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We construct modular invariants onMSUs2d, the moduli space of quantum vacua ofN ­ 2 supersym-
metric Yang-mills theory with gauge group SU(2). We also introduce the nonchiral functionK sA, Ad ­
2apewSW 2wy2, whereewSW is the Seiberg-Witten metric,ew is the Poincaré metric onMSUs2d anda is
a regularization scheme-dependent constant. It turns out thatKsA, Ad has all the expected properties
of the next to leading term in the Wilsonian effective actionS fA, Ag whose modular properties are
considered in the framework of the dimensional regularization. [S0031-9007(97)02373-9]

PACS numbers: 11.30.Pb, 11.30.Ly
.
s

ve

r

The exact results aboutN ­ 2 supersymmetric Yang
Mills theory (SYM) obtained by Seiberg and Witten [1]
concern the low-energy Wilsonian effective action with
at most two derivatives and four fermions. In the SU(2
case, theu-moduli space of quantum vacua isMSUs2d, the
Riemann sphere with punctures atu ­ `, u ­ 6L2. In
[2] results in [1] have been derived from first principles
[3,4]. In particular, theT 2 symmetryust 1 2d ­ ustd,
which rigorously follows from the asymptotic analysis
together with the relation [3]

u ­ pisF 2 a≠aF y2d , (1)

and the fact that

ustd ­ us2td, ust 1 1d ­ 2ustd , (2)

uniquely fix the monodromy groupG to beGs2d. The ba-
sic observation is that, for real values ofu, we have the
symmetryustd ­ us2td which essentially fixesG. The
reason is that by (1) and Imt . 0 (except for the sin-
gularities where Imt ­ 0), u can be seen as uniformiz-
ing coordinate. Therefore,MSUs2d > HyG where H is
the upper half plane (thet-moduli space; see [5]). This
is equivalent tousg ? td ­ ustd with g [ G. It follows
that there are curvesC in the fundamental domains in
H such that fort [ C one hasg ? t ­ 2t. This rea-
soning together with a proper use ofust 1 1d ­ 2ustd
essentially implies the results in [2].

In [1] it has been emphasized that the metric,

ds2 ­ Ims≠2
aF d jdaj2 ­ j≠uaj2Ims≠2

aF d jduj2, (3)

is at the heart of the physics. The natural framework
investigate its properties is uniformization theory [2,3,5].

In this Letter we use basic geometric structures o
MSUs2d to derive a modular invariant quantity which
fulfills all the expected properties of the next to leadin
term in the Abelian Wilsonian effective action [6–9].

Let us now recall the metric introduced in [5]. Let
H ­ hwjIm w . 0j be the upper half plane endowed
with the Poincaré metricds2

P ­ sIm wd22 jdwj2. Since
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t ­ ≠2
aF is the inverse of the map uniformizingMSUs2d,

it follows that the positive definite metric,

ds2
P ­

j≠3
aF j2

sIm td2 jdaj2 ­
j≠utj2

sIm td2 jduj2 ­ ew jduj2,

(4)

is the Poincaré metric onMSUs2d. This implies thatw
satisfies the Liouville equationwuu ­ ewy2.

We now show that the Seiberg-Witten metric

ewSW ­ ja0j2Im t , (5)

where ’; ≠u, can be written in terms of the Poincaré
metric ew . To this end we first summarize a few facts
A crucial role in the theory is played by the Picard-Fuch
equations [10,11]; in particular, in the SU(2) case we ha
the (reduced) uniformizing equation [3,10]

f4su2 2 L4d≠2
u 1 1gc ­ 0 , (6)

satisfied byaD anda, implying that

sL4 2 G2d≠2
aG 1

a
4

s≠aGd3 ­ 0 , (7)

whereu ­ Gsad. By (1) and (7) we have [5]

≠3
aF ­

p2sa≠2
aF 2 ≠aF d3

16 fL4 1 p2sF 2 a≠aF y2d2g
. (8)

