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Global Representation of Maslov-Type Semiclassical Wave Function and Its Spectrum
in a Small Number of Classical Trajectories

Kazuo Takatsuka and Atsuko Inoue
Graduate School of Human Informatics, Nagoya University, Nagoya 464-01, Japan

(Received 27 June 1996)

An explicit solution to the Maslov-type semiclassical theory for propagating a wave function, rather
than evolving in time the Feynman kernel, is presented. It turns out that the present solution bears
distinguished advantages over the semiclassical kernel, one of the most remarkable examples of which
is the far less number of classical trajectories required for the propagation, basically proportional to
P2N , P3N for the kernel while only toPN in our solution, whereN is the dimension in configuration
space andP is the number of sampling points in each dimension. As an illustrative example to show the
validity of the solution, the theory is applied to the calculation of eigenvalues of the Morse oscillators,
giving accurate results in a compact way. [S0031-9007(97)02397-1]
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Semiclassical mechanics has long been a fundame
theory to investigate the quantum effect on the dynam
of many-body systems. 1994 was a year when
studies of the primitive semiclassical approximation
the Feynman path integrals [1,2] have been settled
the final stage due to the outstanding works by Kay [
Sepulveda and Heller [4], and Brumer and his co-work
[5]. (By the primitive semiclassical approximation, w
mean the level of approximation equivalent to the lowe
order stationary-phase approximation [2].) This progre
was triggered by an important contribution due to Hel
[6], and has been pushed in part by the general inter
in the so-called quantum chaos [5(b),7]. There can
various representations for the semiclassical kernel,
typical one being [3,4]

Ksq, q0d ­ s4p2ih̄2d2 N
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where, among the other obvious notations,sqt , ptd is the
end point at timet of a classical trajectory starting from
sq0, p0d in phase space.q is an independent variable
in the N-dimensional configuration space, andm is the
Maslov index [1,2,5(a)]. The significant improvemen
achieved by expressions of this kind are (i) the trajec
ries used in the kernel are specified by the initial poin
sq0, p0d (release from the double-ended boundary pro
lem) and (ii) the amplitude factorj≠pty≠p0j

1y2 does not
diverge at caustics. These characteristics are commo
those of the so-called phase-space path integrals [8].
big problem left behind though is large dimensionality
integration to calculate overlap integrals like a correlati
function [cf. Eq. (9)] and the scattering (S) matrix that are
generally defined as
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kFjCstdl ­
Z

dq dq0FpsqdKsq, q0dCsq0, 0d , (2)

which is a 2N-dimensional integral. Even 3N-dimensional
integration is charged if the form of Eq. (1) is employe
This burden still hinders the semiclassical theory fro
being applied to large systems.

In the present Letter we report an explicit solution to t
multidimensional Maslov (primitive) semiclassical theor
which is for the propagation of wave functions rath
than the Feynman kernel. (It is sometimes misundersto
that the semiclassical theories for the kernel and wa
functions are the same under the common name of
WKB theory. But they are actually not, as seen below.
stress the difference, we term the semiclassical mecha
for wave functions the Bohm-Maslov theory, rather tha
the customarily used WKB theory.) In some aspects,
kernel is more general and flexible [2,7(c)]. Howeve
one can find distinguished advantages in the Bohm-Mas
semiclassical solution. In particular, an emphasis in t
Letter is placed on a possibility that this solution can
applied to much larger systems that cannot be handled w
the semiclassical kernel.

The Bohm-Maslov semiclassical mechanics begins w
the following wave function

Csq, td ­ Fsq, td exp

∑
i
h̄

Scl

∏
, (3)

which is to be propagated in terms of the equations
motion of the lowest-order approximation in̄h to the
Schrödinger equation. The higher order effects are ta
into account in different ways by the Bohm and Maslo
theories: the so-called quantum potential is considered
the Bohm theory [9], while Maslov takes into account th
hierarchical series of the quantum transport [10]. We w
show our own way of how to treat the higher effects [11
Scl is the classical action that satisfies the Hamilton-Jac
equation. Note that picking up anScl among the various
possible forms is equivalent to specifying an initial cond
tion that is imposed on the classical trajectories [12]. F
© 1997 The American Physical Society
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later convenience, we chooseScl to be theF2-type gener-
ating function [12] such thatSclsq, p0, td ­ F2sq, p0, td ­
F1sq, q0, td 1 q0p0. [F1 andF2 should not be confused
with Fsq, td of Eq. (3).]

