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Simulation of Structure and Dynamics near the Isotropic-Nematic Transition
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(Received 24 June 1996)

We present a computer simulation study of orientational correlations in a molecular liquid approac
ing the isotropic-nematic transition, including the first calculation of the direct correlation functio
cs1, 2d in this regime. While the second-rank orientational correlation length diverges, the associat
component ofcs1, 2d remains short ranged, and its spatial integral approaches the mechanical instabi
limit for the isotropic phase as predicted by density-functional theory. Orientational correlation lengt
and times are quite well described by Landau–de Gennes theory. [S0031-9007(97)02459-9]
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The nematic liquid crystal phase is characterized b
long-ranged correlations of molecular orientation, whil
the positional degrees of freedom remain disordered. T
appropriate orientational order parameter is a second-ra
quantity [1]; it is conveniently expressed as

S  kP2su ? ndl , (1)

whereP2 is the second Legendre polynomial,u is a typical
molecular orientation vector,n is the bulk preferred orien-
tation or director, andk· · ·l represents an ensemble averag
The transition between the isotropic liquid and the nema
phase is known, experimentally, to be weakly first orde
This means that, for example, if one approaches the tra
sition by lowering the temperatureT from the isotropic
side, the second-rank orientational correlation lengthj2

becomes large, and it is possible to extrapolatej
21
2 ! 0

at a divergence temperatureTp. This limit, however, is
preempted by the occurrence of the transition at a sligh
higher temperatureTNI, wheresTNI 2 T pdyTNI ø 1023.
Both the statics and the dynamics of orientational correl
tions are of interest in the vicinity of this transition.

Computer simulations to fully characterize the
isotropic-nematic (I-N) transition present great cha
lenges. Studies of simplified lattice spin models [2,3
using finite-size scaling approaches [4–6] required syste
sizes of the order ofN  303 spins, and run-lengths of
order 106 Monte Carlo moves per spin, to convincingly
demonstrate weak first-order character. However, su
lattice models relate to real liquid crystals only in th
most coarse-grained sense; no connection to molecu
properties is possible.

Molecular simulations are more expensive than tho
using spins, and a study analogous to the ones descri
above is out of reach at present. Nonetheless, there
great interest in locating the I-N transition, and in study
ing pretransitional phenomena, using molecular mode
An early study on systems of a few hundred molecule
[7] presented some evidence of the slowing down of co
lective reorientation, and the growth of static orientation
correlations, for the hard ellipsoid fluid. However, thes
results were limited to ranges of a few molecular d
ameters. One aim of the present Letter is to study t
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growth of a rather longer ranged structure in the approp
ate components of the pair correlation functionhs1, 2d on
approaching the transition. It is of particular interest t
show whether or not the corresponding components of t
direct correlation functioncs1, 2d (defined below) remain
short-ranged in this limit. A second aim of this work is
to examine the way in which correlation times for col
lective reorientation scale with the range of the releva
correlations, on the approach to the transition; in oth
words, how orientational domain size affects collectiv
reorientation.

We describe pair structure in the isotropic phas
through the function

hs1, 2d ; gs1, 2d 2 1  gsr1, r2, u1, u2d 2 1 ;

gs1, 2d is the usual pair distribution function [8],r1, r2 are
the center-of-mass coordinates of particles 1 and 2, a
u1, u2 are unit vectors defining the orientations (we focu
throughout on the case of axially symmetric molecules).

The direct correlation functioncs1, 2d is defined
through the Ornstein-Zernike equation [9]

hs1, 2d  cs1, 2d 1
r

4p

Z
dr3du3 hs1, 3dcs3, 2d , (2)

wherer is the number density. In applying this equation
we restrict ourselves to the isotropic, homogeneous flu
phase. Equation (2) expresses the transmission of
rect effects between particles via neighboring molecule
cs1, 2d is hopefully a shorter-ranged function thanhs1, 2d.
Although experiments and simulations do not provide
direct route to this function,cs1, 2d is of equal importance
to hs1, 2d in the statistical mechanics of liquids, playing a
central role in density functional theories [10,11]. Amon
other applications, it is possible to express the condition
mechanical stability of the isotropic phase relative to th
nematic liquid crystal in terms of expansion coefficient
of cs1, 2d [12–14]; this gives an estimate ofTp. This is
part of the motivation for the work described here.

It is convenient to expandhs1, 2d in a complete set
of angular functions which depend on the separatio
© 1997 The American Physical Society 1291
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r  jr1 2 r2j [8,9,15–17]:

hs1, 2d 
X
mnl

hmnlsrdFmnlsu1, u2, r̂d

 4p
X

mnx

hmnxsrdY m
x su1dYn

2xsu2d , (3)

with a similar expansion forcs1, 2d. The coefficients
hmnlsrd are based on a laboratory frame of referenc
and theFmnlsu1, u2, r̂d are rotational invariants [18]; the
alternative coefficientshmnx srd are calculated in an inter-
molecular frame of reference, and theYm

x sud are spheri-
cal harmonics. r̂ is the unit vector alongr1 2 r2. For
molecules having a center of inversion,m, n, l are all
even and there ism $ n symmetry. The expansion co-
efficients are easily calculated in computer simulatio
[19,20], and some of them may be determined expe
mentally. Then Eq. (2) takes a matrix form involving th
coefficientshmnx and cmnx , which is suitable for inver-
sion in real space or reciprocal space. This means t
from simulation-determined coefficientshmnx srd it is pos-
sible to calculate thecmnxsrd subject only to truncating
the system of equations at an upper limitn, m # nmax;
the functionscmnlsrd are obtained from these by a simpl
transformation. We have applied the method successfu
with nmax  4, 6, 8, as described elsewhere [21].