Furthermore, by [1]

aD ­ ≠aF ­

p
2

p

Z u

L2

dx
p

x 2 u
p

x2 2 L4
,

a ­

p
2

p

Z L2

2L2

dx
p

x 2 u
p

x2 2 L4
, (9)

we have as2L2d ­ 2i4Lyp and asL2d ­ 4Lyp. It
follows that the initial conditions for the second-orde
differential equation (7) areGs2i4Lypd ­ 2L2 and
G s4Lypd ­ L2 and by (1)

F sad ­
2i
p

a2
Z a

4Lyp
dbGsbdb23 2

pi
16

a2. (10)
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Now observe that by (8)

≠ut ­
1

2pia02sL4 2 u2d
. (11)

Sinceew ­ j≠utj2ysIm td2, we can rewrite Eq. (11) as

e2wy2 ­ 2pja0j2 ju2 2 L4jIm t . (12)

We stress that, as observed in [3] for the termju2 2 L4j
in the uniformizing equation, also in (12) it should be
considered as as23y2, 23y2d differential on MSUs2d.
This ensures the covariance of Eq. (12). By (5) we hav

ewSW ­
e2wy2

2pju2 2 L4j
. (13)

Now observe that by (1) we have

a0 ­
2

piast̂ 2 td
, (14)

wheret̂ ­ aDya. Therefore (12) is equivalent to

e2wy2 ­
8
p

ju2 2 L4j

jaj2 jt̂ 2 tj2
Im t . (15)

In [6] it has been shown that the next to leadin
term which contributes to the Abelian Wilsonian effective
actionS fA, Ag is

R
d4x d4u d4u KsA, Ad whereK sA, Ad

is a modular invariant real analytic function of the
N ­ 2 U(1) vector multipletA. Therefore, up to this
order S fA, Ag has the form

R
d4x d4u d4u KsA, Ad 1

1
4p Imf

R
d4x d4u F sAdg. In Ref. [7] de Wit, Grisaru, and

Roček were able to prove that asymptotically

KsA, Ad , cln
A
L

ln
A
L

, (16)

where c is a constant. Furthermore, the one-instanto
contribution to K has been obtained by Yung [8].
We observe that one should expect that the logarithm
singularities atu ! `, such as the asymptotic behavio
in (16) be the unique singularities inK as possible
singularities atu fi ` will spoil the physical meaning of
the quantum moduli space. In particular,K should be
regular where monopoles or dyons become massless (
also [8]). Actually, it seems that the only possible way i
order to not change the physical picture in [1] is thatK

be vanishing at these points. Let us illustrate this aspe
by recalling that as a crucial property of theN ­ 2 SYM
path-integral measure, there is a dual version of the theo
where the fields are theS transformed of the original ones.
In particular, the dual effective coupling constant is

tD ­ 2
1
t

. (17)

Now observe that theGs2d symmetry can also be inter-
preted in the following way. Let us schematically denot
by I andII the original theory and its dual, respectively,

S ? I ­ II . (18)

As T 2 is a symmetry ofI theory, we haveT2 ? I ­ I.
On the other hand, the properties of theN ­ 2 measure
imply that the asymptotic analysis still holds for the dua
e

g
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theoryII, that is,T2 ? II ­ II. It follows that

S21T2S ? I ­ S21T 2 ? II ­ S21 ? II ­ I , (19)

implying that besidesT 2 alsoS21T 2S is in the symmetry
group. Repeating the steps in (19) we generate a
Gs2d, which is the symmetry group ofI and of its
dual versionII. This fact suggests that the higher-orde
terms in S fA, Ag should have a structure such that the
asymptotic behavior (16) still holds for the dual theory
II. In particular, the asymptotic behaviort , 2i

p ln a is
reproduced in the dual theory astD , 2

i
p ln aD . Since

these points are in the spectrum it follows by (17) tha
t ­ 0 for someu. This is theu ­ L2 point. A similar
property should still hold for the higher-order terms in
S fA, Ag. Therefore, in order to preserve the relation
S ? I ­ II , it seems thatKsa, ad should vanish at the
punctureu ­ L2. Furthermore, modular invariance of
K together with the relationust 1 1d ­ 2ustd implies
that K is invariant underu ! 2u. It follows that
K should vanish atu ­ 6L2. This argument may be
better formulated by requiring that theT transformation
t ! t 1 1, which corresponds toa ! e2piy2a (i.e.,
u ! 2u), be an invariance ofK , namely,

