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Stress Condensation in Crushed Elastic Manifolds
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We discuss ai/-dimensional phantom elastic manifold of linear sizerushed into a small sphere
of radiusR < L in N-dimensional space. We investigate the low elastic energy states of 2-sheets
(M = 2) and 3-sheet$M = 3) using analytic methods and lattice simulations. Whére 2M the
curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when
N =M + 1 and M > 1, both energies appear to lmndensednto a network of narrowM — 1
dimensional ridges. The ridges appear straight over distances comparable to the confining radius
[S0031-9007(97)02345-4]

PACS numbers: 68.60.Bs, 03.40.Dz, 46.30.Cn

It has long been known that a thin elastic plate will(M = N — 1) under an appropriate boundary condition
develop narrow ridges under a variety of compressiveexhibits a ridge with scaling properties analogous to those
boundary conditions. These ridges may be seen dailpf Ref. [4]. In this Letter we explore the more general
in the way a pillowcase or trouser leg deforms to wrapsituation of anM-sheet with a free boundary confined by
its contents, often exhibiting a diamond pattern familiara small sphere. Using analytic and numerical methods,
from compression studies of thin metal cylinders [1].we demonstrate two complementary behaviors.

The linear scars in a crumpled sheet of paper are also a Case 1(N = 2M): The energyE. associated with
record of this mechanism [2]. Recently, it was discoverecturvature is distributed uniformly in the manifold, and
that the structure of these ridges could be accounted fahe energyE; associated with strain is negligible by
using linear elasticity theory, valid in the limit that the comparison.

ridge lengthX is much greater than the plate thickness Case AN =M + 1>2): The strain energy and curva-

h [3,4]. Witten and Li used a scaling argument toture energy are comparable, with/E, =0.2. Both en-
predict that the ridge widthw = 1'/3X?/3 and the total ergies are condensed into a network of narfdv — 1)-
elastic energyE = Yh3(X/h)!/3, whereY is the Young’s dimensional ridges as described in Refs. [4] and [7].
modulus [3]. Lobkovskyet al. verified these scaling In the remaining cases, namel, + 1 <N <2M, we
laws using both numerical simulations and an asymptoti@anticipate that the strain energy will also be comparable
analysis of the Von Karman equations for a thin plateto the curvature energy. We have not investigated these
[4]. His simulations showed that the material strainscases in detail.

and curvatures decay rapidly to zero in the direction The differential geometry of the deformed manifold
transverse to the ridge. The length scale of this decay is conveniently discussed using a Euclidean coordinate
the ridge widthw, which goes to zero with the thickness patch on theflat manifold (x,|a € [1,M]), called the

of the plate. However, these ridges were analyzed only imanifold coordinate system [9]. Any deformation may
idealized, symmetrical deformations. Their applicabilitythen be written as a maf(x) from the manifold coordi-

to stochastically crumpled sheets has not been explicitiypates tav-dimensional Euclidian space. The strain tensor
shown. iS uap(x) = (1/2)(947 - 97 — 84p5) and the extrinsic

Ridge formation is a mode of spontaneous condensatiogyrvature tensor igf(aﬁ = 9,957 [9]. Under the usual
of energy into a small subset of the available volumeassumptions of linear elasticity theory(z < 1 and

As such, it resembles the spontaneous organization q;yuaﬁ < |K,,| < 1/h [10]), the elastic energy func-
dislocations into grain boundaries in a strained crystal ofjonal becomes

the formation of Prandtl boundary layers in laminar fluid

flow [5,6]. E = dxM{M(”a,B)z + (/\/2)(”0(01)2
To understand the necessary conditions for this con- > > > >

densation, and its consequences, it is useful to consider + kKap - Kap + cokKaa - Kgp}, (1)

the general problem of am/-dimensional elastic mani- where u, A = YAV ™M are the Lamé coefficientsy =

fold crushed by a hypersphere M-dimensional space. YiY¥~¥*2is a bending rigidity, and, is a dimensionless

In Ref. [7] we derived the elastic energy functional of constant [7]. Summation over repeated indices is implied.

the manifold by considering the small thickness limit We refer to the terms quadratic in the strains as the strain

of an N-dimensional elastic solid with an extedt(L) energyE,, and the terms quadratic in the curvatures as

in M directions and a thickness in N — M trans- the curvature energk. [11]. We consider onlyphantom

verse directions. We found that a deformed hypersurfacénot self-avoiding) manifolds in this paper, since we don’t
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expect self-avoidance to alter the qualitative conclusionswith Eq. (1) givesu, A = ¢,/I3, k = ¢,/13, andcy = 0
Our compressive boundary condition is a frictionless[12]. The effective thickness of the 2-sheet is determined
spherical shell with an initial radiug; > L. To crush by the ratioc,/c, = h*>. We take(c,,/cs)l/2 = [y/6 to
the manifold the radius is slowly decreased to a final valueninimize lattice effects in our simulations.
R < L. The discrete model of an elastic 3-shégf = 3) is

