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We present a generalized time-dependent density-functional theory (TDDFT) for the optical response
of metal clusters where both core polarization and valence responses are treated microscopically. It
is shown that the valence electrons response is described by an effective external field and residual
interaction that are those of the standard TDDFT modified by the self-consistent contributions of the
array of polarizable ionic cores. As an application the equations are solved within the adiabatic local-
density approximation for silver clusters, where cédeelectrons greatly influence the optical response.

The experimental data are well reproduced by the present theory. [S0031-9007(97)02517-9]

PACS numbers: 36.40.Vz, 31.15.Ew

The optical properties of simple metal clusters reflect théA similar deviation was observed in the wave-vector plas-
structure and dynamics of their set of delocalized electronsnon dispersion of an infinite planar Ag surface. In this
This set is formed by the loosely bourdlenceelectrons context Liebsch has proposed a semiempirical model [6]
that each atom gives to the aggregate. The rest, composadhich includes effects associated to the polarization of
of the more tightly bound electrons and atomic nucleithe core4d electrons of Ag by means of the experimen-
constitutes the array of ionic cores. This array forms aal effective dielectric functiore,;(w) of the bulk metal.
positive charge background responsible for most of th&his €,(w) is used in the Poisson equation to obtain the
binding forces on valence electrons. In addition to thiseffective potential for valence electrons. The model, by
staticbinding effect the ionic cores may influence directly ending the dielectric volume at a distané¢dérom the sur-
the optical response of the cluster when the energy diace, takes into account that the metallic layer close to
a core-level excitation is comparable to the energy fothe surface is actually less polarizable than the inner part.
the collective motion of delocalized electrons. When thisAs shown in Refs. [5—8] thidlielectric modelis able
occurs the valence collective states are greatly influencet reproduce qualitatively the basic new features of the
by the dynamic polarization of the array of ionic cores. Inresponse of Ag clusters. However, from the theoretical
the present Letter we address the consistent microscoppmint of view, a major drawback of the model lies on the
treatment of these core-valence interactions. different treatment given to core and valence responses.

In alkali metal clusters such as those of Na and K thdn fact, while valence response is treated microscopically
core response is at energies much higher than the colleesthin the TDLDA theory, core response is only consid-
tive surface oscillation or plasmon resonance. Thus, iered in a macroscopic approach by means of the input
these clusters the main effect of the ionic cores is just ainction e;(w). Here a microscopical formalism includ-

a confining background, which in first approximation maying core-polarization effects for the optical response of
be modeled by a unifornjellium charge distribution or finite systems like clusters, nanostructures, and quantum
by using pseudopotentials; while the plasmon energy iglots is developed. Our method is similar to the one in
almost totally controlled by the valence electron interac-Ref. [3] for bulk metals but, by working in real space,
tions that are well described within the adiabatic time-we are able to obtain the general set of equations govern-
dependent local-density approximation (TDLDA) [1,2]. ing the cluster response. The theory can be applied to all
A different situation is found in transition and noble metal metal and semiconductor clusters and keeps the great ad-
clusters [3]. For instance, in Ag clusters the cédeelec-  vantage of working only with the set of valence electrons
trons form a size-dependent polarizable background thdor the ground state and optical response.

strongly screens the valence electron interactions. These In time-dependent density-functional theory (TDDFT)
core polarization effects are also critical for materials withthe relation between the total effective potential®
shallow cores (as II-VI and IlI-V semiconductors) [4]. and the induced densit§p is given by the independent

The optical response of Ag clusters has recently drawnlensity-density correlation functiop” [9]
much interest because of the observed deviation from the _ 30 0/ tot (1
behavior of alkali clusters. The most clear manifestation dpr) = [ d’r' x (r.x, 0)¢ = (r), (1)
observed for isolated Ag clusters [5] is the blueshift of where the time variation is given by an additional phase
the plasmon energy as the size of the cluster decreases.’®’ in both potential field and induced density° is
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expressed in terms of the occupied states and the single4th the frequency of the external field and are coupled to
particle Green's function g(r,r', w) = <r|H — [r’y  each other, sincg; depends on the electric field created

(whereHy, is the single-particle Hamiltonian) as by the valence electrons and these are influenced by the
electric field of the array of dipoles. We end up in a
X w) = > eym)enr') new core-valence self-consistency problem that can be

analytically solved for clusters (see below).

