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Weakly Coupled Antiferromagnetic Quantum Spin Chains
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Quasi-one-dimensional quantum antiferromagnets formed by ad-dimensional hypercubic lattice of
weakly coupled spin-12 antiferromagnetic Heisenberg chains are studied by combining exact re
in one-dimension and renormalization group analyses of the interchain correlations. It is show
d-dimensional magnetic long-range order develops at zero temperature for infinitesimal antiferro
netic or ferromagnetic interchain couplings. In the presence of weak bond alternations, the
disorder transition occurs at a finite interchain coupling. Relevances to the lightly doped qua
antiferromagnets and multilayer quantum Hall systems are discussed. [S0031-9007(96)01994-1
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Low-dimensional quantum antiferromagnets (AFM
exhibit many remarkable properties. In strictly one d
mension, transitions into ordered states with brok
symmetry is absent. For the nearest-neighbor Heis
berg spin-S chains, the low-lying excitations are gaple
spin-12 quanta (spinons) for half-odd-integerS, whereas a
finite energy gap exists for integerS [1]. This profound
difference is captured in the effective O(3) nonlinears

model sNLsMd description by the value of the topolog
cal anglesu ­ 2pSd in thes1 1 1d-dimensional action [1].

In two dimensions, spatially isotropic Heisenberg AF
on an unfrustrated lattice is proven rigorously to Né
order in the ground state forS $ 1 [2]. While no such
proof exists, it is widely believed that it is the case f
S ­

1
2 as well. Indeed ford $ 2 the long-wavelength,

low-energy physics governing the interactions between
spin waves in the ordered phase can be described
sd 1 1d-dimensional NLsM [3].

In this paper, we study quasi-one-dimensional quan
AFM, and, in particular, the disorder-order transition a
sociated with the dimensional crossover. Specifically,
considerS ­

1
2 antiferromagnetic (AF) spin chains wit

Heisenberg symmetry, arranged in ad-dimensional hyper-
cubic lattice, and weakly coupled by AF or ferromagne
(FM) interchain exchange couplingsJ'. Finite intrachain
bond alternations are included to study the competit
between magnetic order and dimerization. Our strat
is as follows. First, interchain coupling is considered
a mean-field level [4,5] in order to treat the importa
correlations that first develop along the strongly coup
chain direction. The resulting effective one-dimensio
theory is transformed into the massive Thirring mod
whose exact Bethe ansatz solution [6] is used to ob
the static and dynamical quantities. Then, we go bey
the mean-field theory, and show that the order param
fluctuations can be described by an anisotropicsd 1 1d-
dimensional NLsM. Renormalization group (RG) analy
ses are carried out to show that in the ground s
d-dimensional magnetic long-range order occurs for
finitesimal interchain couplingjJ'j . 0. In the presence
of bond alternation, long-range order develops whenJ'
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exceeds a finite critical value. Aside from obvious appl
cations to real insulating compounds behaving as weak
coupled AF spin-12 chains at low temperatures, we will
discuss the implications of our results on the magnet
properties of underdoped insulating cuprates and point o
the relevance to multilayer quantum Hall structures.

The starting Hamiltonian of the system is given by

H ­ J
X
i,r

f1 1 ds21digSi,r ? Si11,r

1 J'

X
i,r,m

Si,r ? Si,r1m , (1)

whereSi,r is the spin-12 operator at lattice sitesi, rd with
i and r labeling the sites in the chainszd and transverse
to the chainsrmd directions;m is summed over thez' ­
2sd 2 1d nearest neighbors in the transverse direction
The intrachain exchange coupling is AF with alternatin
strengthsJs1 6 dd . 0, whereas the interchain coupling
can be either AFsJ' . 0d or FM sJ' , 0d. We are
interested in the case whered, jJ'jyJ ø 1.

The mean-field decoupling of the interchain term i
Eq. (1) with respect to AF order in thez direction in spin
space leads to an effective Hamiltonian,

H1D ­ J
X

i

f1 1 ds21digSi ? Si11 2 h
X

i

s21diSz
i ,

(2)
plus a constant termH0 ­ z'NsjJ'jm2

0y2. Here Ns is
the number of sites along the chain andm0 ­ s21dikSz

i l
is the staggered magnetization. Equation (2) describ
a 1D AFM in a self-consistent staggered magnetic fie
h ­ z'jJ'jm0.

Next, we perform a standard Jordan-Wigner transform
tion Sz

i ­ c
y
i ci 2

1
2 , S1

i ­ c
y
i expsip

Pi21
j­1 c

y
j cjd. In

terms of the usual leftsLd and rightsRd moving fermionic
fields cL and cR, the resulting theory in the continuum
limit is given by

H 0
1D ­

Z
dzf2iyscy

L ≠zcL 2 c
y
R≠zcRd

1 2gc
y
L c

y
RcRcL 2 hscy

L cR 1 c
y
RcLd

1 idJscy
L cR 2 c

y
RcLdg . (3)
© 1996 The American Physical Society
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It is well known that the values ofy andg obtained in the
naive continuum limit are not correct in the Heisenbe
limit. However, a comparison to the exact excitati
spectrum of the Hamiltonian in Eq. (2) ath ­ d ­ 0
[7] leads toy ­ pJay2, wherea is the lattice constan
set to unity hereafter. The terms proportional toh and
dJ in Eq. (3) are easily seen in their bosonized form
to be relevant operators of dimensionx ­

1
2 [8]. These

competing (AF order vs dimerization) interactions w
induce a mass gapsDd with scaling exponent1ys2 2 xd.
Thus,Dyy ~ shyy, dd2y3.

