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Spatiotemporal Chaos in a Simulated Ring of Cardiac Cells
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We recently presented evidence that cardiac fibrillation is a form of spatiotemporal chaos aris
via a quasiperiodic transition. To investigate the origin of this quasiperiodicity, we studied reentra
excitation in a ring of cardiac cells. We modified the Beeler-Reuter model, changing the action poten
duration (APD) restitution so that it agreed qualitatively with experimental studies. We found that cha
could occur by reentrant excitation, in a transition from quasiperiodicity to spatiotemporal chaos. T
occurred only when the APD restitution curve was nonmonotonic. [S0031-9007(97)02407-1]

PACS numbers: 87.22.As, 05.45.+b, 87.10.+e
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Reentrant cardiac arrhythmias are disorders of elec
cal conduction in which waves of excitation repeated
“reenter” the same or each other’s region of tissue [
They include the most malignant arrhythmias, especia
ventricular tachycardia and ventricular fibrillation, the la
ter being the leading single cause of death in industr
ized countries. In reentrant tachycardias, a single w
of excitation recirculates through the tissue substrate i
periodic manner, whereas in ventricular fibrillation, wa
propagation becomes “frenzied and irregular,” coher
cardiac conduction and contraction are lost, and death
sues within minutes.

Recent studies have shown that at least some car
arrhythmias may be instances of deterministic chaos,
scribable by low-dimensional maps [2–5]. However, fi
rillation has defied low-dimensional description [6], an
requires instead a spatiotemporal approach. The sub
of spatiotemporal pattern formation in excitable media
now being studied intensely, including reaction-diffusio
systems [7], cardiac spatial propagation [8], and other s
tems. In these systems, phenomena such as spiral wa
spiral meandering, spiral breakup, and “turbulence” ha
been observed [7]. But, to our knowledge, there h
been little attention given to describing how spatiotempo
chaos can occur during reentrant activity in these exten
systems. Recent theoretical modeling by partial differe
tial equations [9,10] and coupled map lattices [11] and
perimental studies in rings of cardiac tissue [12] give so
crucial insights into the instability caused by reentrant e
citation. In this Letter, we extend these investigations
study how these instabilities lead to spatiotemporal ch
in a ring of cardiac tissue.

Cardiac dynamics are determined in part by the prop
ties called “restitution,” in which the values of key cardia
variables in a given beat depend on variables from
previous beat. The three most important descriptors
the cardiac cycle are (1) action potential duration (APD
the interval from the beginning of the cardiac upstroke
repolarization, (2) diastolic interval (DI), the time from
the end of the action potential to the next upstroke, a
(3) conduction velocity (CV). These descriptors are
0031-9007y97y78(7)y1387(4)$10.00
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lated by the two restitution curves: APD restitution (AP
versus preceding DI) and local CV restitution (CV versu
preceding DI). Most often, APD restitution curves are d
scribed as monotonic functions of DI [10,13]; howeve
several studies [3,4,13] have reported that APD restitut
can be nonmonotonic, first increasing to a local maximu
then decreasing to a local minimum, and then increas
gradually to a steady state maximum. This nonmonoto
effect is prominent in human myocardium, where the d
ference in APD between the local maximum and min
mum can be as large as 20–30 ms [13]. Previous stud
have shown that with nonmonotonic APD restitution, b
furcations to chaos have been observed in two perio
cally driven preparations: Purkinje fiber/papillary musc
[3] and small pieces of cardiac tissue [4]. We now stud
the consequences of such nonmonotonic restitution cur
in an autonomous (i.e., not externally forced) situatio
reentry in a ring of cardiac tissue, using the Beeler-Reu
(BR) equations [14] as our cardiac cell model. We mod
fied the BR equations to allow a parametric change
APD restitution from monotonic to nonmonotonic.

We assume that the electrical pulse propagates in
continuous one-dimensional ring of tissue (ignoring th
microscopic cell structure) with ring lengthL, which is
described by the following partial differential equatio
[9,10]:

Cm
≠V
≠t

­ 2IBR 1
1

Snr

≠2V
≠x2 , (1)

whereV smVd is the membrane voltage,Cm ­ 1 mF cm22

is the membrane capacitance,Sn ­ 5000 cm21 is the
surface-to-volume ratio, andr ­ 0.2 kV cm is the tissue
resistivity. The units of time and space in Eq. (1) are m
and cm, respectively.IBRsmA cm22d is the total ionic
current from the BR model [14]:IBR ­ INa 1 ICa 1