In our simulations we model a thin elastic 2-sheetqualitatively similar. The 3-sheet is a simple cubic lattice
(M = 2) using a triangular network of nodes connectedof nodes connected by springs. As shown in Fig. 1,
by springs (see Fig. 1), following the work of Seung andthere are edge springs with constant and length/,
Nelson [12] . The discretized strain energy is the sumand diagonal springs with constasf and length/2 /.

over the Hooke’s law energy of each spring The requirement that the lattice be elastically isotropic
1 for small strains iss; = 2¢,. To calculate the curvature
Es = Z 5 ces(li = 1o)%, (2)  energy we first define the normal tensor on a 3-manifold
i in N space

wherec; is a spring constant controlling the strain energy, o
I; is the length of spring, and/, is the lattice constant. (n[aj by €Diviny = €ieinGin2bi- i ©)

To discretize the curvature energy it is convenient tovherea(x), b(x), andc(x) span the tangent space of the
begin by defining the normal tensor for a two-dimensionamanifold at (x). Using the inner product Eq. (4) with
lattice in N-dimensional Euclidean space. dfx) and M = 3, we again havé),n - d,n = K.p - K.p. Each
b(x) are two independent vectors tangent to the 2-sheéthit cube is conceived as five adjacent tetrahedra with

atx, then we may define a normal tensor via the springs as edges. Each cube then has four “corner”
_ 3 tetrahedra surrounding one “middle” tetrahedron. The
(L@, DDisviy-y = €irinin- b » (3)  sum in Eq. (5) is taken over all pairs of tetrahedra that

whereq; andb; are the Cartesian componentsdfand share a common triangular face (see Fig. 1). Lastly,
b, and € is the antisymmetric Levi-Civita tensor. In 3- we relate the bending constant. for a pair of corner
space this reduces to the usual normal venter & X p.  tetrahedra to the bending constapy, for a corner-middle
Defining the inner product pair. Isotropy requires., = 2c..

| The initial condition in our simulations is a hexagonal
(i iy (Miriy,  (4)  2-sheetlM = 2) or a roughly spherical 3-she@¥ = 3)
(N — M) with a small random displacement added to the positions
with M = 2, the unit normal tensor may be expressed asf the nodes [13]. We model a hyperspherical container of
i = n/y/n - n. By substitutingz = 9,7 andb = 82j, it radiusro with the potentialVphere = >.; (ri/70)'?, where
is straightforward to prove that,n - 9,n = Kup - Kop. r; is the distance from the origin to node We use the
The curvature energy can therefore be represented usimms radius of the manifold as our measure of the confining

ng - Np =

the square of the discrete derivative radiusR: R2 =3, r?/(3; 1). To crush the manifold,
1 the value ofry is repeatedly decreased and the energy of
E. = Z Ecblﬁi - ﬁjlz, (5) the manifold minimized at each step using a conjugate
(ij) gradient routine [14]. Using this method, a hexagonal

wherec, is a bending constanfy; is the unit normal of 2-sheet with long diametel. = 160/, may be crushed
trianglei (see Fig. 1), and the sum is taken over each paito a radiusry = 20l, in three days of CPU time on an
of triangles which share a common edge. ComparisofBM RISC 6000. An approximately spherical ball with
diameterL = 30/, may be crushed tay, = 6.0[, in about
five days.

The simplest instance of Case 1 is a thin elastic rod
crushed within a circle in 2-space. As the radius of
the circle is decreased, the rod buckles and develops a
curvature ofO(1/R). Because the rod is free to reptate
parallel to its length, its strain energy remains identi-
cally zero. Analogously, a thin plate can curl without
strain into an arbitrarily small sphere in 4-space. One
possible embedding which demonstrates thig igx) =
plcodxi/p),sin(x1/p),codx,/p),sin(x2/p)], wherep =
R/~/2. Note thatl7*|*> = R? everywhere. One can verify
by substitution that the strain tensey; is identically zero,

FIG. 1. A portion of the triangular lattice and the simple and the curvatures safisfiKy (x)| = [Kx(x)| = v2/R,

cubic lattice used to discretize a 2-shélt = 2) and a 3-sheet Ki2(x) =0. Thus E. =«(L/R)*. It is interesting
(M = 3), respectively. to note that the rotational symmetry of the manifold
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is globally broken by the embedding*. Calcu-
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lation of the normal correlation function [Egs. (3)
and (4) are valid in the continuum limit] gives

Ax) - A(x + x') = codxi/p) codxs/p).

