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Spatiotemporal Chaos in a Simulated Ring of Cardiac Cells
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We recently presented evidence that cardiac fibrillation is a form of spatiotemporal chaos arising
via a quasiperiodic transition. To investigate the origin of this quasiperiodicity, we studied reentrant
excitation in a ring of cardiac cells. We modified the Beeler-Reuter model, changing the action potential
duration (APD) restitution so that it agreed qualitatively with experimental studies. We found that chaos
could occur by reentrant excitation, in a transition from quasiperiodicity to spatiotemporal chaos. This
occurred only when the APD restitution curve was nonmonotonic. [S0031-9007(97)02407-1]

PACS numbers: 87.22.As, 05.45.+b, 87.10.+e

Reentrant cardiac arrhythmias are disorders of electritated by the two restitution curves: APD restitution (APD
cal conduction in which waves of excitation repeatedlyversus preceding DI) and local CV restitution (CV versus
“reenter” the same or each other’s region of tissue [1]preceding DI). Most often, APD restitution curves are de-
They include the most malignant arrhythmias, especiallyscribed as monotonic functions of DI [10,13]; however,
ventricular tachycardia and ventricular fibrillation, the lat- several studies [3,4,13] have reported that APD restitution
ter being the leading single cause of death in industrialean be nonmonotonic, first increasing to a local maximum,
ized countries. In reentrant tachycardias, a single wavéhen decreasing to a local minimum, and then increasing
of excitation recirculates through the tissue substrate in gradually to a steady state maximum. This nonmonotonic
periodic manner, whereas in ventricular fibrillation, waveeffect is prominent in human myocardium, where the dif-
propagation becomes “frenzied and irregular,” coherenterence in APD between the local maximum and mini-
cardiac conduction and contraction are lost, and death emaum can be as large as 20—30 ms [13]. Previous studies
sues within minutes. have shown that with nonmonotonic APD restitution, bi-

Recent studies have shown that at least some cardidigrcations to chaos have been observed in two periodi-
arrhythmias may be instances of deterministic chaos, desally driven preparations: Purkinje fiber/papillary muscle
scribable by low-dimensional maps [2—5]. However, fib-[3] and small pieces of cardiac tissue [4]. We now study
rillation has defied low-dimensional description [6], andthe consequences of such honmonotonic restitution curves
requires instead a spatiotemporal approach. The subjeitt an autonomous (i.e., not externally forced) situation:
of spatiotemporal pattern formation in excitable media isreentry in a ring of cardiac tissue, using the Beeler-Reuter
now being studied intensely, including reaction-diffusion(BR) equations [14] as our cardiac cell model. We modi-
systems [7], cardiac spatial propagation [8], and other sysfied the BR equations to allow a parametric change in
tems. In these systems, phenomena such as spiral wavés?D restitution from monotonic to nonmonotonic.
spiral meandering, spiral breakup, and “turbulence” have We assume that the electrical pulse propagates in a
been observed [7]. But, to our knowledge, there hagontinuous one-dimensional ring of tissue (ignoring the
been little attention given to describing how spatiotemporamicroscopic cell structure) with ring length, which is
chaos can occur during reentrant activity in these extendedescribed by the following partial differential equation
systems. Recent theoretical modeling by partial differen{9,10]:
tial equations [9,10] and coupled map lattices [11] and ex- oV 1 92V
perimental studies in rings of cardiac tissue [12] give some Cm? = —Ipr + S 5 o’ (1)
crucial insights into the instability caused by reentrant ex- vp OX
citation. In this Letter, we extend these investigations tovhereV(mV) is the membrane voltag€,, = 1 uFcm 2
study how these instabilities lead to spatiotemporal chaos the membrane capacitancg, = 5000 cm™! is the
in a ring of cardiac tissue. surface-to-volume ratio, ang = 0.2 k() cm is the tissue