Because of the reduced dimension of the cluster in
comparison with the wavelength of the electromagnetic
—glr,r' ey + w + in)]. (2) radiation we can apply the dipole approximation and
assume as external fielg**'(r) = Az. The induced
valence density, for a closed shell cluster, will be also
tipolar,

X [g(r,r'ep — w — in)

The sum in (2) usually includes only the valence state
of the cluster [9]. In order to explicitly include the core
states we separate valence and core contributiong’to
by restricting the sum in (2) to each subset of states. This
amounts to separate the induced den8jgyin valenced p,,
and coredp. contributions, each one related to the total
field by the correlation functiong? and x?, respectively.
The core states will remain localized, up to some exten
around the positions of the atomic nucRj. This allows

8pu(r) = 8py(r)Yi0(€2), (7

since the valence response equations decouple for dif-
ferent multipoles. Thus, only the dipolar component of
the core potential couples to the valence induced density.
Yhis dipolar component is

us to writey? as a sum of atomiclike correlation functions dip(y — _ [ R;)
x° on each sité or, equivalently, the induced core density (r) Z ai(w) dQ R |? Yi0(€2)
as a sum of induced core densiti&s;

P = Zai(w)Ei : Ci(r), (8)

5pele) = 3 [ @ xe = Rix’ = Riv0) ) |
i where the last term constitutes the definition of the vectors
= Z5pi(r - R)). (8) Ci(r). To simplify the vector notation in Eq. (8) we
i assign a greek lettem(= 1,...,3N;) to each pair vector
component given by sité (z = 1,...,N;) and Cartesian
coordinatea (a = 1,2,3 for x,y, z, respectwely) Thus
Eq. (8) reads as a S|mple scalar multiplication

Based on the localized nature of the core wave func-
tions, and consequently of, we expand¢'® around
each atomic position as

dip =
¢tot(r) — const— (I’ - R, - E; ¢ (r) ;an(a))E'r}Cﬂ(")- (9)
[d3 ’6p|’(r _’| R) , (4)  Now, the local electric fieldE,; is given by the relation
r —r
. . . V. Pk 3(pr - Ri)Rix
where E; is the local field at site due to the external E, =E + ) R + — & (10)
potential ¢*'(r), the valence electrons, and the rest of ki ik ik

ionic cores. Now the induced core densdy; is given whereE{"" is the sum of the external applied electric field

by and that created by the induced valence density. Using
Eqg. (6), we can write (10) in matrix notation as
(Spi(r - Rl) = der')(g(r _Ri,l'/ - R,-,w) q ( ) ( )

M, sEs = ESV, 11
X [~(r' — R) - B + [d3n 200 Ry oo ()
(5) where the matrixXM depends only on the cluster geom-
etry and it is very easily computed. We note that the
This equation clearly shows that each core responds texternal-valence fiel; " satisfies the usual relation
its local field E;. In other words, the core response is /
ext 3, 0pu(r)
VI =¢™(r) d

ev. _ __ 0
Ir — r|

controlled by the dipole core polarizability;(w) that Ei" =
creates an induced dipole moment at sitd
pi = a;(w)E;. (6)  which, defining a vector potentiaB;(r) and external
The scenario that emerges for the cluster respons%p%“ed electric field in thez direction D; = Aug, is
corresponds to an array of polarizable dipoles embedd erten

in the charge cloud of the valence electrons. Both the ev. , N
array of dipoles and the induced valence density oscillate ESY = | By(r)épy,(r)rtdr’ + Dy (13)

. (12)
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With these relations we can now derive the equationsalence density). Once this scheme is performed for all
governing the dipole response of the cluster. The totalhe atoms in the cluster the spatial dependence of the core
effective potential felt by the valence electrons consistpolarizability is obtained as part of the microscopic time-
of the external, induced valence, and core-polarizatiomlependent density functional calculation. The computed
potentials, and its radial part is given by fully embedded core and free ion polarizabilities were

tot(,\ _ pext 1.2 / / dip presented in Ref. [8]. In the following, we solve the
6 = ) + Jdr' B K, r)3pu () + 700, new generalized TDDFT equations within the adiabatic

(14)  local-density approximation for exchange and correlation

where K(r, ') is the usual dipolar residual interaction €ffects [12]. o
within TDDFT, i.e., due to the bare Coulomb and residual, '" order to better understand the core-polarization ef-

exchange-correlation contribution [9]. From Egs. (1) and€ctS We consider as a test case the closed shell aggre-
(14), the induced valence density is written as gate Ags3y and describe the valence states within the well

