independent
density-density correlation functionx0 [9]

drsrd ­
Z

d3r 0 x0sr, r0, vdftotsr0d , (1)

where the time variation is given by an additional phase
e2ivt in both potential field and induced density.x0 is
© 1997 The American Physical Society
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expressed in terms of the occupied states and the sin
particle Green’s function gsr, r0, vd ­ krj

1
Hsp 2v jr0l

(whereHsp is the single-particle Hamiltonian) as

x0sr, r0, vd ­
X
h

whsrdwp
hsr0d

3 fgsr, r0, ´h 2 v 2 ihd

2 gsr, r0, ´h 1 v 1 ihdg . (2)

The sum in (2) usually includes only the valence stat
of the cluster [9]. In order to explicitly include the core
states we separate valence and core contributions tox0

by restricting the sum in (2) to each subset of states. T
amounts to separate the induced densitydr in valencedry

and coredrc contributions, each one related to the tot
field by the correlation functionsx0

y andx0
c , respectively.

The core states will remain localized, up to some exte
around the positions of the atomic nucleiRi. This allows
us to writex0

c as a sum of atomiclike correlation function
x0

a on each sitei or, equivalently, the induced core densit
as a sum of induced core densitiesdri

drcsrd ­
X

i

Z
d3r 0 x0

asr 2 Ri , r0 2 Ri , vd ftotsr0d

;
X

i

drisr 2 Rid . (3)

Based on the localized nature of the core wave fun
tions, and consequently ofx0

a , we expandftot around
each atomic position as

ftotsrd ­ const2 sr 2 Rid ? Ei

1
Z

d3r 0 drisr0 2 Rid
jr 2 r0j

, (4)

where Ei is the local field at sitei due to the external
potential fextsrd, the valence electrons, and the rest o
ionic cores. Now the induced core densitydri is given
by

drisr 2 Rid ­
Z

d3r 0 x0
asr 2 Ri , r0 2 Ri , vd

3 f2sr0 2 Rid ? Ei 1
R

d3r 00 dri sr002Rid
jr002r0 j g .

(5)

This equation clearly shows that each core responds
its local field Ei . In other words, the core response i
controlled by the dipole core polarizabilityaisvd that
creates an induced dipole moment at sitei of

pi ­ aisvdEi . (6)

The scenario that emerges for the cluster respon
corresponds to an array of polarizable dipoles embedd
in the charge cloud of the valence electrons. Both t
array of dipoles and the induced valence density oscilla
le-

es
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with the frequency of the external field and are coupled t
each other, sincepi depends on the electric field created
by the valence electrons and these are influenced by t
electric field of the array of dipoles. We end up in a
new core-valence self-consistency problem that can b
analytically solved for clusters (see below).

Because of the reduced dimension of the cluster i
comparison with the wavelength of the electromagneti
radiation we can apply the dipole approximation and
assume as external fieldfextsrd ­ lz. The induced
valence density, for a closed shell cluster, will be als
dipolar,

drysrd ­ drysrdY10sVd , (7)

since the valence response equations decouple for d
ferent multipoles. Thus, only the dipolar component o
the core potential couples to the valence induced densi
This dipolar component is

fdipsrd ­ 2
X

i

aisvd
Z

dV
Ei ? sr 2 Rid

jr 2 Ri j3
Y10sVd

;
X

i

aisvdEi ? Cisrd , (8)

where the last term constitutes the definition of the vecto
Cisrd. To simplify the vector notation in Eq. (8) we
assign a greek letter (h ­ 1, . . . , 3Ni) to each pair vector
component given by sitei (i ­ 1, . . . , Ni) and Cartesian
coordinatea (a ­ 1, 2, 3 for x, y, z, respectively). Thus
Eq. (8) reads as a simple scalar multiplication

fdipsrd ­
X
h

ahsvdEhChsrd . (9)