Cardiac dynamics are determined in part by the properresistivity. The units of time and space in Eq. (1) are ms
ties called “restitution,” in which the values of key cardiacand cm, respectively./gr(uwAcm™2) is the total ionic
variables in a given beat depend on variables from theurrent from the BR model [14]Igr = INa + Ica +
previous beat. The three most important descriptors of,, + Ix,. Ina = (4m>hj + 0.003)(V — 50) is the
the cardiac cycle are (1) action potential duration (APD)fast inward sodium current;lc, = 0.09df(V — Ej)
the interval from the beginning of the cardiac upstroke tas the slow inward calcium current, whileE; =
repolarization, (2) diastolic interval (DI), the time from —82.3 — 13.0287In[Cal; and the intracellular cal-
the end of the action potential to the next upstroke, angium concentration[Cal;(mol/l) satisfies d[Cal;/dr =
(3) conduction velocity (CV). These descriptors are re-—10""Ic, + 0.07(1077 — [Cal,); I, = i,,x; is the
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time-dependent outward potassium current, which is a As shown by previous studies [9—-11], a circulating
voltage-dependent function onlym, h, j, d, f, and wave in a ring of cardiac tissue is periodic when the ring
x; are the corresponding gating variables satisfyingcircumference is sufficiently long. When the ring length
differential equations of the typely/dr = (y. — y)/7y, L is shortened to a critical value, the periodic circulating
ye = ay/(ay + By), andry = 1/(ay + B,). ay(ms™!)  wave loses its stability via a Hopf bifurcation, and the sys-
and B,(ms™!) are the corresponding rate constant, whichtem will go into a quasiperiodic regime. If is shortened
are also functions solely of voltage. Detailed formggf  further to another critical value, conduction failure occurs.
iy,, @y, and B, can be found in Ref. [14]. To simulate In our study, we found that, if the restitution curve of
the APD restitution properties of real cardiac tissue, wehe cell was monotonic, the behavior of the system was
modified the BR model by blocking the time-dependentidentical to that reported by others [9—11]: from periodic
outward potassium currenk,, in the following way: circulation to a quasiperiodic regime and then to circula-

I, = gxl(t’)fx,xl, and tion failure as the ring length was shortened. However,
1 — aF(t), if the restitution curve is nor_lmo_not_onic, ;patiotemporal

. t' € [0,APD], during action potential chaos occurs after the quasiperiodic regime, and before

g (1) = 1 — aG(r), the circulation failure. Figure 2 shows the phase diagram

of the system ina-L parameter plane, obtained by re-
peated integrating Eqg. (1). The phase diagram consists
" (2) of five regions: stable period 1 circulation (P1); quasiperi-
where F(i') = G(DI) + [, m’hj6(x))di’ and G(r') =  odic motion when APD restitution is monotonic (QP1);
F(APD) exp(—1'/T), and:' is the local time variable. We quasiperiodic motion when APD restitution is nonmono-
set? = 0.1 ms andd(x) = ¢ 80=~028" By changingz  tonic (QP2); spatiotemporal chaos (STC); and circulation
in Egs. (2) we can obtain different shapes of APD restitufajlure (F). The transition to chaos always occurs via the
tion curves, which is similar to the manner in which restitu-QpP2 motion whern: > 0.4. From Figs. 1 and 2 we con-
tion properties are changed in Ref. [15]. We us&®) mV  clude thatchaos is observed in a ring of cardiac tissue
as our threshold between action potential> —60 mV)  only when the restitution curve is nonmonotonic.
and diastolic statgV < —60 mV). In Fig. 1 we show  The quasiperiodic dynamics of this system can be read-
the APD restitution curves of the modified BR model forjly seen in first-return maps of the APD. Figure 3(a)
different values ofa. For smalla the APD restitution shows a quasiperiodic attractor in QP1, and Fig. 3(b)
is @ monotonic function, but for greater than a critical shows a quasiperiodic attractor in QP2. The main dif-
value (=~0.4) it becomes nonmonotonic. The nonmono-ference between QP1 and QP2 is the amplitude of oscilla-
tonic APD restitution qualitatively resembles experimentakion. QP1 behavior is produced by a monotonic restitution
data (Fig. 1, inset). We emphasize that we replicated theurve (thus, this behavior is the analog of the quasiperi-
experimental APD restitution curve phenomenologicallyodicity seen in Refs. [9—11]). QP2 behavior, on the other
since its ionic mechanism [16] is too complex to incor-hand, is produced by nonmonotonic restitution. In the
porate into the BR model. curves in Fig. 1, it is thevalley in the restitution curve,
constraining the system, which results in QP2 motion. As

t' € [0,DlI], during diastolic interval
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FIG. 1. APD restitution curves of the modified BR model L{em)
with different values ofa: dotted-dasheda(= 0, original BR  FIG. 2. Phase diagram in-L plane. P1: period one; QP1:
model); dotted(a = 0.4); solid (a = 0.75). Inset shows an quasiperiodicity, type 1; QP2: quasiperiodicity, type 2; STC:
experimental APD restitution curve (data taken from Ref. [4]). spatiotemporal chaos; F: circulation failure.
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FIG. 3. First-return maps of APD fok = 12.75 cm and (a) x(cm) *{em)
a =02, (b)a =045, (c)a = 0.465, (d) a = 0.6.
FIG. 4. (a) Gray-scale plot of spatiotemporal evolution of