The key feature of the embedding* is the sepa- E.
ration of the manifold coordinates into independent,
two-dimensional subspaces of 4-space. Analogously -000
whenevelN = 2M we may choose the embedding

F* = plcodxi/p),sin(x;/p),codxs/p),

sin(xy/p),...,codxy/p),sin(xy/p),0,0,...], (7)
wherep = R/+/M. This embedding is an existence proof
that the manifold need not strain during the compressior
It is also theglobal minimum of the elastic energy at
fixed R (neglecting corrections withiR of the manifold
boundary). As was true for the sheet, the embeddiny
7*(x) breaks the rotational symmetry of the manifold FIG. 2. Curvature energy distribution in a hexagonal 2-sheet
for all M > 1. With this broken symmetry comes a de- With moduli ¢, = 1.0 and ¢, = 0.025, and long diameter

generacy. Each rotation of the manifold coordinate sysk ~ 160/ crushed to a radiug = 27/,. Darker regions have

temx — y gives a distinct minimum-energy configuration tr;:ghlg\r,v(z?erirggt.densny. The crumpled configuration is shown in
F*(y).

Our simulations of a 2-sheet in 4-space and a 3-sheetf narrow ridges which connect the vertices. The strain
in 6-space behave as anticipated for Case 1. In botknergy density is similarly localized. The ratiy/E. =
instances we observe the minimum energy embedding0%. This is consistent with the deviations from the
discussed above, with a curvature energy density uniforrasymptotic valuek,/E. = 1/5 reported by Lobkovsky
to 10% and negligible strain enerdy, < 107 3E.. The for short ridgesX ~ 10k [4].
only significant deviation from the ideal embedding is Figure 2 suggests that the ridges forming the network
that the manifold flattens out withiR of the manifold are of comparable length. This length is similar to the
edge. As a result, the curvature energy density decays tiameter of the confining sphere shown in the lower right
zero near the edge and there is a systematic downwabrner. If we make the scaling hypothesis that the mean
correction to the total energy of the for#, ~ [L — ridge lengthX = R, then the number of ridges in the
(consiRT™ /R?. Depending upon the initial condition, we 2-sheet scales ad./R)>. Since the energy of a single
also observe several metastable states with a nonuniforndge scales ag#3(R/h)'/? [4], the total elastic energy
curvature energy density and a higher total energy. A%, should obeyE., = YhL2(h/R)*3. Our simulation
compression proceeds, these metastable states make theults are consistent with,,, ~ R /3 [15]. However,
transition to the minimum energy embedding. due to boundary effects and the small values of the aspect

Our understanding of Case 2 deformations isratio L/h < 300, the evidence for this scaling is only
incomplete. It is based on previous analytical andsuggestive.
numerical work for a variety of simple deformations, Our simulations of an elastic 3-sheet in 4-space at-
including some on general hypersurfaces [4,7]. Theseined aspect ratios of onl/h = 30. Since the ridge
cases all show the condensation of the elastic energy infaoroperties derived in Ref. [7] are well defined only in the
a fractionO(h/X)'/? of the manifold volume, suggesting limit that the ridge is much longer thah, these simu-
that a generic compression yields similar condensatiorlations provide only qualitative support for Case 2. The
The simple cases also exhibit a strict proportionality besimulations show the anticipated concentration of strains
tween strain and curvature energy: {ily)—o E; = E./5. and curvatures into linear and planar structures. Figure 3

We simulated Case 2 deformations using a 2-sheet in 3hows two curvature energy isosurfaces in the manifold
space and a 3-sheet in 4-space. For the 2-sheet we see tloordinates of a 3-sheet with diametfer= 30/, crushed
anticipated spontaneous formation of a network of lineato ryo = 12/;,. The upper isosurface encloses 65% of the
ridges. Figure 2 shows the curvature energy density itotal curvature energy and 16% of the volume. We see
the manifold coordinates of a hexagonal 2-sheet with longlistinct planar structures. The lower isosurface encloses
diameter. = 160l crushed to a radiuB = 27ly. About 23% of the curvature energy and only 3% of the vol-
40% of the total curvature energy occupies just 2% of thaime. The energy is concentrated on the set of lines where
total area. This is due to the formation of point verticesplanes intersect. The lines are the analogs of the pointlike
in the 2-sheet. These vertices are the tips of conelikeertices in Fig. 2. The rati&,/E. is 15%.
deformations. The next 40% occupies 20% of the area. We anticipate scaling behavior for the en-
We see that this energy is condensed into a networkrgy of a crushed hypersurface analogous to that
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mensions is invoked to account for fundamental processes
[17]. The symmetry-breaking and ridge-forming mecha-
nisms explored here may prove relevant for understanding
such behavior.

