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Global Representation of Maslov-Type Semiclassical Wave Function and Its Spectrum
in a Small Number of Classical Trajectories
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An explicit solution to the Maslov-type semiclassical theory for propagating a wave function, rather
than evolving in time the Feynman kernel, is presented. It turns out that the present solution bears
distinguished advantages over the semiclassical kernel, one of the most remarkable examples of which
is the far less number of classical trajectories required for the propagation, basically proportional to
PN ~ P3N for the kernel while only taP” in our solution, whereN is the dimension in configuration
space andp is the number of sampling points in each dimension. As an illustrative example to show the
validity of the solution, the theory is applied to the calculation of eigenvalues of the Morse oscillators,
giving accurate results in a compact way. [S0031-9007(97)02397-1]

PACS numbers: 03.65.Sq, 03.65.Ge, 31.15.—p

Semiclassical mechanics has long been a fundamental (¢ |y (r)) = f dq dgo®*(9)K (g, 90)¥(q0,0), (2)
theory to investigate the quantum effect on the dynamics
of many-body systems. 1994 was a year when thgvhich is a N-dimensional integral. EverN8dimensional
studies of the primitive semiclassical approximation tointegration is charged if the form of Eq. (1) is employed.
the Feynman path integrals [1,2] have been settled intghis burden still hinders the semiclassical theory from
the final stage due to the outstanding works by Kay [3]being applied to large systems.
Sepulveda and Heller [4], and Brumer and his co-workers |n the present Letter we report an explicit solution to the
[5]. (By the primitive semiclassical approximation, we multidimensional Maslov (primitive) semiclassical theory,
mean the level of approximation equivalent to the lowestwhich is for the propagation of wave functions rather
order stationary-phase approximation [2].) This progresshan the Feynman kernel. (It is sometimes misunderstood
was triggered by an important contribution due to Hellerthat the semiclassical theories for the kernel and wave
[6], and has been pushed in part by the general interestgnctions are the same under the common name of the
in the so-called quantum chaos [5(b),7]. There can b&vKB theory. Butthey are actually not, as seen below. To
various representations for the semiclassical kernel, thetress the difference, we term the semiclassical mechanics
typical one being [3,4] for wave functions the Bohm-Maslov theory, rather than
the customarily used WKB theory.) In some aspects, the
kernel is more general and flexible [2,7(c)]. However,
one can find distinguished advantages in the Bohm-Maslov
i semiclassical solution. In particular, an emphasis in this
X ex;{E 5(q1> 90, 1) Letter is placed on a possibility that this solution can be
. applied to much larger systems that cannot be handled with
IR L, g - q:)}, (1)  the semiclassical kernel. _ _ o
2 h The Bohm-Maslov semiclassical mechanics begins with
the following wave function

ap; |2

dpo

K(q.q0) = (4m2ii?)"F f dpo

where, among the other obvious notatioig, p;) is the
end point at timet of a classical trajectory starting from _ r

(g0, po) in phase space.q is an independent variable Vig.1) = Flg,1) ex;{ SC]} 3)

in the N-dimensional configuration space, apdis the  which is to be propagated in terms of the equations of
Maslov index [1,2,5(a)]. The significant improvements motion of the lowest-order approximation i to the
achieved by expressions of this kind are (i) the trajectoSchrédinger equation. The higher order effects are taken
ries used in the kernel are specified by the initial pointsnto account in different ways by the Bohm and Maslov
(g0, po) (release from the double-ended boundary probtheories: the so-called quantum potential is considered in
lem) and (ii) the amplitude factdd p;/dpo|'/? does not the Bohm theory [9], while Maslov takes into account the
diverge at caustics. These characteristics are common toerarchical series of the quantum transport [10]. We will
those of the so-called phase-space path integrals [8]. Orshow our own way of how to treat the higher effects [11].
big problem left behind though is large dimensionality in S, is the classical action that satisfies the Hamilton-Jacobi
integration to calculate overlap integrals like a correlationequation. Note that picking up af, among the various
function [cf. Eq. (9)] and the scatterin@)(matrix that are  possible forms is equivalent to specifying an initial condi-
generally defined as tion that is imposed on the classical trajectories [12]. For
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later convenience, we chooSg to be theF,-type gener- P 1) = fa — a)wP Nd
ating function [12] such thas. (g, po.?) = Fa(q, po. 1) = po(a:1) (¢ = 4 Wiocar (41, 1)dgs