known jellium model. The core array is approximated by
_ 2.0 the bulk fcc (or bcec) geometry, with an ion sitting at the
8pu(r) f drary Xy(ri, r2, @) T(r2) cluster center and filling the subsequent equidistant atomic
shells, as already used in Ref. [13] for the cluster geome-
try. The free ion polarizability is assigned to those cores
. in the outermost closed shell while the rest are described
X K(ra, r3) 8py(r3), (15) using the fully embedded core polarizability, i.e., with em-
bedding density equal to that of bulk Ag. Figure 1 summa-
rizes the results obtained for the fcc structure. In Fig. 1(a)
ox _ we show the effective potential fielfl(r) at @ = 0 com-
T(r) = ¢%(r) + Za ay(@)Cy(My5D5,  (16) pared to the external one. The valence electron density and
_ K the different atomic shells are also indicated. Figure 1(b)
K(rior) = K(riura) + D ay(@)Cy(r) M, 4 Bs(r2). shows the corresponding imaginary part of the valence po-
8 (17) larizability (continuous line). Three main effects can be
] ] ) _extracted from Fig. 1: (i) The core polarization screens the
Equations (15)—(17) constitute the main result of thisyalence electron interaction by a reduction of the external
Letter [10]. They prove that the response equations fofie|d acting on the valence electrons [see Fig. 1(a)] and by
the induced valence density are the standard TDDFT onefequcing the valence residual interaction [because of the
but with an_external fieI_d_T(r) and residual interaction gecond term in Eq. (17)]. Comparing the jellium and core-
K(r1,r2) which are modified by the effect of the array pojarization results in Fig. 1(b) we see that this screening
of polarizable cores. In facty,(w) = 0 leads to the ghjfts to lower frequencies the surface plasmon energy. (ii)
usual TDDFT response function [9]. All core polarization The plasmon energy is sensitive to the core polarizability
effects are included in the second terms of Eqs. (16) anfhrm used. The larger embedded core polarizability value,
(17) by means of the matri$M and the potential vectors as compared to the free ion one, produces a larger screen-
B andC. We use matrix techniques to solve Eq. (15) anding and a shift to lower energy of the resonance frequency
to obtain6p, in terms of which the dynamical valence [see dotted and dashed lines in Fig. 1(b)]. This indicates

+ ]drzdm r22r32)(3(r1,r2,w)

where

polarizability a, () is computed as that the decrease of plasmon energy with increasing size
s . can be assigned to the evolution of the core polarizability

ay(w) = f drr=8p,(r)¢™(r), (18)  from the free ion in small clusters to the fully embedded

core in larger ones. (iii) The absorption shoulder at the

and the cross section is(w) = @mw/c)im{a,(w)}. right of the plasmon peak is not present when the free ion

A necessary ingredient of Egs. (15)—(17) is the corepolarizability is used for all the atoms and, consequently, it
polarizability «; that is computed in an embedded atomis a signature for the presence of atoms with bulk behavior.
approximation assuming that the core response only Figure 2 shows the calculated cross section foi,Ag
depends on the valence-electron density at sif@1]. comparison with the experimental data of Ref. [5]. The
This local approximation is justified when the core-corefree ion polarizability has been used for all the atoms
overlap is very small and the core-shell radius is smallebecause of the reduced dimension of this cluster. Our
than the spatial variation size of the electronic densitycore-polarization results agree reasonably well with the
as is the case for the calculations presented below. Thumeasured data and correct the large discrepancy found
the dynamical polarizability of the cores in a cluster will when these effects are not included. From Fig. 2 we
vary from the value of a fully embedded core, for corescan also see the minor differences in the optical spectra
close to the cluster center, to a value similar to the freavhen the bcc (continuous line) or fcc (short-dashed line)
ion polarizability, for cores sitting near the cluster surfacegeometric structures are used, i.e., the specific structure is
(the surface profile of the valence electron density makesot as relevant for the plasmon resonance as the core-
the cores lying at the cluster surfaseea much reduced polarization effects. Also a slight redshift of plasmon
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FIG. 1. For the Agy cluster in panel (a) is displayed the
effective potentiall'(r) in the static limit g = 0) (continuous
line), the external applied potentigi®*'(r) (dashed line), the

with experiments [5]. Our theory can also be applied
to smaller clusters by finding first the precise ground-
state geometry including polarization effects. We plan
to present these calculations in the near future. Here
we have focused on the theoretical model and test it
for big sizes, where the jellium wave functions and bulk
geometric structures are reasonable approximations.

In conclusion, the time-dependent density-functional
theory for the optical response of metal clusters has been
extended to treat both valence and core responses micro-
scopically. New general response equations have been
found and solved for the case of big Ag clusters. Good
agreement with experiment has been found for théyAg
cross section. The decrease of plasmon energy with in-
creasing size has been explained by the evolution of the
core polarizability in the cluster interior from the free ion
in small clusters to the embedded core value in larger ones.
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FIG. 2. Photoabsorption cross section per electron for the
Ags, cluster. The free ion polarizability is used for all atoms.
Continuous and short-dashed lines correspond to bcc and fcc
geometries, respectively. The long-dashed line shows the result
without core-polarization effects. The experimental points are13]
from Ref. [5].



