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We construct modular invariants dMsy,), the moduli space of quantum vacuaMf= 2 supersym-
metric Yang-mills theory with gauge group SU(2). We also introduce the nonchiral funéfioh A) =
2ae?sV /2 wheree?sv is the Seiberg-Witten metrie; is the Poincaré metric oMy anda is
a regularization scheme-dependent constant. It turns outkh@t, A) has all the expected properties
of the next to leading term in the Wilsonian effective actiSf4,A] whose modular properties are
considered in the framework of the dimensional regularization. [S0031-9007(97)02373-9]
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The exact results abow = 2 supersymmetric Yang 7 = 92 is the inverse of the map uniformizin@!sy),
Mills theory (SYM) obtained by Seiberg and Witten [1] it follows that the positive definite metric,

concern the low-energy Wilsonian effective action with s NBFR L et ) )
at most two derivatives and four fermions. In the SU(2)  dsp = (im 7)2 |dal” = (Im 7)2 |dul® = e®|dul*,
case, therrmoduli space of quantum vacuad¥ sy (), the (4)

Riemann sphere with puncturesiat= «, u = =A?. In
[2] results in [1] have been derived from first principlesis the Poincaré metric 0Msy(2). This implies thate
[3,4]. In particular, theT? symmetryu(r + 2) = u(7),  satisfies the Liouville equation,z = €% /2.
which rigorously follows from the asymptotic analysis We now show that the Seiberg-Witten metric
together with the relation [3] ‘

e?v = |a'|*Im 7, (5)

u=mi(F — adaF/2). (1) . .
where = 9,, can be written in terms of the Poincaré

and the fact that metric e®. To this end we first summarize a few facts.
) A crucial role in the theory is played by the Picard-Fuchs

equations [10,11]; in particular, in the SU(2) case we have
uniquely fix the monodromy group to beI'(2). The ba- the (reduced) uniformizing equation [3,10]
sic observation is that, for real values wfwe have the 2 a2 .
symmetryu(r) = u(—7) which essentially fixed". The [4(u AD)o, + 114 =0, (6)
reason is that by (1) and Im> 0 (except for the sin- satisfied byap anda, implying that
gularities where Imr = 0), u can be seen as uniformiz- a
ing coordinate. ThereforeMsy) = H/T' whereH is (A* = GHolG + 7 (3.G)° =0, (7)
the upper half plane (the-moduli space; see [5]). This
is equivalent tau(y - 7) = u(r) with y € T'. It follows Whereu = G(a). By (1) and (7) we have [5]

u() = u(=7), ulr + 1) = —ulr),

that there are curve€ in the fundamental domains in 72l F — 39,F)°
H such that forr € C one hasy - 7 = —7. This rea- BF = 2 ‘; — < > - (8)
soning together with a proper use ofr + 1) = —u(r) 16[A* + 72(F — ad.F /2]
essentially implies the results in [2]. Furthermore, by [1]

In [1] it has been emphasized that the metric,

_ _ V2 (% dxx —u
ds® = Im(a2.F) ldal® = 9,aPIm@2F) ldul’,  (3) a = 0F =" |
AZ

is at the heart of the physics. The natural framework to a= \/_E ] dxyx — u Vx_u, 9)
investigate its properties is uniformization theory [2,3,5]. T Jon Va2 =AY

In this Letter we use basic geometric structures of, . havea(—A2) = —i4A/7 and a(A2) = 4A /7. It

Msu() to derive a modular invariant quantity which to)16\s that the initial conditions for the second-order
fulfills all the expected properties of the next to leading yitterential equation (7) areG(—i4A/7) = —A? and
term in the Abelian Wilsonian effective action [6-9]. G(4A/m) = A? and by (1)

Let us now recall the metric introduced in [5]. Let
H = {w|lmw > 0} be the upper half plane endowed 2, (" 3 Wi,
with the Poincaré metriels3 = (Im w)~2|dw|?. Since Fla) = g Y. dbG(b)b 16 ¢ (10)
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Now observe that by (8) theoryll, that is,7% - I = II. It follows that

