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Stress Condensation in Crushed Elastic Manifolds
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We discuss anM-dimensional phantom elastic manifold of linear sizeL crushed into a small sphere
of radius R ø L in N-dimensional space. We investigate the low elastic energy states of 2-sheets
sM ­ 2d and 3-sheetssM ­ 3d using analytic methods and lattice simulations. WhenN $ 2M the
curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when
N ­ M 1 1 and M . 1, both energies appear to becondensedinto a network of narrowM 2 1
dimensional ridges. The ridges appear straight over distances comparable to the confining radiusR.
[S0031-9007(97)02345-4]

PACS numbers: 68.60.Bs, 03.40.Dz, 46.30.Cn
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It has long been known that a thin elastic plate wi
develop narrow ridges under a variety of compressiv
boundary conditions. These ridges may be seen da
in the way a pillowcase or trouser leg deforms to wra
its contents, often exhibiting a diamond pattern familia
from compression studies of thin metal cylinders [1
The linear scars in a crumpled sheet of paper are als
record of this mechanism [2]. Recently, it was discovere
that the structure of these ridges could be accounted
using linear elasticity theory, valid in the limit that the
ridge lengthX is much greater than the plate thicknes
h [3,4]. Witten and Li used a scaling argument to
predict that the ridge widthw . h1y3X2y3 and the total
elastic energyE . Yh3sXyhd1y3, whereY is the Young’s
modulus [3]. Lobkovskyet al. verified these scaling
laws using both numerical simulations and an asympto
analysis of the Von Karman equations for a thin plat
[4]. His simulations showed that the material strain
and curvatures decay rapidly to zero in the directio
transverse to the ridge. The length scale of this decay
the ridge widthw, which goes to zero with the thickness
of the plate. However, these ridges were analyzed only
idealized, symmetrical deformations. Their applicabilit
to stochastically crumpled sheets has not been explici
shown.

Ridge formation is a mode of spontaneous condensat
of energy into a small subset of the available volum
As such, it resembles the spontaneous organization
dislocations into grain boundaries in a strained crystal
the formation of Prandtl boundary layers in laminar flui
flow [5,6].

To understand the necessary conditions for this co
densation, and its consequences, it is useful to consi
the general problem of anM-dimensional elastic mani-
fold crushed by a hypersphere inN-dimensional space.
In Ref. [7] we derived the elastic energy functional o
the manifold by considering the small thickness lim
of an N-dimensional elastic solid with an extentOsLd
in M directions and a thicknessh in N 2 M trans-
verse directions. We found that a deformed hypersurfa
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sM ­ N 2 1d under an appropriate boundary condition
exhibits a ridge with scaling properties analogous to thos
of Ref. [4]. In this Letter we explore the more genera
situation of anM-sheet with a free boundary confined by
a small sphere. Using analytic and numerical method
we demonstrate two complementary behaviors.

Case 1sN $ 2Md: The energyEc associated with
curvature is distributed uniformly in the manifold, and
the energyEs associated with strain is negligible by
comparison.

Case 2sN ­ M 1 1 . 2d: The strain energy and curva-
ture energy are comparable, withEsyEb . 0.2. Both en-
ergies are condensed into a network of narrowsM 2 1d-
dimensional ridges as described in Refs. [4] and [7].

In the remaining cases, namely,M 1 1 , N , 2M, we
anticipate that the strain energy will also be comparab
to the curvature energy. We have not investigated the
cases in detail.

The differential geometry of the deformed manifold
is conveniently discussed using a Euclidean coordina
patch on theflat manifold sxaja [ f1, Mgd, called the
manifold coordinate system [9]. Any deformation may
then be written as a map$rsxd from the manifold coordi-
nates toN-dimensional Euclidian space. The strain tenso
is uabsxd ­ s1y2ds≠a $r ? ≠b $r 2 dabd and the extrinsic
curvature tensor is$Kab ­ ≠a≠b $r [9]. Under the usual
assumptions of linear elasticity theory (uab ø 1 and
≠guab ø j $Kmnj ø 1yh [10]), the elastic energy func-
tional becomes