Ix1 1 IK1 . INa ­ s4m3hj 1 0.003d sV 2 50d is the
fast inward sodium current;ICa ­ 0.09dfsV 2 Esd
is the slow inward calcium current, whileEs ­
282.3 2 13.0287 lnfCagi and the intracellular cal-
cium concentrationfCagismolyld satisfies dfCagiydt ­
21027ICa 1 0.07s1027 2 fCagid; Ix1 ­ ix1 x1 is the
© 1997 The American Physical Society 1387
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time-dependent outward potassium current, which is
voltage-dependent function only.m, h, j, d, f, and
x1 are the corresponding gating variables satisfyi
differential equations of the type:dyydt ­ s y` 2 ydyty,
y` ­ ayysay 1 byd, andty ­ 1ysay 1 byd. aysms21d
andbysms21d are the corresponding rate constant, whic
are also functions solely of voltage. Detailed forms ofIK1 ,
ix1 , ay, andby can be found in Ref. [14]. To simulate
the APD restitution properties of real cardiac tissue, w
modified the BR model by blocking the time-depende
outward potassium currentIx1 in the following way:
Ix1 ­ gx1 st0dix1 x1, and

gx1 st
0d ­

8>><>>:
1 2 aFst0d,

t0 [ f0, APDg, during action potential,
1 2 aGst0d,

t0 [ f0, DIg, during diastolic interval,

(2)
where Fst0d ­ GsDId 1

Rt0

0 m3hjusx1d dt0 and Gst0d ­
FsAPDd exps2t0yTd, andt0 is the local time variable. We
setT ­ 0.1 ms andusxd ­ e2800sx20.28d2

. By changinga
in Eqs. (2) we can obtain different shapes of APD restit
tion curves, which is similar to the manner in which restitu
tion properties are changed in Ref. [15]. We use260 mV
as our threshold between action potentialsV . 260 mVd
and diastolic statesV , 260 mVd. In Fig. 1 we show
the APD restitution curves of the modified BR model fo
different values ofa. For smalla the APD restitution
is a monotonic function, but fora greater than a critical
value sø0.4d it becomes nonmonotonic. The nonmono
tonic APD restitution qualitatively resembles experiment
data (Fig. 1, inset). We emphasize that we replicated
experimental APD restitution curve phenomenologica
since its ionic mechanism [16] is too complex to inco
porate into the BR model.

FIG. 1. APD restitution curves of the modified BR mode
with different values ofa: dotted-dashed (a ­ 0, original BR
model); dottedsa ­ 0.4d; solid sa ­ 0.75d. Inset shows an
experimental APD restitution curve (data taken from Ref. [4]
1388
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As shown by previous studies [9–11], a circulating
wave in a ring of cardiac tissue is periodic when the rin
circumference is sufficiently long. When the ring length
L is shortened to a critical value, the periodic circulatin
wave loses its stability via a Hopf bifurcation, and the sys
tem will go into a quasiperiodic regime. IfL is shortened
further to another critical value, conduction failure occurs
In our study, we found that, if the restitution curve o
the cell was monotonic, the behavior of the system wa
identical to that reported by others [9–11]: from periodi
circulation to a quasiperiodic regime and then to circula
tion failure as the ring length was shortened. Howeve
if the restitution curve is nonmonotonic, spatiotempora
chaos occurs after the quasiperiodic regime, and befo
the circulation failure. Figure 2 shows the phase diagra
of the system ina-L parameter plane, obtained by re
peated integrating Eq. (1). The phase diagram consi
of five regions: stable period 1 circulation (P1); quasiper
odic motion when APD restitution is monotonic (QP1)
quasiperiodic motion when APD restitution is nonmono
tonic (QP2); spatiotemporal chaos (STC); and circulatio
failure (F). The transition to chaos always occurs via th
QP2 motion whena . 0.4. From Figs. 1 and 2 we con-
clude thatchaos is observed in a ring of cardiac tissue
only when the restitution curve is nonmonotonic.

The quasiperiodic dynamics of this system can be rea
ily seen in first-return maps of the APD. Figure 3(a
shows a quasiperiodic attractor in QP1, and Fig. 3(
shows a quasiperiodic attractor in QP2. The main di
ference between QP1 and QP2 is the amplitude of oscil
tion. QP1 behavior is produced by a monotonic restitutio
curve (thus, this behavior is the analog of the quasipe
odicity seen in Refs. [9–11]). QP2 behavior, on the othe
hand, is produced by nonmonotonic restitution. In th
curves in Fig. 1, it is thevalley in the restitution curve,
constraining the system, which results in QP2 motion. A

FIG. 2. Phase diagram ina-L plane. P1: period one; QP1:
quasiperiodicity, type 1; QP2: quasiperiodicity, type 2; STC
spatiotemporal chaos; F: circulation failure.
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FIG. 3. First-return maps of APD forL ­ 12.75 cm and (a)
a ­ 0.2, (b) a ­ 0.45, (c) a ­ 0.465, (d) a ­ 0.6.

a becomes larger, however, the motion of the system
comes progressively more violent, and the oscillation
no longer be constrained to the valley region [Figs. 3
and 3(d)].