Fi(q,qo,t) + gopo. [F1 andF, should not be confused " 9q,
with F(q, 1) of Eq. (3).] = f 6(q = q)Wioca1(gr, 1) S | 440
The function F(g,t) is determined by the following 40 |
equation of motion [10] _ /’ 5(q — a:(g0. po)) F(4o.0) ‘ agq; |2
990

oF 1

— +tv: -VF=—5V-pF, 4 j 1

ar 2 (V) ) X eXp[%Scl(qz,po, 1+ %}dqo- (8)

38y - . .

wherer = Ut is the classical velocity. We use the mass-Thjs expression is the final form of our primitive semiclas-

weighted coordlngtes throug_hout so that all th(_e masse§cal wave function. The local solutiafi(g;, ¢) in Eq. (7)

are scaled to unity. Equation (4) tells us to integrategiverges at every caustic point, at which the Jacobian de-
its right-hand side along a classical trajectory, Wh'Chterminantaq,/aqo becomes zero. On the other hand, the

will give rlseltolan exponential form likeF(¢(1)) =  global solution Eq. (8) does not have the divergence due
F(q(0)) exp(—=5 JodtV - v). But, this formal solution to the transformation of the integral variable fram to
turns out to break down at caustics. go. The mathematical mechanism for the divergence to
An alternative way can start from the following obser- disappear is essentially the same as those for the semi-
vation: classical kernel like [3—6].
9F2 The form of Eq. (8) brings about a conceptual progress
TS +V-@wF?)=0. (5) inthe study of quantum-classical correspondence [11]. In

the present Letter, however, we stress only the simplicity
Note thatF? rather thanF|? is considered in this “equation and tractability of the theory. Suppose we want to calcu-
of continuity” (notice thatF? can be negative).F> can late a molecular spectrum in terms of the autocorrelation
be readily integrated locally along a classical path infunctionC(r), which is represented as

terms of a Jacobian determinant;/dgo which is a minor

determinant of the so-called stability matrix [2,7,8,12].C(¢) = (W, (0) [V, (2))
(0g:/3q0) ™" = 9?Sci(qs, po.1)/(dq,9po) is interpreted as

the density of fe}m_ili_e's of clqssica! trajector?es which are - f F*(q1,0)F (o, 0) Ln
labeled with their initial configuration coordinatgs. It

2

is not difficult to derive from the Hamilton-Jacobi equation

i i imM
for Sa(q;, po, t) that X exp ——pogr + ESCI(CIhpOs 1)+ — dqo .

2 [ ) e

at \ dqo dqo The Fourier transform, the Fast Fourier Transform (FFT)
in practice, is applied t@(r) to yield the energy spectra.
Furthermore, one has the initial conditioy, /dg0) ™' =  Because of the presence of the delta function in Eq. (8),
1, since g, = qo at t = 0. Thus (3¢,/dq9)"" can be ¢(;) in Eq. (9) still remains to be amN-dimensional
regarded as the local representation of the Green fUﬂCtiQﬂtegra| in go coordinates. This remarkable advantage
of Eq. (5). On comparing Egs. (5) and (6), together withshould be compared with Eq. (2), which is2&- or
the initial condition above, one immediately has 3N-dimensional integral. (The physical reason why the
1 difference could happen will be explained in a greater
F(g:,t) = F(qo,0) <%> - F(qo,0) ‘ 9q: detail in our full publication [11].) This difference in the
990 990 dimensionality becomes tremendous in practice wNen
imM is as large as, say, ten, which is still not very large for
X ex;{ 5 } (") molecular applications.

The drastic simplification above arises at the sacrifice
where the derivativedg,/dqo is taken under the fixed that the Bohm-Maslov wave packet approach is more
initial momentump,, andM is the Maslov index in this restrictive than the kernel: The kernel should be general
representation that counts the number of zerosgfdqy  enough to be capable of propagating any initial wave
up to the degeneracy. Thus the local solution, denoted bfunction, and has many theoretical advantages common to
P .1(q:, 1), has been obtained, which is to be propagatedhe other general Green functions [2]. On the other hand,
along a trajectory that is generated $)y(g, po, t) with the  the initial wave function of our solution is limited to the

fixed initial momentunp. form of Eq. (3) and characterized by a momentum vector
The global wave function composed of the local pg. The price for this simplification is therefore that if
solutions is then written as one is interested in propagating a general wave function,

1405



VOLUME 78, NUMBER 8 PHYSICAL REVIEW LETTERS 24 EBRUARY 1997

an elaboration of expansion W, (¢,0) is necessary. TABLE I. The semiclassical eigenvalues for the Morse oscil-
(Note that this expansion should not be confused witHator.