Kse2piy2A, epiy2Ad ­ KsA, Ad . (20)

We now show that there is a natural choice forK sA, Ad
which fulfills all the above conditions. Namely, we
propose that

KsA, Ad ­ a
e2wfGsAd,GsAdg

jG 2sAd 2 L4j
, (21)

wherea will be fixed using the one-instanton calculation
in [8]. By (13) it follows thatK sA, Ad can also be written
in the formKsA, Ad ­ 4ap2e2wSW jG2sAd 2 L4j or

K sA, Ad ­ 2apewSW fGsAd,GsAdg2 w

2
fGsAd,GsAdg. (22)

In the following we will show that the solution (21) has
the following properties:

(1) It is modular invariant.
(2) AsymptoticallyK sA, Ad , 2aln AyLln AyL.
(3) The above is the unique singularity ofK .
(4) The zeros ofK are precisely at the punctures.
(5) Besides the logarithmic terms the asymptotic expa

sion of KsA, Ad contains terms likesAyLd24j sAyLd24k

as expected from the instanton contributions (see also [8
We now make a few remarks concerning point (1)

Strictly speaking, a functionGsA, Ad is said to be
modular invariant if Gsg ? A, g ? Ad ­ GsA, Ad, g [
SLs2, Zd. The function KsA, Ad has the invariance
T ± K sA, Ad ­ K sA, Ad and S ± K sA, Ad ­ K sA, Ad.
Whereas in the first case there is not any change in t
functional structure ofK , in the case of theS-action
one has S ± KsA, Ad ­ KDsAD , ADd [6]. A similar
situation arises in the case ofu ­ Gsad. Since under
a SL(2,C) transformationF sad and aaDy2 have the
same transformation properties, it follows that unde
SL(2,C) one hasG̃sãd ­ Gsad. However, observe that
1413
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the T-action t ! t̃ ­ t 1 1 is generated by a phase
change ofa. In particular, undera ! ã ­ epiny2a, we
have F sãd ­ epinF sad 2 epinna2y2, ãD ­ ≠ãF sãd ­
epiny2aD 2 nepiny2a, t ! t̃ ­ t 2 n. Concerning the
S-action we haveGDsaDd ­ S ± Gsad ­ Gsad. There-
fore, sinceKsA, Ad in (21) is expressed in terms ofG sAd
and GsAd, it follows that KDsAD , ADd ­ K sA, Ad
as it should be [6]. Under the transformatio
a ! ã ­ e2piy2a, corresponding to the T-action
t ! t̃ ­ t 1 1, we have G sãd ­ 2G sad ­ 2G̃sãd.
On the other hand, by theZ2 automorphism of
MSUs2d, we have ews2u,2ud ­ ewsu,ud, so that by
(21) K satisfies Eq. (20). Finally, we observe tha
by the Gs2d symmetry Gsg ? Ad ­ GsAd, we have
K sg ? A, g ? Ad ­ KsA, Ad.

In order to consider point (2) we first write down th
asymptotic expansions
1414
t

F ­ a2

∑
i
p

ln
a
L

1
X̀
k­0

Fk

µ
a
L

∂24k∏
, (23)

t ­
2i
p

ln
a
L

1
3i
p

1
X̀
k­0

Fks1 2 4kd s2 2 4kd
µ

a
L

∂24k

.