1 —172 _ o172 | _
9,7 = ) 11 ST S-1=8"'T"-1I=8"-1I=1, (29)
7 2mia?(A* — u?) (11)

implying that besideg™? alsoS~!T2S is in the symmetry
Sincee? = |9,7]>/(Im 7)?, we can rewrite Eq. (11) as  group. Repeating the steps in (19) we generate all
/2 — 21 Pl — Al _ 12 I'(2), which is the symmetry group of and of its
¢ mlal lu. [im 7 ( 4) dual versionll._ This fact suggests that the higher-order
We stress that, as observed in [3] for the tduh — A*|  terms in S[A,A] should have a structure such that the
in the uniformizing equation, also in (12) it should be asymptotic behavior (16) still holds for the dual theory

considered as 4-3/2,-3/2) differential on Msuw). || |n particular, the asymptotic behaV|0r~ Znais
This ensures the covarlanceiof/qu (12). By (5) we havereproduced in the dual theory as ~ —~In ap. Since
PV — e ® (13) these points are in the spectrum it follows by (17) that
27|u? — A4 7 = 0 for someu. This is theu = A? point. A similar
Now observe that by (1) we have property should still hold for the higher-order terms in
) S[A,A].  Therefore, in order to preserve the relation
a=—) (14) S -1 =11, it seems thatK(a,a) should vanish at the
mia(t — 1) puncturex = A%. Furthermore, modular invariance of
where? = ap/a. Therefore (12) is equivalent to X together with the relatiom(r + 1) = —u(r) implies
) . that K is invariant underu — —u. It follows that
e ?2 = 8 lu = A Im 7. (15) K should vanish atr = =A2. This argument may be
7 lal? |7 — 7| better formulated by requiring that the transformation

In [6] it has been shown that the next to leadingr — 7 + 1, which corresponds ta — ¢~ 7/2a (i.e.,
term which contributes to the Abelian Wilsonian effectiveu — —u), be an invariance of<, namely,
action S[A,A] is [d*x d*6 d*6 K (A, A) where K (A, A) R —
is a modular ir{variant real analytic function of the K(e ™24, e™A) = K (A, A). (20)
N = 2 U(1) vector multipletA. Therefore, up to this We now show that there is a natural choice SGI(A, A)
order S[A,A] has the form [d*x d*0 d*6 K (A,A) +  which fulfills all the above conditions. Namely, we
= Im[ [ d*x d*6 F(A)]. In Ref. [7] de Wit, Grisaru, and propose that

Rocek were able to prove that asymptotically KA = a o~ 2lG(4).GA)] o
N A T Gka) - AY
KAK) ~cnTind (16) - 162 — A |
AA wherea will be fixed using the one-instanton calculation

where c is a constant. Furthermore, the one-instantorin [8]. By (13) it follows thatK (A, A) can also be written
contribution to K has been obtained by Yung [8]. inthe form XK (A,A) = 4am?e**s¥|G*(A) — A*| or
We observe that one should expect that the logarithmic KAL) = 2077 e #WGA.GA]-£ [6(4). 6]

singularities atu — o, such as the asymptotic behavior (22)
in (16) be the unique singularities i as possible In the following we will show that the solution (21) has
singularities at: # o will spoil the physical meaning of the following properties:

the quantum moduli space. In particuldk’ should be (1) It is modular invariant.

regular where monopoles or dyons become massless (seg(2) Asymptotically K (A,A) ~ 2aln A/Aln A/A.

also [8]). Actually, it seems that the only possible way in  (3) The above is the unique singularity 8f.

order to not change the physical picture in [1] is t&t (4) The zeros ofK are precisely at the punctures.

be vanishing at these points. Let us illustrate this aspect (5) Besides the logarithmic terms the asymptotic expan-
by recalling that as a crucial property of the= 2 SYM  sion of K (A, A) contains terms likdA/A)~% (A/A)~*
path-integral measure, there is a dual version of the theoras expected from the instanton contributions (see also [8]).
where the fields are th®@transformed of the original ones.  We now make a few remarks concerning point (1).