a becomes larger, however, the motion of the system be‘l]?'\t/"z‘)%gg\é fg;“ajugfti grr]‘dO% S=p a1C2é7§t°ti“;]-e=T?§ StOPTiﬁeth:rr%'v?lt
comes progressively more violent, and the oscillation Ca'ﬁ1dicates the direction of propagation of the electrical wave

no longer be constrained to the valley region [Figs. 3(Chalong the ring. (We cannot see the wave front variation in this
and 3(d)]. gray-scale plot because it is too small to show up in such a plot;
So far, we have discussed only the temporal properhowever, the variation of wave front is demonstrated in Fig. 5

ties of the system. What is its spatial behavior? Fig_b()e/rgu\g \é?/g?eticr)]ﬂ)rﬁb(ebr)f(?rp%ieofa%peo ;)a;rgi;t(reitt::;io;soi; t(hag Agi?(els
ure 4(a) is a gray-scale plot of spatiotemporal evolution oﬁre black for APD> 227 ms and white for APD< 227 ms.

the voltage between 2 s and 10 s, which shows irregularirhe abscissa is the spatial distance along the ring, and the
ties in both wavelength and wave form in the STC regimeordinate is the number of cycles during reentry.

(a = 0.6,L = 12.75 cm). To emphasize the spatiotem-

poral irregularity we plot the spatiotemporal distribution After determining that our data sets were sufficiently
of the APD for a much longer period (over 500 cycles) inlow dimensional by the false nearest neighbors method
Fig. 4(b) for the same parameters as in Fig. 4(a). The viof17], we calculated Lyapunov exponents by the method of
lent spatiotemporal irregularity is illustrated much moreRef. [18], for the four data sets shown in Fig. 3. In the
prominently than in Fig. 4(a). Figure 5 shows a space plotuasiperiodic regime [Fig. 3(a)] the largest exponent was
of CV and APD for several cycles. Figures 5(a) and 5(b)0.005 ms™!, not significantly different from zero, whereas
for the STC regimega = 0.6), show that CV and APD in chaotic regime, the largest exponents varied between
(indicated by solid lines) along the ring are totally irregu-0.1 and0.12 ms .

lar in space and time. To examine the sensitivity of the We have demonstrated that the spatiotemporal chaos
system to perturbations (a hallmark of chaos), we gave aan arise in an excitable medium in a one-dimensional
short perturbation [the dotted sharp peak (indicated by aring. A novel aspect of this finding is that the chaos arises
arrow) in Fig. 5(a)] during steady state conduction, tranfrom a single wave that continually reenters the same
siently increasing conduction velocity (by increasig),  regions [see Fig. 4(a)]. This type of chaos is therefore
in a very narrow space interval [10 cm, 10.25 cm]. Themore relevant to reentrant cardiac arrhythmias than chaos
dotted lines show that after the perturbation, CV and APDarising from periodic external forcing. The presence of
values diverged from their original values, first in a localchaos, and the particular form that it takes, depends upon
area, and then throughout the whole space, after no mothe restitution curves for APD and CV. If CV were
than 10 cycles. Thus the perturbations were amplified bothonstant, the time to the next excitation of a given cell
in space and time, indicating that the dynamics of thevould be constant. In this case, the routes to chaos
system is spatiotemporal rather than temporal. For comthat occur are those that are observed for a single cell
parison, we performed the same perturbation, with thevith periodic forcing [3,4]. However, in a spatiotemporal
parameters in the QP1 reginfe = 0.2,L = 12.75 cm).  system there is always some variability of CV, which
With the identical perturbations, the effect on the evo-will induce spatial complexity by accelerating or retarding
lution of APD and CV [Figs. 5(c) and 5(d)] was barely the impulse arrival time. These oscillations in CV,
observable. coupled to the oscillations in APD produced by restitution
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0.46 origins of quasiperiodicity which may be relevant to higher
dimensional settings. In atrial and ventricular fibrillation,
- 044 multiple reentrant spiral waves meander and break up
k= in two- and three-dimensional segments of cardiac tissue
S 042; [8]. In simulations, the transition from stable spiral wave
© propagation to spiral meander has been shown to be a
0.40 Hopf bifurcation to quasiperiodicity. The importance of
240 the specific characteristics of APD and CV restitution
2 curves suggests that they may be useful therapeutic targets
;Q'_' 180 for prevention of unstable forms of reentry that underlie
< cardiac fibrillation.
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