(24)
By (1) and (23) it follows that the asymptotic expansi
for u ­ G sad is

G sad ­ a2
X̀
k­0

Gk

µ
a
L

∂24k

, G0 ­
1
2

, (25)

whereGk ­ 2pikFk , for k . 0. Concerning the instan
ton contributionsFk , k . 0, these are determined by th
recursion relations [3]
Gn11 ­
1

8G
2
0 sn 1 1d2

∑
s2n 2 1d s4n 2 1dGn 1 2

n21X
j­0

Gn2j

3

µ
Gj11G0cs j, nd 2

j11X
k­0

Gj112kGkds j, k, nd
∂∏

, n $ 0 , (26)
i

ce

)
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where cs j, nd ­ 2jsn 2 j 2 1d 1 n 2 1, ds j, k, nd ­
f2sn 2 jd 2 1g f2n 2 3j 2 1 1 2ks j 2 k 1 1dg. To
evaluateF0 we observe that foru ! `, Eq. (9) yields
aD , i

p

p
2u sln uyL2 1 ln 8ye2d, whose a term is,

by (25), i
p a ln 4ye2L2. Comparing with thea term

i
p asln eyL2 2 2piF0d in the asymptotic expansion of
aD which follows by (23), we obtainF0 ­

i
2p ln 4ye3.

By (15) and (21), we can rewriteK sA, Ad in the form

K sA, Ad ­
64a

p2

jG 2sAd 2 L4j fIm tsAdg2

jAj4 jt̂sAd 2 tsAdj4
. (27)

Therefore, by (23)–(25) and (27) we have the asymptot
expansion

KsA, Ad ­
64a

p2

Ω
1
p

ln
A
L

A
L

1
3
p

1
1
2i

X̀
k­0

Fks1 2 4kd

3 s2 2 4kd
∑µ

A
L

∂
24k

1

µ
A
L

∂
24k∏æ2

3
j f

P
`
k­0 Gk

≥
A
L

¥24k
g2

2

≥
A
L

¥24
j

j
2i
p 1

P`
k­0 Fk4ks4k 2 2d

≥
A
L

¥24k
j
4

. (28)

Extracting the leading term we get

K sA, Ad , 2aln
A
L

ln
A
L

, (29)

which reproduces the expected behavior.
Let us now consider point (3) above. To show tha

e2wyju2 2 L4j has no other divergences outsideu ­ `,
it is useful to consider the form

Ksa, ad ­ 4ap2ja0j4 ju2 2 L4j sIm td2, (30)

and to notice that by (9),a0sud is logarithmically divergent
for u ! 6L2. Therefore, by (30)K vanishes atu ­
c

t

6L2. It follows that K is finite everywhere except
for the asymptotic divergence (28). Furthermore, sin
the only zeros of the Poincaré metricew are at the
puncture atu ­ `, wherew , 22 lnsjujlnjujd, whereas
the unique divergences come from the punctures atu ­
6L2, wherew , 22 lnsju 7 L2jlnju 7 L2jd, it follows
thatKsa, ad has zeros ata ­ 2i4Lyp , a ­ 4Lyp [and
their Gs2d transformed]. Finally, note that point (5
follows explicitly from the asymptotic expansion (28).

Let us comment on the possible higher-order terms
S . According to [6], besidesK , the possible higher-order
terms do not seem to be modular invariants. On the ot
hand, asusg ? td ­ ustd, g [ Gs2d, possible noninvari-
ant terms should imply that at the same point of the mo
uli space of quantum vacuaMSUs2d there are inequivalent
theories. This would break the highly symmetric structu
coming from the lower-order part of the action. In thi
context one should investigate whether the nice obser
tion in [9] that theSduality transformation extends to the
full effective action implies that actually the higher-orde
terms inS are modular invariants. In order to better illus
trate this point, we consider the following decompositio
S fA, Ag ­ Ŝ fA, Ag 1