Now, the local electric fieldEi is given by the relation

Ei ­ Ee.v.
i 1

X
kfii

2
pk

R3
ik

1
3spk ? RikdRik

R5
ik

, (10)

whereEe.v.
i is the sum of the external applied electric field

and that created by the induced valence density. Usin
Eq. (6), we can write (10) in matrix notation as

MhdEd ­ Ee.v.
h , (11)

where the matrixM depends only on the cluster geom-
etry and it is very easily computed. We note that th
external-valence fieldEe.v.

i satisfies the usual relation

Ee.v.
i ­ 2=

µ
2fextsrd 2

Z
d3r 0 drysr0d

jr 2 r0j

∂ Ç
r­Ri

, (12)

which, defining a vector potentialBisrd and external
applied electric field in thez direction Di ­ luz, is
written

Ee.v.
h ­

Z
Bhsr 0ddrysr 0d r 02 dr 0 1 Dh . (13)
1429
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With these relations we can now derive the equation
governing the dipole response of the cluster. The tot
effective potential felt by the valence electrons consis
of the external, induced valence, and core-polarizatio
potentials, and its radial part is given by

ftotsrd ­ fextsrd 1
R

dr 0 r 02 Ksr , r 0ddrysr 0d 1 fdipsrd ,

(14)

where Ksr , r 0d is the usual dipolar residual interaction
within TDDFT, i.e., due to the bare Coulomb and residua
exchange-correlation contribution [9]. From Eqs. (1) an
(14), the induced valence density is written as

drysr1d ­
Z

dr2 r2
2 x0

ysr1, r2, vd Tsr2d

1
Z

dr2dr3 r2
2 r2

3 x0
ysr1, r2, vd

3 K̃sr2, r3d drysr3d , (15)

where

T srd ­ fextsrd 1
X
hd

ahsvdChsrdM21
hd Dd , (16)

K̃sr1, r2d ­ Ksr1, r2d 1
X
hd

ahsvdChsr1dM21
hd Bdsr2d .

(17)

Equations (15)–(17) constitute the main result of th
Letter [10]. They prove that the response equations f
the induced valence density are the standard TDDFT on
but with an external fieldT srd and residual interaction
K̃sr1, r2d which are modified by the effect of the array
of polarizable cores. In fact,ahsvd ­ 0 leads to the
usual TDDFT response function [9]. All core polarization
effects are included in the second terms of Eqs. (16) a
(17) by means of the matrixM and the potential vectors
B andC. We use matrix techniques to solve Eq. (15) an
to obtaindry in terms of which the dynamical valence
polarizabilityaysvd is computed as

aysvd ­
Z

dr r2 drysrdfextsrd , (18)

and the cross section isssvd ­ s4pvycdImhaysvdj.
A necessary ingredient of Eqs. (15)–(17) is the cor

polarizability ai that is computed in an embedded atom
approximation assuming that the core response on
depends on the valence-electron density at sitei [11].
This local approximation is justified when the core-cor
overlap is very small and the core-shell radius is small
than the spatial variation size of the electronic densit
as is the case for the calculations presented below. Th
the dynamical polarizability of the cores in a cluster wil
vary from the value of a fully embedded core, for core
close to the cluster center, to a value similar to the fre
ion polarizability, for cores sitting near the cluster surfac
(the surface profile of the valence electron density mak
the cores lying at the cluster surfaceseea much reduced
1430
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valence density). Once this scheme is performed for a
the atoms in the cluster the spatial dependence of the co
polarizability is obtained as part of the microscopic time
dependent density functional calculation. The compute
fully embedded core and free ion polarizabilities wer
presented in Ref. [8]. In the following, we solve the
new generalized TDDFT equations within the adiabati
local-density approximation for exchange and correlatio
effects [12].