Defining suitably normalized integrals

hsmd ; rs2m 1 1d21y24p
Z `

0
dr r2hmm0srd , (4a)

csmd ; rs2m 1 1d21y24p
Z `

0
dr r2cmm0srd , (4b)

the instability criterion for the isotropic phase [12–14
may be expressed ascsmd ! 1, m  2, 4, 6 . . . . This turns
out to be related to anexactfactorization of the Ornstein-
Zernike equation at zero wave vector [8] which ma
be expressedhsmd  csmdys1 2 csmdd. Thus, csmd ! 1
coincides with the divergence of the integral in Eq. (4a
and hence divergence of the range ofhmm0srd, always
assuming thatcsmd remains well behaved.

In this study we simulate molecules interacting throug
a variant of the Gay-Berne potential [22] with paramete
proposed by Berardiet al. [23]. This is an anisotropic
Lennard-Jones style of pair potential, with the depths a
locations of the potential minima dependent on relativ
molecular orientations. The molecules are roughly e
lipsoidal, with diameters0 (which we take to define the
unit of length, of the order of 1 nm) and length-to-bread
ratio k  3. The attractive interactions are scaled by
strength parameteŕ0 (which defines a unit of energy, and
by implication a unit of temperaturé0ykB, wherekB is
Boltzmann’s constant). An anisotropy parameterk0  5
determines the variation of potential well depth wit
orientation, the maximum attraction being for side-by-sid
arrangements of molecules. We follow Berardiet al. [23]
in choosing the version of the potential with exponen
1292
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m  1, n  3. For the reduced densitỹr  Ns
3
0y

V  0.3, they find T̃NI  kBTNIy´0 ø 3.57, for system
sizesN  512 andN  1000. Henceforth, we drop the
tilde denoting reduced variables. We study the same d
sity, and concentrate our effort in the temperature ran
3.45 # T # 4.00, using a larger system size,N  8000,
to enable us to study long-range correlations. Perio
boundary conditions are used; at this density the side
the cubic box is nearly30s0. We employ a molecular
dynamics program which parallelizes efficiently on th
Cray T3D supercomputer using a domain-decomposit
approach [24]. Typical runs on 64 nodes take 0.25 s p
timestep. We set the molecular massM and moment
of inertia to unity; this in turn defines the reduced un
of time t0 

p
Ms0

2ye0 (of order 10 ps for reasonable
molecular parameters). Each timestep represents0.004t0,
and runs of up to 450 000 steps were judged necess
to ensure orientational equilibrium very close to the I-
transition, as monitored through the variation of the ord
parameterS.

A complete account of the simulation results will b
the subject of a future publication. Here we summari
our observations. From lengthy heating and cooling ru
we established thatT  3.50 lies in the isotropic phase
(an ordered system at this temperature spontaneou
disorders) and thatT  3.45 lies in the nematic phase
(spontaneous ordering occurs at this temperature). T
we can definitely bracketTNI between these limits, a
significantly lower estimate than that of Ref. [23], bu
not inconsistent, bearing in mind that the transitio
occurs when the correlation length approaches the b
dimension, which is larger here.

The laboratory-based, second-rank componenth220srd
is shown in Fig. 1 at various temperatures. This measu

FIG. 1. Theh220srd orientational correlation function at tem-
peraturesT  3.45, 3.50, 3.55, 3.60, 3.80, and 4.00. Inse
the h000srd center-center correlation function at temperatur
T  3.45, 3.50, and 4.00. r is scaled by the molecular di-
ameters0.
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correlations of theP2su1 ? u2d type [see Eq. (1)] as a
function of distance. The range of this function increas
dramatically, very close to the transition, and becomes
finite in the nematic phase. On the isotropic side, th
long-range decay fits very well an Ornstein-Zernike for
h220srd ~ exps2ryj2dyr and fitting to this enables the
correlation lengthj2 to be extracted; this is reported in
Table I. At the lowest isotropic temperature studied,j2

is comparable with half of the simulation box length
We find that the data fitj22

2 ~ sT 2 Tpd quite well,
as expected from Landau–de Gennes theory [1], w
Tp  3.47 6 0.02. The fourth-rank functionh440srd (not
shown) exhibits greater short-range structure, and the a
plitude of the long-range decay is smaller. In the vicin
ity of the transition, there are only small changes
the orientation-independent center-center pair correlat
function h000srd, shown in the inset of Fig. 1, and thes
changes result from a slight increase in local neighb
alignment as the temperature is lowered.