1
4p Imf

R
d4x d4u F sAdg. From the

definition given in [6], it follows thatŜ fA, Ag isT invariant.
This happens also for theT-action on the higher-order par
of the dual theoryŜDfAD , ADg. So that, the fact thatS2 ­
I and sST d3 ­ I, indicates thatŜDfAD , ADg ­ Ŝ fA, Ag.
On the other hand, it was argued in [6] that onlyK is
modular invariant. We consider two possibilities to fu
ther investigate this aspect. The first one is that there
not higher-order terms inS besidesK . This would im-
ply that
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S fA, Ag ­ 2ap
Z

d4x d4u d4u ewSW fGsAd,GsAdg2swy2d fGsAd,GsAdg 1
1

4p
Im

µZ
d4x d4u F sAd

∂
. (31)
e
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e
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Another possibility is that the terms coming from th
action of dydAD on the dual prepotential, and whic
break modular invariance (see [6] for details), are actua
vanishing. In particular, whereas when all function
derivatives act on the exponentiated dual prepotential th
is not any breaking of modular invariance, the oth
contributions have the effect of modifying the structu
of Ŝ fA, Ag. In other words, forgetting the functiona
derivative in the right-hand side (rhs) of

in dn

dAn
D

exp

∑
2i

Z
d4x d4u FDsADd

∏
­ exp

∑
2i

Z
d4x d4u FDsADd

∏µ
A 1 i

d

dAD

∂n21

A

would imply that Ŝ is modular invariant. On the othe
hand, because of the functional derivative in the r
the above expression contains “ds0d” terms. A possible
way to take care of these infinities is to use dimensio
regularization where, as is well known, the “ds0d” terms
vanish for dimensional reasons (see, for example, [12]

Let us now fix the constanta. To this end we use the
one-instanton calculation in [8]

KI sA, Ad ­
1

32p2

µ
A
L

∂24

ln
A
L

A
L

1 c.c. (32)

whose coefficient is 1y4 that in [8]. This is a consequenc
of the fact that ourL is

p
2 times the scale considere

in [8] where the Pauli-Villars regularization scheme w

chosen. By (28) the coefficient of thesAyLd24ln A
L

A
L

term in the asymptotic expansion ofK sA, Ad is
2ah23piF1 1 s3 2 piF0d f2sG1 2 1d 1 8piF1gj ­
2as 9

4 1 ln 2d, where we used the fact tha

G0 ­ 1y2, F0 ­
i

2p ln 4ye3, and G1 ­ 2piF1 ­ 1y4.
Comparing2as 9

4 1 ln 2d with the coefficient in (32) we
obtain

a ­ 2
1

8s9 1 4 ln 2dp2 . (33)

An interesting point concerning the structure of the lo
arithmic terms in (28) is that besides lnsAyLdlnsAyLd and
fsAyLd24 1 sAyLd24glnsAAyL2d, considered in [7,8],
there are the terms ln2 AyL and ln2 AyL. The fact that
these should appear in the asymptotic expansion ofK can
also be seen by a simple modular invariance argum
Namely, whereassAyLd24lnsAAyL2d is invariant under
A ! e2piy2A, we have2 lnse2piy2AyLdlnsepiy2AyLd ­
2 lnsAyLdlnsAyLd 1 pisln AyL 2 ln AyLdp2y2 , so
that in order to satisfy (20) one needs more logarithm
terms. It is easy to see that these should be of the fo
sln2AyL 1 ln2AyLd. We observe that (28) also pass
ly
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this test. We also note that once one makes the nat
choice of usingsIm td2 to reproduce both lnAL

A
L and

ln2 A
L

A
L , then modular invariance essentially fixesK .

In this context it is crucial thatjAj24 jt̂ 2 tj24 has
the same transformation properties ofsIm td2 and, as
requested by (16) and (32), cancels the globaljAj4 factor
in the asymptotic expansion ofjG2sAd 2 L4j [see (28)].

In conclusion, we observe that similar investigatio
can be extended to more general cases. For exam
in the SU(3) case the uniformization of the quantu
moduli space has been considered in [13]. Also, so
consequences concerning the Wilsonian renormaliza
group equation should be further investigated [14,15].
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