In particular, the dual effective coupling constant is Strictly speaking, a functionG(4,A) is said to be
- 1 (17) modular invariant if G(y - A,y - 4) = G(A.A).y €
T SL(2,Z). The function K(A,A) has the invariance

Now observe that thd'(2) symmetry can also be inter- 7 © K(A,4) = K(A,A) and S o K(A,A) = K(A,A).
preted in the following way. Let us schematically denoteWhereas in the first case there is not any change in the
by | andll the original theory and its dual, respectively, functional structure ofX, in the case of theS-action
_ one hasS o K(A,A) = Kp(Ap,Ap) [6]. A similar

S-I=1. (18) situation arises in the case af= G(a). Since under
As T? is a symmetry ofl theory, we havel> - I = 1. a SL(2C) transformation F(a) and aap/2 have the
On the other hand, the properties of tNe= 2 measure same transformation properties, it follows that under
imply that the asymptotic analysis still holds for the dualSL(2,C) one hasG(a) = G(a). However, observe that
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the T-action r — 7 = 7 + 1 is generated by a phase  o[i . a - a\

change ofa. In particular, undew — @ = ¢™"/2a, we F=a - In AT kZO fk(X) - &3
have F(a) = e™" F(a) — e™na*/2,ap = 9;F (@) = B

e™"2q, — ne™2q, 7 — ¥ = 7 — n. Concerning the

S-action we haveGp(ap) = S o G(a) = G(a). There- = —4k
fore, sinceX (A,A) in (21) is expressed in terms G(A) 7 = In K + — + Z Fi(1 —4k) (2 — 4k)< ) :
and G(A), it follows that Kp(Ap,Ap) = K(A,A)

as it should be [6]. Under the transformation (24)

a—a=e ™/2q, corresponding to the T-action By (1) and (23) it follows that the asymptotic expansion
r—F=71+1 we have G@) = —G(a) = —G(a). foru= G(a)is

On the other hand, by theZ, automorphism of % _ak

Msu@p), we have ef70 = ¢ go that by G(a) = a* Z gk<i> . Go = i, (25)
(21) X satisfies Eq. (20). Finally, we observe that k=0 A 2

by the I'(2) symmetry G(y - A) = G(A), we have

Ky Ay -A) = K(A,A). whereG, = 2mikf;, for k > 0. Concerning the instan-
In order to consider point (2) we first write down the ton contributions¥;, k > 0, these are determined by the
asymptotic expansions | recursion relations [3]
1 n—1
il = ————|2n — 1)(4n — )G, + 2 o
6iv1 = g7 T L2~ D = DG +2 5 G
jt1
% (Gr1Goctom) = 3. Gro-sGed(iokom) | n =0, (26)
k=0
where c¢(j,n) =2jn —j—1)+n— 1,d(j, k,n) = ! +A2. It follows that K is finite everywhere except

[2(n — j) —1][2n — 3j — 1 + 2k(j — k + 1)]. To for the asymptotic divergence (28). Furthermore, since
evaluate F;, we observe that fou — o, Eq. (9) yields the only zeros of the Poincaré metric® are at the

ap ~ i\/ﬂ(ln u/A% + In 8/e?), whose a term is, puncture atu = %, wheree ~ —2 In(|u|ln|u|), whereas
by (25), zaIn 4/¢*A?. Comparing with thea term  the unique divergences come from the punctures at
L a(ln e/A2 — 27i ) in the asymptotic expansion of *A? whereg ~ =2 In(ju + A?|Inju = A?)), it follows
ap which follows by (23), we obtaify — 5= In4/¢3.  hatX(a.@) has zeros at = —i4A/m,a = 4A/m [and
By (15) and (21), we can rewrit& (4, 4) in the form their I'(2) t.ra}nsformed]. Finally, hote tha’_[ point (5)
B 64a |G2(A) — A4|[Im (AP follows explicitly from the asymptotic expansion (28). _
K(A,A) = (27) Let us comment on the possible higher-order terms in