The components ofcs1, 2d were determined as de-
scribed in Ref. [21]; convergence of the procedure w
checked usingnmax  4, . . . , 8. The second-rank com-
ponent c220srd is shown in Fig. 2 for temperatures on
the isotropic side of the transition. Two striking point
are apparent. Firstly, the function remains very sho
ranged throughout, decaying to essentially zero with
the molecular length of3s0. Secondly, no substantial
change in the form of the function occurs as the tran
tion is approached; the negative region in the inner co
of the molecule,r , s0, becomes a little stronger as the
temperature is lowered, as does the peak atr ø 1.2s0.
These changes alone are associated with the dramatic
crease in range ofh220srd. The zero-k transforms,csmd,
should reach the well-defined mechanical stability limi
csmd ! 1 at the divergence temperature;cs2d, cs4d are il-
lustrated in the inset of Fig. 2, as well as being report
in the table. Note that whilecs2d varies almost linearly
with temperature close to the transition, thecs4d plot is
more strongly curved, andcs4d is not particularly close to
unity at T  3.50. Although we cannot hope to extrapo
late these functions to the divergence temperatureTp with
sufficient accuracy to distinguish it fromTNI, we can see

TABLE I. Static correlations in the vicinity of the isotropic-
nematic transition. For each temperatureT we report values of
j2, the second-rank correlation length in units of the molecul
diameters0, and the integrals defined in Eqs. (4a) and (4b) f
rank-2 and rank-4 correlation functions.

T j2ys0 hs2d hs4d cs2d cs4d

3.50 16.1 27.9 1.75 0.965 0.637
3.55 9.43 18.5 1.21 0.949 0.548
3.60 6.94 13.9 1.03 0.933 0.507
3.65 6.85 12.7 0.924 0.927 0.480
3.80 4.48 7.74 0.669 0.886 0.401
4.00 3.65 5.76 0.572 0.852 0.364
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FIG. 2. Thec220srd orientational direct correlation function at
temperaturesT  3.50, 3.60, 3.80, and 4.00.r is scaled by the
molecular diameters0. The inset shows the approach of th
quantities cs2d and cs4d toward the stability limit (unity) as
the temperature is varied; the lines are to guide the eye.

that they do behave in a manner consistent with the occ
rence of the transition betweenT  3.45 and T  3.50.
More detailed study would require the use of simulatio
boxes of large dimension compared with the correlati
lengthj2 at TNI.

It is of great interest to examine the collective orien
tational dynamics in the vicinity of the transition, an
we do this by calculating the time correlation functio
of the dynamical variableQabsk, td 

P
i s 3

2 uiauib 2
1
2 dabd exphik ? rij, wherea, b  x, y, z and dab is the
Kronecker delta. In other words, we calculate, for a give
wave numberk  2pyl,

Csk, td 
X
a

X
b

kQabs2k, 0dQabsk, tdl

~
X
ij

P2sssuis0d ? ujstdddd exphik ? fris0d 2 rjstdgj .

(5)
We find that this function decays exponentially, fork not
too large:Csk, td  Askd exph2tytskdj. Moreover, both
the amplitudeAskd and the decay timetskd are roughly
proportional tok22 (see Fig. 3) for all but the lowest
few values ofk, and in fact the proportionality constant
are quite insensitive to temperature. Notwithstandin
this, values oftskd as k ! 0 become very large, and
significant differences are seen here as the transit
is approached (see Fig. 3). Atk  0 we find t21 ~

j
22
2 ~ sT 2 Tpd, again in agreement with the Landau

de Gennes theory [1]. These results indicate that
but the longest wavelength dynamical properties rema
unaffected by the approach of the I-N transition.
1293
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FIG. 3. The inverse orientational correlation timetskd21 as
a function of k2 at T  3.50; results for T  3.55, 3.60 are
almost indistinguishable when plotted in this way. Inse
Values of tskd vs k2 at the lowest fewk values studied.
Here the effect of temperature can be seen:T  3.50 (circles),
T  3.55 (squares), andT  3.60 (diamonds); the lines are to
guide the eye.t andk  2pyl are expressed in dimensionles
form using the simulation units of time (t0) and distance (s0).

This study has shown that the direct correlation fun
tion cs1, 2d can be calculated from simulation data in th
vicinity of the isotropic-nematic transition, that it is no
strongly affected by the approach to this transition, a
that it remains short-ranged. This suggests that succes
theories ofcs1, 2d in the isotropic phase may be equall
successful in the nematic phase, where they will be use
in predicting, for example, liquid crystal elastic constant
The study has also shown that molecular-scale simulati
can systematically investigate the wavelength-depend
timescales of orientational fluctuations close to the tran
tion, reaching the length scale for which measurable p
transitional slowing-down effects can be observed. O
results support the view that simulation box dimensio
determine the transition temperature by setting an up
limit on the wavelength of orientational fluctuations, bu
are otherwise not significant.
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