In order to better understand the core-polarization e
fects we consider as a test case the closed shell agg
gate Ag1139 and describe the valence states within the we
known jellium model. The core array is approximated b
the bulk fcc (or bcc) geometry, with an ion sitting at the
cluster center and filling the subsequent equidistant atom
shells, as already used in Ref. [13] for the cluster geom
try. The free ion polarizability is assigned to those core
in the outermost closed shell while the rest are describ
using the fully embedded core polarizability, i.e., with em
bedding density equal to that of bulk Ag. Figure 1 summa
rizes the results obtained for the fcc structure. In Fig. 1(a
we show the effective potential fieldT srd at v ­ 0 com-
pared to the external one. The valence electron density a
the different atomic shells are also indicated. Figure 1(b
shows the corresponding imaginary part of the valence p
larizability (continuous line). Three main effects can be
extracted from Fig. 1: (i) The core polarization screens th
valence electron interaction by a reduction of the extern
field acting on the valence electrons [see Fig. 1(a)] and b
reducing the valence residual interaction [because of t
second term in Eq. (17)]. Comparing the jellium and core
polarization results in Fig. 1(b) we see that this screenin
shifts to lower frequencies the surface plasmon energy. (
The plasmon energy is sensitive to the core polarizabili
form used. The larger embedded core polarizability valu
as compared to the free ion one, produces a larger scre
ing and a shift to lower energy of the resonance frequen
[see dotted and dashed lines in Fig. 1(b)]. This indicate
that the decrease of plasmon energy with increasing si
can be assigned to the evolution of the core polarizabili
from the free ion in small clusters to the fully embedde
core in larger ones. (iii) The absorption shoulder at th
right of the plasmon peak is not present when the free io
polarizability is used for all the atoms and, consequently,
is a signature for the presence of atoms with bulk behavio

Figure 2 shows the calculated cross section for Ag1
59 in

comparison with the experimental data of Ref. [5]. Th
free ion polarizability has been used for all the atom
because of the reduced dimension of this cluster. O
core-polarization results agree reasonably well with th
measured data and correct the large discrepancy fou
when these effects are not included. From Fig. 2 w
can also see the minor differences in the optical spect
when the bcc (continuous line) or fcc (short-dashed line
geometric structures are used, i.e., the specific structure
not as relevant for the plasmon resonance as the co
polarization effects. Also a slight redshift of plasmon
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FIG. 1. For the Ag1139 cluster in panel (a) is displayed the
effective potentialT srd in the static limit (v ­ 0) (continuous
line), the external applied potentialfextsrd (dashed line), the
valence density in arbitrary units (dotted line), and a histogra
with the radial positions for the fcc-atomic shells. The numbe
of atoms in each shell, with increasingr, is 1 (r ­ 0), 12,
6, 24, 12, 24, 8, 48, 4. In panel (b) the imaginary part of th
valence polarizability is shown: continuous line, the result usin
the embedded core polarizability for atoms withR , 14a0 and
the free ion value for the rest. Short dashed and dotted lin
correspond to calculations using for all atoms the embedd
core and free ion polarizabilities, respectively. The long-dash
line corresponds to the plain jellium result.

energy with increasing size is observed when compari
the peak position in the continuous lines of Figs. 1 and
This behavior contrasts with the blueshift obtained in th
jellium results (long-dashed line) and it is in agreeme

FIG. 2. Photoabsorption cross section per electron for t
Ag1

59 cluster. The free ion polarizability is used for all atoms
Continuous and short-dashed lines correspond to bcc and
geometries, respectively. The long-dashed line shows the re
without core-polarization effects. The experimental points a
from Ref. [5].
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with experiments [5]. Our theory can also be applie
to smaller clusters by finding first the precise groun
state geometry including polarization effects. We pla
to present these calculations in the near future. He
we have focused on the theoretical model and test
for big sizes, where the jellium wave functions and bu
geometric structures are reasonable approximations.

In conclusion, the time-dependent density-function
theory for the optical response of metal clusters has be
extended to treat both valence and core responses mi
scopically. New general response equations have b
found and solved for the case of big Ag clusters. Goo
agreement with experiment has been found for the Ag1

59
cross section. The decrease of plasmon energy with
creasing size has been explained by the evolution of
core polarizability in the cluster interior from the free ion
in small clusters to the embedded core value in larger on
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