E ­
Z

dxM hmsuabd2 1 sly2dsuaad2

1 k $Kab ? $Kab 1 c0k $Kaa ? $Kbbj , (1)

where m, l . YhN2M are the Lamé coefficients,k .
YhN2M12 is a bending rigidity, andc0 is a dimensionless
constant [7]. Summation over repeated indices is implied
We refer to the terms quadratic in the strains as the stra
energyEs, and the terms quadratic in the curvatures a
the curvature energyEc [11]. We consider onlyphantom
(not self-avoiding) manifolds in this paper, since we don’
© 1997 The American Physical Society 1303
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expect self-avoidance to alter the qualitative conclusion
Our compressive boundary condition is a frictionles
spherical shell with an initial radiusRi . L. To crush
the manifold the radius is slowly decreased to a final valu
R ø L.

In our simulations we model a thin elastic 2-shee
sM ­ 2d using a triangular network of nodes connecte
by springs (see Fig. 1), following the work of Seung an
Nelson [12] . The discretized strain energy is the su
over the Hooke’s law energy of each spring

Es ­
X

i

1
2

cssli 2 l0d2, (2)

wherecs is a spring constant controlling the strain energ
li is the length of springi, andl0 is the lattice constant.

To discretize the curvature energy it is convenient
begin by defining the normal tensor for a two-dimension
lattice in N-dimensional Euclidean space. If$asxd and
$bsxd are two independent vectors tangent to the 2-she
at x, then we may define a normal tensor via

snfa, bgdi1···iN22 ­ ei1···iN aiN21biN , (3)

whereai and bi are the Cartesian components of$a and
$b, and e is the antisymmetric Levi-Civita tensor. In 3-
space this reduces to the usual normal vectorn ­ $a 3 $b.
Defining the inner product

n1 ? n2 ­
1

sN 2 Md!
sn1di1···iN2M sn2di1···iN2M (4)

with M ­ 2, the unit normal tensor may be expressed
n̂ ­ ny

p
n ? n. By substituting$a ­ ≠1 $r and $b ­ ≠2 $r, it

is straightforward to prove that≠an ? ≠an ­ $Kab ? $Kab .
The curvature energy can therefore be represented us
the square of the discrete derivative

Ec ­
X
kijl

1
2

cbjn̂i 2 n̂jj
2, (5)

wherecb is a bending constant,̂ni is the unit normal of
trianglei (see Fig. 1), and the sum is taken over each pa
of triangles which share a common edge. Comparis

FIG. 1. A portion of the triangular lattice and the simple
cubic lattice used to discretize a 2-sheetsM ­ 2d and a 3-sheet
sM ­ 3d, respectively.
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with Eq. (1) givesm, l . csyl2
0 , k . cbyl2

0 , andc0 ­ 0
[12]. The effective thickness of the 2-sheet is determine
by the ratiocbycs . h2. We takescbycsd1y2 * l0y6 to
minimize lattice effects in our simulations.

The discrete model of an elastic 3-sheetsM ­ 3d is
qualitatively similar. The 3-sheet is a simple cubic lattice
of nodes connected by springs. As shown in Fig. 1
there are edge springs with constantce and lengthl0,
and diagonal springs with constantcd and length

p
2 l0.

The requirement that the lattice be elastically isotropi
for small strains iscd ­ 2ce. To calculate the curvature
energy we first define the normal tensor on a 3-manifo
in N space

snfa, b, cgdi1···iN23 ­ ei1···iN
aiN22 biN21ciN

, (6)

where $asxd, $bsxd, and $csxd span the tangent space of the
manifold at sxd. Using the inner product Eq. (4) with
M ­ 3, we again have≠an ? ≠an ­ $Kab ? $Kab . Each
unit cube is conceived as five adjacent tetrahedra wi
the springs as edges. Each cube then has four “corne
tetrahedra surrounding one “middle” tetrahedron. Th
sum in Eq. (5) is taken over all pairs of tetrahedra tha
share a common triangular face (see Fig. 1). Lastl
we relate the bending constantccc for a pair of corner
tetrahedra to the bending constantccm for a corner-middle
pair. Isotropy requiresccm ­ 2ccc.