The authors thank Robert Geroch, Alex Lobkovsky,
and Jeff Harvey for helpful discussions. This work was
supported in part by the NSF through Grants No. DMR-
9400379 and No. DMR-9528957.

*Electronic address: kramer@rainbow.uchicago.edu
'Present address: Department of Chemistry, Brandels
University, Waltham, MA 02254.
[1] T. von Karman,Collected WorkgButterworths Scientific,
London, 1956), Vol. IV, p. 7.
[2] F. Plouraboue and S. Roux, Physica (Amsterd@2jA,
173 (1996).
[3] T. Witten and H. Li, Europhys. Let23, 51 (1993).
[4] A. Lobkovsky et al., Science 270, 1482 (1995);
A. Lobkovsky, Phys. Rev. EG53, 3750 (1996);
A. Lobkovsky and T. Witten, Phys. Rev. E (to be
published).
[5] D. Hull, Introduction to Dislocations(Pergamon Press,
New York, 1975).
[6] A. Walz, Boundary Layers of Flow and Temperature
(MIT Press, Cambridge, MA, 1969).
[7] E. Kramer, J. Math. Phys38, 830 (1997).
[8] The proof of this conjecture foN =M + 1 and N =
M + 2 will be presented in a future paper.
[9] L. Eisenhart,Differential Geometry(Ginn and Company,
New York, 1909); R. Millman and G. ParkeElements

E:act;e' 53'0f gﬁ“ﬁ;‘;ﬁ; esnglgeygso_sgg?():eii i2 g;)eacrgaggjoslﬂe%o?(r)di- of Differential GeometryPrentice-Hall, Englewood Cliffs,
- =30, -
a radiusrg = 13l,. The top (bottom) surface encloses 65% NJ, 1977). N .
(23%) of the total energy in 16% (3%) of the volume. [10] L. Landau and E. LifshitzTheory of ElasticityPergamon
Press, New York, 1959).

. . [11] The curvature energy can be cast in a form familiar from
for a crushed 2-sheet. If the linear size of the the study of thin membranes, = (1/2) [ dx"{ic, H> +

ridges is roughly the diameter of the confining k,G}, where H = (1/2)K,, is the mean curvature and

sphere, we may generalize the argument for the ., _ |Kual? — |Kapl? is the Ricci scalar [9]. The bending

2-sheet to inferEw = YRLM(h/R)*3 [7]. The limita- rigidities arex,, = 8x(1 + ¢o), k, = —2k. For a sheet in

tions of our simulation prevented us from testing this  3-space, the Ricci scalar is twice the Gaussian curvature.

prediction. [12] H. Seung and D. Nelson, Phys. Rev. L&, 791 (1986).
This work has implications for real crumpled sheets.[13] The final configuration of a crumpled hypersurfdee =

It is the first exploration of the distribution of energy in M + 1) depends strongly on the random initial condition,

these sheets, and it offers qualitative support for the model  but the qualitative appearance of the ridge network persists
of a crumpled sheet as a network of ridges [4]. The pos- _ and the final energy varies by only 10%. o
sibility of crushing without strain in high dimensions may [14] W. Presset al., Numerical RecipeCambridge University

be relevant for studies of thermal crumpling in general di- . Fress, New York, 1989).

. . . o [15] The simulation results are also consistent wih, ~
mensions [16]. More broadly, this work identifies a new R~2, the dependence expected for Case 1.

mechanism of energy conder_lsation into a_ small SUbSpa,(fE] Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett.
of an available volume. This condensation happens in ~ 57 791 (1986);Statistical Mechanics of Membranes and

arbitrary spatial dimensions in one of the simplest orga-  surfacesedited by D. Nelson, T. Piran, and S. Weinberg
nizations of matter—an elastic manifold. Increasingly, (World Scientific, Singapore, 1989).

the behavior of simple manifolds in general spatial di-[17] See, e.g., E. Witten, Nucl. PhyB443, 85 (1995).

1306