m? [AI*1#(4) — (A)1* S. According to [6], beside&<, the possible higher-order
Therefore, by (23)—(25) and (27) we have the asymptotiterms do not seem to be modular invariants. On the other

expansion hand, asu(y - 7) = u(7),y € I'(2), possible noninvari-
64a AA 3 1 < ant terms should imply that at the same point of the mod-
K(AA)=—% ‘{_ X -5 1;) Fe(1 = 4k) uli space of quantum vacut sy, there are inequivalent
Cak e dkm2 theories. This would break the highly symmetric structure
X (2 — 4k) [(é) + é) } coming from the lower-order part of the action. In this
A A context one should investigate whether the nice observa-
1132, Gk<%>_4k]z—<%>_4 | tion in [9]_that th_eS(_juaIi_ty transformation extgnds to the
_ o (28) full effective action implies that actually the higher-order
| % + Zfzo Fidk(4k — )<%> |4 terms inS are modular invariants. In order to better illus-

trate this point, we consider the following decomposition

S[A,A] = S[A,A] + o Im[[d*xd*0 F(A)]. Fromthe
(29)  definition given in [6], it follows thatS[A,A]is T invariant.

This happens also for theaction on the higher-order part

which reproduces the expected behavior. of the dual theonSp[Ap, Ap]. So that, the fact that? =
Let us now consider point (3) above. To show thaty ;.4 (ST)? = 1, indicates thatSp[Ap,Ap] = S[A,A].

_ 2 A4 : ; . . :
e */lu . A hagdno (r)]th?r divergences outside= *, o the other hand, it was argued in [6] that orl§ is
It is useful to consider the form modular invariant. We consider two possibilities to fur-

Extracting the leading term we get
— A, A
A,A) ~ 2aln —In —
K(AA) aln A n A

K(a,a) = dam?ld'|* lu* — A*|(Im 7)?, (30)  ther investigate this aspect. The first one is that there are
and to notice that by (9)'(x) is logarithmically divergent not higher-order terms iy besidesX. This would im-
for u — =A%, Therefore, by (30)X vanishes atu =  ply that
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S[A,A] = 2aw f d*x d*6 d* e#sv[GWGWI-(¢/2[GA.G)] 4 4i|m< f d*x d*e f(A)). (31)
a

Another possibility is that the terms coming from tHe this test. We also note that once one makes the natural
action of §/8Ap on the dual prepotential, and which choice of using(Im 7)? to reproduce both 14 4 and
break modular invariance (see [6] for details), are actuaII){ 2 A A
vanishing. In particular, whereas when all funct|onal
derivatives act on the exponentiated dual prepotential ther,
is not any breaking of modular invariance, the other
contributions have the effect of modifying the structure;
of S[A,A]. In other words, forgetting the functional
derivative in the right-hand side (rhs) of

, then modular invariance essentially fixek.
In thls context it is crucial thajA|=*|# — 7|~* has
'fle same transformation properties @M 7)> and, as
requested by (16) and (32), cancels the glda# factor
in the asymptotic expansion p§2(A) — A*| [see (28)].

In conclusion, we observe that similar investigations
can be extended to more general cases. For example,

L . i in the SU(3) case the uniformization of the quantum
l 5AD ex;{—z [ d'xd H.TD(AD)i| moduli space has been considered in [13]. Also, some
n—1 consequences concerning the Wilsonian renormalization
= exp{—i[ d*x d*o j]-"D(AD)}(A + i 5A ) A group equation should be further investigated [14,15].
D
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