The function Fsq, td is determined by the following
equation of motion [10]

≠F
≠t

1 n ? =F ­ 2
1
2 s= ? ndF , (4)

wheren ­
≠Scl

≠q is the classical velocity. We use the mas
weighted coordinates throughout so that all the mas
are scaled to unity. Equation (4) tells us to integra
its right-hand side along a classical trajectory, whic
will give rise to an exponential form likeFsssqstdddd ­
Fsssqs0dddd exps2 1

2

Rt
0 dt= ? nd. But, this formal solution

turns out to break down at caustics.
An alternative way can start from the following obse

vation:

≠F2

≠t
1 = ? snF2d ­ 0 . (5)

Note thatF2 rather thanjFj2 is considered in this “equation
of continuity” (notice thatF2 can be negative).F2 can
be readily integrated locally along a classical path
terms of a Jacobian determinant≠qty≠q0 which is a minor
determinant of the so-called stability matrix [2,7,8,12
s≠qty≠q0d21 ­ ≠2Sclsqt, p0, tdys≠qt≠p0d is interpreted as
the density of families of classical trajectories which a
labeled with their initial configuration coordinatesq0. It
is not difficult to derive from the Hamilton-Jacobi equatio
for Sclsqt , p0, td that

≠

≠t

µ
≠qt

≠q0

∂21

1 = ?

∑
n

µ
≠qt

≠q0

∂21∏
­ 0 . (6)

Furthermore, one has the initial conditions≠qty≠q0d21 ­
1, since qt ­ q0 at t ­ 0. Thus s≠qty≠q0d21 can be
regarded as the local representation of the Green func
of Eq. (5). On comparing Eqs. (5) and (6), together wi
the initial condition above, one immediately has

Fsqt , td ­ Fsq0, 0d
µ

≠qt

≠q0

∂2 1

2

­ Fsq0, 0d
Ç

≠qt

≠q0

Ç2 1

2

3 exp

∑
ipM

2

∏
, (7)

where the derivative≠qty≠q0 is taken under the fixed
initial momentump0, andM is the Maslov index in this
representation that counts the number of zeros of≠qty≠q0

up to the degeneracy. Thus the local solution, denoted
C

p0

localsqt , td, has been obtained, which is to be propagat
along a trajectory that is generated bySclsq, p0, td with the
fixed initial momentump0.

The global wave function composed of the loc
solutions is then written as
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This expression is the final form of our primitive semiclas
sical wave function. The local solutionFsqt , td in Eq. (7)
diverges at every caustic point, at which the Jacobian d
terminant≠qty≠q0 becomes zero. On the other hand, th
global solution Eq. (8) does not have the divergence d
to the transformation of the integral variable fromqt to
q0. The mathematical mechanism for the divergence
disappear is essentially the same as those for the se
classical kernel like [3–6].

The form of Eq. (8) brings about a conceptual progres
in the study of quantum-classical correspondence [11].
the present Letter, however, we stress only the simplici
and tractability of the theory. Suppose we want to calcu
late a molecular spectrum in terms of the autocorrelatio
functionCstd, which is represented as

Cstd ­ kCp0 s0d jCp0 stdl

­
Z

Fpsqt , 0dFsq0, 0d
Ç

≠qt

≠q0

Ç 1

2

3 exp

∑
2

i
h̄

p0qt 1
i
h̄

Sclsqt , p0, td 1
ipM

2

∏
dq0 .

(9)

The Fourier transform, the Fast Fourier Transform (FFT
in practice, is applied toCstd to yield the energy spectra.
Because of the presence of the delta function in Eq. (8
Cstd in Eq. (9) still remains to be anN-dimensional
integral in q0 coordinates. This remarkable advantag
should be compared with Eq. (2), which is a2N- or
3N-dimensional integral. (The physical reason why th
difference could happen will be explained in a greate
detail in our full publication [11].) This difference in the
dimensionality becomes tremendous in practice whenN
is as large as, say, ten, which is still not very large fo
molecular applications.

The drastic simplification above arises at the sacrific
that the Bohm-Maslov wave packet approach is mo
restrictive than the kernel: The kernel should be gener
enough to be capable of propagating any initial wav
function, and has many theoretical advantages common
the other general Green functions [2]. On the other han
the initial wave function of our solution is limited to the
form of Eq. (3) and characterized by a momentum vect
p0. The price for this simplification is therefore that if
one is interested in propagating a general wave functio
1405
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an elaboration of expansion inCp0 sq, 0d is necessary.
(Note that this expansion should not be confused w
the Fourier transform, even ifCp0sq, 0d is characterized
with the momentum. Cp0 sq, 0d is a square-integrable
wave function and thus the continuous parameterizat
in p0 is not always necessary for the practical expansi
[11].) The point, nevertheless, is that some of the physi
observables can be calculated even if the initial wa
packet is limited to the form of Eq. (3), as will be verifie
below.