The initial condition in our simulations is a hexagona
2-sheetsM ­ 2d or a roughly spherical 3-sheetsM ­ 3d
with a small random displacement added to the position
of the nodes [13]. We model a hyperspherical container
radiusr0 with the potentialVsphere ­

P
i sriyr0d12, where

ri is the distance from the origin to nodei. We use the
rms radius of the manifold as our measure of the confinin
radius R: R2 ­

P
i r2

i ys
P

i 1d. To crush the manifold,
the value ofr0 is repeatedly decreased and the energy
the manifold minimized at each step using a conjuga
gradient routine [14]. Using this method, a hexagona
2-sheet with long diameterL ­ 160l0 may be crushed
to a radiusr0 ­ 20l0 in three days of CPU time on an
IBM RISC 6000. An approximately spherical ball with
diameterL ­ 30l0 may be crushed tor0 ­ 6.0l0 in about
five days.

The simplest instance of Case 1 is a thin elastic ro
crushed within a circle in 2-space. As the radius o
the circle is decreased, the rod buckles and develops
curvature ofOs1yRd. Because the rod is free to reptate
parallel to its length, its strain energy remains identi
cally zero. Analogously, a thin plate can curl withou
strain into an arbitrarily small sphere in 4-space. On
possible embedding which demonstrates this is$r ?sxd ­
rfcossx1yrd, sinsx1yrd, cossx2yrd, sinsx2yrdg, wherer ­
Ry

p
2. Note thatj $r ?j2 ­ R2 everywhere. One can verify

by substitution that the strain tensoruab is identically zero,
and the curvatures satisfyj $K11sxdj ­ j $K22sxdj ­

p
2yR,

$K12sxd ­ 0. Thus Etot . ksLyRd2. It is interesting
to note that the rotational symmetry of the manifold
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is globally broken by the embedding$r ?. Calcu-
lation of the normal correlation function [Eqs. (3)
and (4) are valid in the continuum limit] gives
n̂sxd ? n̂sx 1 x0d ­ cossx0

1yrd cossx0
2yrd.

The key feature of the embedding$r ? is the sepa-
ration of the manifold coordinates into independen
two-dimensional subspaces of 4-space. Analogous
wheneverN $ 2M we may choose the embedding
$r ? ­ rfcossx1yrd, sinsx1yrd, cossx2yrd ,

sinsx2yrd, . . . , cossxMyrd, sinsxMyrd, 0, 0, . . .g , (7)

wherer ­ Ry
p

M. This embedding is an existence proo
that the manifold need not strain during the compressio
It is also theglobal minimum of the elastic energy at
fixed R (neglecting corrections withinR of the manifold
boundary). As was true for the sheet, the embeddi
$r ?sxd breaks the rotational symmetry of the manifold
for all M . 1. With this broken symmetry comes a de
generacy. Each rotation of the manifold coordinate sy
temx ! y gives a distinct minimum-energy configuration
$r ?s yd.

Our simulations of a 2-sheet in 4-space and a 3-she
in 6-space behave as anticipated for Case 1. In bo
instances we observe the minimum energy embeddi
discussed above, with a curvature energy density unifo
to 10% and negligible strain energyEs & 1023Ec. The
only significant deviation from the ideal embedding i
that the manifold flattens out withinR of the manifold
edge. As a result, the curvature energy density decays
zero near the edge and there is a systematic downw
correction to the total energy of the formEtot , fL 2

sconstdRgMyR2. Depending upon the initial condition, we
also observe several metastable states with a nonunifo
curvature energy density and a higher total energy. A
compression proceeds, these metastable states make
transition to the minimum energy embedding.

Our understanding of Case 2 deformations
incomplete. It is based on previous analytical an
numerical work for a variety of simple deformations
including some on general hypersurfaces [4,7]. The
cases all show the condensation of the elastic energy i
a fractionOshyXd1y3 of the manifold volume, suggesting
that a generic compression yields similar condensatio
The simple cases also exhibit a strict proportionality b
tween strain and curvature energy: limshyXd!0 Es ­ Ecy5.