So far, we have discussed only the temporal prop
ties of the system. What is its spatial behavior? F
ure 4(a) is a gray-scale plot of spatiotemporal evolution
the voltage between 2 s and 10 s, which shows irregul
ties in both wavelength and wave form in the STC regi
sa ­ 0.6, L ­ 12.75 cmd. To emphasize the spatiotem
poral irregularity we plot the spatiotemporal distributio
of the APD for a much longer period (over 500 cycles)
Fig. 4(b) for the same parameters as in Fig. 4(a). The v
lent spatiotemporal irregularity is illustrated much mo
prominently than in Fig. 4(a). Figure 5 shows a space p
of CV and APD for several cycles. Figures 5(a) and 5(
for the STC regimesa ­ 0.6d, show that CV and APD
(indicated by solid lines) along the ring are totally irreg
lar in space and time. To examine the sensitivity of t
system to perturbations (a hallmark of chaos), we gav
short perturbation [the dotted sharp peak (indicated by
arrow) in Fig. 5(a)] during steady state conduction, tra
siently increasing conduction velocity (by increasingINa),
in a very narrow space interval [10 cm, 10.25 cm]. T
dotted lines show that after the perturbation, CV and A
values diverged from their original values, first in a loc
area, and then throughout the whole space, after no m
than 10 cycles. Thus the perturbations were amplified b
in space and time, indicating that the dynamics of
system is spatiotemporal rather than temporal. For co
parison, we performed the same perturbation, with
parameters in the QP1 regimesa ­ 0.2, L ­ 12.75 cmd.
With the identical perturbations, the effect on the ev
lution of APD and CV [Figs. 5(c) and 5(d)] was bare
observable.
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FIG. 4. (a) Gray-scale plot of spatiotemporal evolution
voltage V fora ­ 0.6 andL ­ 12.75 cm. The top is the plot
of voltage as a function of space at timet ­ 10 s. The arrow
indicates the direction of propagation of the electrical wa
along the ring. (We cannot see the wave front variation in t
gray-scale plot because it is too small to show up in such a p
however, the variation of wave front is demonstrated in Fig
by CV variation). (b) Spatiotemporal distribution of the AP
versus cycle number for the same parameters as in (a). P
are black for APD. 227 ms and white for APD, 227 ms.
The abscissa is the spatial distance along the ring, and
ordinate is the number of cycles during reentry.

After determining that our data sets were sufficien
low dimensional by the false nearest neighbors meth
[17], we calculated Lyapunov exponents by the method
Ref. [18], for the four data sets shown in Fig. 3. In th
quasiperiodic regime [Fig. 3(a)] the largest exponent w
0.005 ms21, not significantly different from zero, wherea
in chaotic regime, the largest exponents varied betw
0.1 and0.12 ms21.

We have demonstrated that the spatiotemporal ch
can arise in an excitable medium in a one-dimensio
ring. A novel aspect of this finding is that the chaos aris
from a single wave that continually reenters the sa
regions [see Fig. 4(a)]. This type of chaos is therefo
more relevant to reentrant cardiac arrhythmias than ch
arising from periodic external forcing. The presence
chaos, and the particular form that it takes, depends u
the restitution curves for APD and CV. If CV wer
constant, the time to the next excitation of a given c
would be constant. In this case, the routes to ch
that occur are those that are observed for a single
with periodic forcing [3,4]. However, in a spatiotempor
system there is always some variability of CV, whic
will induce spatial complexity by accelerating or retardin
the impulse arrival time. These oscillations in CV
coupled to the oscillations in APD produced by restituti
1389
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FIG. 5. Spatial distribution and sensitivity to perturbation
of CV and APD during reentry forL ­ 12.75 cm. Solid
and dotted lines show their evolution during reentry witho
and with the perturbation, respectively. The perturbation a
indicated by the arrows. The vertical dotted grid lines ma
the ring circumference. (a) and (b)a ­ 0.6; (c) and (d)
a ­ 0.2. Note that the solid and dotted lines diverge afte
the perturbation in (a) and (b) but remain superimposed in
and (d).

characteristics, result in spatiotemporal quasiperiodici
The shape of the APD restitution curve is critical: i
the slope is everywhere less than 1, the quasiperiodic
is transient, and reentry either stabilizes or terminate
depending on the ring length. If the slope is great
than 1, quasiperiodicity becomes sustained at some r
lengths [10] and if, in addition, the APD restitution curv
is nonmonotonic, a quasiperiodic transition to chaos
generated.

The most important cardiac arrhythmias, from the clin
cal point of view, are reentrant waves that take place
two- or three-dimensional tissue, as opposed to the o
dimensional ring studied here. However, we have recen
found evidence that fibrillation is a form of spatiotempora
chaos that arises from a quasiperiodic transition [19
These one-dimensional simulations provide insight into t
1390
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origins of quasiperiodicity which may be relevant to high
dimensional settings. In atrial and ventricular fibrillatio
multiple reentrant spiral waves meander and break
in two- and three-dimensional segments of cardiac tis
[8]. In simulations, the transition from stable spiral wav
propagation to spiral meander has been shown to b
Hopf bifurcation to quasiperiodicity. The importance o
the specific characteristics of APD and CV restitutio
curves suggests that they may be useful therapeutic tar
for prevention of unstable forms of reentry that under
cardiac fibrillation.
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