In order to show the validity and efficiency of the
expressions of Eqs. (8) and (9), we apply to the on
dimensional Morse problem, namely,

H ­
p2

2
1 Df1 2 exps2lxdg2, (10)

for which the analytical expression of energy is know
The parameters used areD ­ 5000, l ­ 0.01 and D ­
40, l ­ 0.1. The initial function Fsq, 0d is arbitrarily
selected to be Gaussian centered atqc such that

Csq, 0d ­

µ
a

p

∂ 1

4

expf2asq 2 qcd2g exp

µ
i
h̄

p0q

∂
, (11)

which is simply a coherent-state wave packet [2,9]. T
Gaussian is deformed into a non-Gaussian form even
ally with the propagation of Eq. (8), if the potential is no
quadratic. Incidentally, Heller has constructed an inte
esting semiclassical theory in which the Gaussian fo
like Eq. (11) is retained with its center, the associated m
mentum, and the exponentsad being determined simul-
taneously on a “locally” quadratic potential [13]. Th
parameters in Eq. (11) are set toa ­ 6.0, qc ­ 2.0, p0 ­
0.0, and h̄ ­ 1. The numerical integration overq0 has
been carried out with the Gauss-Legendre quadrature [1
In other words, the initial conditionssq0i , p0d ­ sq0i, 0.0d
si ­ 1, . . . , Npd for running the trajectories are automat
cally selected by the quadrature points. Note again t
the path-integral formalisms [3–6,8] generally require th
number of trajectories to the order ofN2

p (or N3
p if the ad-

ditional integration as in [3–5,8] is taken into account
which should result in a dramatic difference in a large sy
tem. (Note that writing down the semiclassical expre
sions like Eqs. (8) and (9) should be distinguished fro
the practical method of numerical integration. For in
stance, although we have used the Gaussian quadra
here, the cellular dynamics of Heller [6] could be applie
to our integral as well to reduce the number of the requir
trajectories.)

The numerical comparison with the exact values a
made in Table I. The number of trajectoriesNp is only
20 and 30 for the upper and lower lists, respective
in Table I. The resolution of the energy, namely, th
distance of the neighboring grid points in the energ
domain determined by the present FFT calculation,
0.030 67. However, the energies beyond that limit c
be estimated with a simple method proposed by o
1406
ith

on
on
al

ve

e-

n.

e
tu-
t
r-
m
o-

4].

-
at
e

),
s-
s-
m
-
ture
d
ed

re

y,
e
y
is

an
ne

TABLE I. The semiclassical eigenvalues for the Morse oscil
lator.

Quantum
Number Exact Semiclassical

D ­ 5000a l ­ 0.01a s1.960bd
0 0.499 99 0.50221c,d

1 1.499 89 1.50008
2 2.499 69 2.49862
3 3.499 39 3.49926
4 4.498 99 4.49903
5 5.498 49 5.49877
6 6.497 89 6.49709
7 7.497 19 7.49773
8 8.496 39 8.49750
9 9.495 48 9.49749
10 10.494 49 10.49501

D ­ 40a l ­ 0.1a s1.314bd
0 0.44596 0.45889c,e

1 1.33039 1.34003
2 2.20482 2.20461
3 3.06925 3.07012
4 3.92367 3.90961
5 4.76810 4.75605

aThe parameters in the Morse function, Eq. (10).
bThe potential energy at the center of the initial Gaussian
wave packet.

cThe resolution limit of the FFT in this calculation is 0.030 67.
dNp ­ 20.
eNp ­ 30.

of the present authors, in which the so-called window
technique is not used [15]. The numbers in the entry o
the semiclassical theory in Table I have been obtained
this way. It is clear that our semiclassical results are ve
accurate. Extremely accurate calculations to converge
the semiclassical limit may require a larger number o
trajectories, butNp here (20 and 30) are the numbers a
which the results begin to converge. (The convergen
was checked by looking at the correlation functions.
Also, a long-time evolution of the correlation function on
an anharmonic potential tends to need more trajectorie
since the distribution of the trajectories in space becom
wider as the time passes. We have carried out oth
higher dimensional calculations and obtained the simila
accuracy, and thus it has been verified that the method
highly promising.

Moreover, it is quite obvious that our calculation has
been very compact. As an example, we are reminde
of the recent work by Kinugawa [16], where he use
as many trajectories as the order of 104 to 105 for
Monte Carlo sampling from phase space forN ­ 1 to
evaluate the Morse spectra using Heller’s version of th
semiclassical kernel [6]. Although a comparison in term
of the number of trajectories alone does not necessar
make good sense, it is clear that Eqs. (8) and (9) ca
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be utilized to investigate the quantum (semiclassic
effects in large systems that could not be done befo
The actual applications to high dimensional system
including the propagation of a wave function in a chaot
situation and other theoretical analyses such as the hig
approximation than the primitive semiclassical theory w
be reported in our future publication [11].
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