We simulated Case 2 deformations using a 2-sheet in
space and a 3-sheet in 4-space. For the 2-sheet we see
anticipated spontaneous formation of a network of line
ridges. Figure 2 shows the curvature energy density
the manifold coordinates of a hexagonal 2-sheet with lon
diameterL ­ 160l0 crushed to a radiusR ­ 27l0. About
40% of the total curvature energy occupies just 2% of th
total area. This is due to the formation of point vertice
in the 2-sheet. These vertices are the tips of coneli
deformations. The next 40% occupies 20% of the are
We see that this energy is condensed into a netwo
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FIG. 2. Curvature energy distribution in a hexagonal 2-she
with moduli cs ­ 1.0 and cb ­ 0.025, and long diameter
L ­ 160l0 crushed to a radiusr0 ­ 27l0. Darker regions have
higher energy density. The crumpled configuration is shown
the lower right.

of narrow ridges which connect the vertices. The stra
energy density is similarly localized. The ratioEsyEc ø
10%. This is consistent with the deviations from the
asymptotic valueEsyEc ­ 1y5 reported by Lobkovsky
for short ridgesX ø 10h [4].

Figure 2 suggests that the ridges forming the netwo
are of comparable length. This length is similar to th
diameter of the confining sphere shown in the lower righ
corner. If we make the scaling hypothesis that the me
ridge lengthX . R, then the number of ridges in the
2-sheet scales assLyRd2. Since the energy of a single
ridge scales asYh3sRyhd1y3 [4], the total elastic energy
Etot should obeyEtot . YhL2shyRd5y3. Our simulation
results are consistent withEtot , R25y3 [15]. However,
due to boundary effects and the small values of the asp
ratio Lyh & 300, the evidence for this scaling is only
suggestive.

Our simulations of an elastic 3-sheet in 4-space a
tained aspect ratios of onlyLyh . 30. Since the ridge
properties derived in Ref. [7] are well defined only in the
limit that the ridge is much longer thanh, these simu-
lations provide only qualitative support for Case 2. Th
simulations show the anticipated concentration of strai
and curvatures into linear and planar structures. Figure
shows two curvature energy isosurfaces in the manifo
coordinates of a 3-sheet with diameterL ­ 30l0 crushed
to r0 ­ 12l0. The upper isosurface encloses 65% of th
total curvature energy and 16% of the volume. We se
distinct planar structures. The lower isosurface enclos
23% of the curvature energy and only 3% of the vo
ume. The energy is concentrated on the set of lines whe
planes intersect. The lines are the analogs of the pointli
vertices in Fig. 2. The ratioEsyEc is 15%.

We anticipate scaling behavior for the en
ergy of a crushed hypersurface analogous to th
1305
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FIG. 3. Curvature energy isosurfaces in the manifold coo
nates of an elastic 3-sheetsL ­ 30l0d in 4-space crushed t
a radiusr0 ­ 13l0. The top (bottom) surface encloses 65
(23%) of the total energy in 16% (3%) of the volume.

for a crushed 2-sheet. If the linear size of t
ridges is roughly the diameter of the confinin
sphere, we may generalize the argument for
2-sheet to inferEtot . YhLMshyRd5y3 [7]. The limita-
tions of our simulation prevented us from testing t
prediction.

This work has implications for real crumpled shee
It is the first exploration of the distribution of energy
these sheets, and it offers qualitative support for the mo
of a crumpled sheet as a network of ridges [4]. The p
sibility of crushing without strain in high dimensions ma
be relevant for studies of thermal crumpling in general
mensions [16]. More broadly, this work identifies a ne
mechanism of energy condensation into a small subs
of an available volume. This condensation happens
arbitrary spatial dimensions in one of the simplest or
nizations of matter—an elastic manifold. Increasing
the behavior of simple manifolds in general spatial
1306
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mensions is invoked to account for fundamental process
[17]. The symmetry-breaking and ridge-forming mecha
nisms explored here may prove relevant for understandi
such behavior.
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