the Fourier transform, even W, (¢,0) is characterized Quantum
with the momentum. ¥, (¢,0) is a square-integrable Number Exact Semiclassical
wave function and thus the continuous parameterization , ,
in po is not always necessary for the practical expansion b = 5000° A =001 (1.960°)
[11].) The point, nevertheless, is that some of the physical 0 0.49999 0.50227°
observables can be calculated even if the initial wave 1 1.49989 1.50008
packet is limited to the form of Eq. (3), as will be verified ;%, g'jgg gg g'igggé
below. - - 4 4.49899 4.49903
In order to show the validity and efficiency of the 5 5.498 49 5 49877
expressions of Egs. (8) and (9), we apply to the one- 6 6.497 89 6.49709
dimensional Morse problem, namely, 7 7.49719 7.49773
p2 8 8.496 39 8.49750
H =" + D[1 — exp(—Ax)], (10) 9 9.49548 9.49749
2 10 10.494 49 10.49501
for which the analytical expression of energy is known.  p = 40° A=0.12 (1.314°)
The parameters used afe = 5000, A = 0.01 andD = 0 0.44596 0.4588%
40, A = 0.1. The initial function F(q,0) is arbitrarily 1 1.33039 1.34003
selected to be Gaussian centereg.asuch that 2 2.20482 2.20461
o : ; 3 3.06925 3.07012
V(q,0) = <—> exd—alg — g.)°] eX[(—p0q>, (12) 4 3.92367 3.90961
T h 5 4.76810 4.75605

which ?S Si_mply a coher_ent-state wave pa}cket [2.9]. The #The parameters in the Morse function, Eq. (10).

Gausslan IS deforme(_:i into a non-Qaussmn form ?Ventu'bThe potential energy at the center of the initial Gaussian

ally with the propagation of Eq. (8), if the potential is not \yaye packet.

quadratic. Incidentally, Heller has constructed an inter- cThe resolution limit of the FFT in this calculation is 0.030 67.

esting semiclassical theory in which the Gaussian form v, = 20.

like Eq. (11) is retained with its center, the associated mo- °N, = 30.

mentum, and the exponef#) being determined simul-

taneously on a “locally” quadratic potential [13]. The

parameters in Eq. (11) are setdo= 6.0, gq. = 2.0, po =  of the present authors, in which the so-called window

0.0, andz = 1. The numerical integration over, has technique is not used [15]. The numbers in the entry of

been carried out with the Gauss-Legendre quadrature [14fhe semiclassical theory in Table | have been obtained in

In other words, the initial conditiongo;, po) = (g0;,0.0)  this way. It is clear that our semiclassical results are very

(i = 1,...,N,) for running the trajectories are automati- accurate. Extremely accurate calculations to converge to

cally selected by the quadrature points. Note again thahe semiclassical limit may require a larger number of

the path-integral formalisms [3—6,8] generally require thetrajectories, butv, here (20 and 30) are the numbers at

number of trajectories to the orderNﬁ (oer, if the ad-  which the results begin to converge. (The convergence

ditional integration as in [3—5,8] is taken into account),was checked by looking at the correlation functions.)

which should result in a dramatic difference in a large sysAlso, a long-time evolution of the correlation function on

tem. (Note that writing down the semiclassical expres-an anharmonic potential tends to need more trajectories,

sions like Egs. (8) and (9) should be distinguished fromsince the distribution of the trajectories in space becomes

the practical method of numerical integration. For in-wider as the time passes. We have carried out other

stance, although we have used the Gaussian quadraturgher dimensional calculations and obtained the similar

here, the cellular dynamics of Heller [6] could be appliedaccuracy, and thus it has been verified that the method is

to our integral as well to reduce the number of the requiredhighly promising.

trajectories.) Moreover, it is quite obvious that our calculation has
The numerical comparison with the exact values ardeen very compact. As an example, we are reminded

made in Table I. The number of trajectori®s is only  of the recent work by Kinugawa [16], where he used

20 and 30 for the upper and lower lists, respectivelyas many trajectories as the order of%1@® 10° for

in Table I. The resolution of the energy, namely, theMonte Carlo sampling from phase space fér= 1 to

distance of the neighboring grid points in the energyevaluate the Morse spectra using Heller's version of the

domain determined by the present FFT calculation, isemiclassical kernel [6]. Although a comparison in terms

0.03067. However, the energies beyond that limit carof the number of trajectories alone does not necessarily

be estimated with a simple method proposed by onenake good sense, it is clear that Egs. (8) and (9) can
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be utilized to investigate the quantum (semiclassical)
effects in large systems that could not be done before.
The actual applications to high dimensional systems
including the propagation of a wave function in a chaotic
situation and other theoretical analyses such as the higher
approximation than the primitive semiclassical theory will

be reported in our future publication [11].
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