Under a global chiral rotation,cL ! expsiuy2dcL,
cR ! exps2iuy2dcR with u ­ tan21 dJyD0 and D

2
0 ­

h2 1 d2J2, terms proportional toh anddJ transform into
2D0scy

L cR 1 c
y
RcLd. The resulting Hamiltonian is then

identical to the massive Thirring model with bare ma
D0 and interactiong, which was solved by Bethe ansa
[6]. Following Ref. [4], we obtaing ­ 2y ­ pJ and the
ground state energy gain per site due tom0,

DE ­ z'jJ'jm2
0y2 2 Js7y10p1y3d sD0yJd4y3. (4)

The self-consistent value for the staggered magnetiza
is obtained by minimizingDE with respect tom0. We
find a critical value for the interchain coupling,

jJc
'j ­ s15p1y3y14z'dJd2y3, (5)

which separates an AF phase forjJ'j . jJc
'j where the

renormalized mass gapD ­ s14
p

3y5pdz'jJ'j and

m0 ­

µ
z'

p

∂1y2µ14
15

∂3y2 Ç
J'

J

Ç1y2 µ
12

Ç
J'c

J'

Ç
3
∂1y2

, (6)

from a dimerized phase forjJ'j , jJc
'j where Ddis ­

s3
p

3yp2y3dJd2y3 andm0 ­ 0.
The mean-field theory predicts a Néel temperatureTN ~

z'jJ'j in the ordered phase. While this can be corr
when the coordination numberz' is large, it obviously
contradicts the Mermin-Wagner theorem, i.e., AF lon
range order should not be possible at any finite tempera
in d ­ 2. It is thus necessary to go beyond the mean-fi
theory and include the order parameter fluctuations.
this end, we turn to the dynamical spin correlations in
ordered phase. Note that the ordering wave vectorQ ­
sQ', pd whereQ' ­ sp , p, . . .d for J' . 0 and Q' ­
s0, 0, . . .d for J' , 0. Since the translation symmetry
broken, the uniform and the staggered components of
spins are coupled by umklapp scattering with moment
transferq ! q 1 Q. The transverse susceptibility in th
random phase approximation is therefore given by a2 3 2
matrix relation,

xsq, vd ­ x0sqz , vd f1 2 jJ'jfsq'dx0sqz , vdg21, (7)

whereq ­ sq', qzd, andfsq'd ­
P

m expsiq' ? md. Us-
ing the equations of motion obtained forH1D, and the
Lorentz invariance ofH 0

1D valid at low energiesv ø J, it
is straightforward to show that the components of the
susceptibilityx0

uu, x0
us, andx0

su are entirely determined by
g
n

s

l

s
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-
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D

x0
sssqz , vd in the long wavelength limit [4]. The latter ha

the following form:

x0
sssqz , vd ­

w
D2 1 y2q2

z 2 v2 1 M sv2 2 y2q2
z d .

(8)

Here the pole in the first term arises from the lowe
energy triplet excitation which corresponds to an add
fermion in the Thirring model. The functionM sxd
contains the contributions from the continuum involvin
particle-hole excitations in the Thirring model. The latt
has a threshold singularity at and a vanishing spec
weight below v ­ 2D. Thus xsq, vd in Eq. (7) is
dominated by the collective excitations forv , 2D. We
will neglect the contributions fromM sxd in Eq. (8),
which is equivalent to the single mode approximatio
(SMA). The constantw in Eq. (8) is then fixed at
w ­ D2yz'jJ'j by the conditionx0

sss0, 0d ­ 1yz'jJ'j.
Solving for xsq, vd in Eq. (7) using the SMA, we

obtain the staggered transverse susceptibility

xssq, vd ­
D2

z'jJ'j

1 2 h2yD2

v2
q 2 v2 , (9)

wherevq is the gapless spin-wave dispersion (Goldsto
modes),v2

q ­ D2f1 2 fsq'dyz'g 1 y2q2
z in terms of

the weakly modified mass gapD ­ D
p

1 2 h2yD2, and
velocity y ­ y

p
1 2 h2yD2 due to the interchain corre-

lations [9]. The uniform static susceptibility

x' ­
h2yD2

z'jJ'j

1
1 2 h2yD2 . (10)

In the limit jJ'j ! 0 and d ­ 0, x' . 1.07s1yp2Jd.
The close agreement of the latter with the exact 1
results1yp2Jd suggests that the SMA is a rather accura
description. Whend fi 0, x' and thus the spin stiffness
vanishes linearly asjJ'j ! jJc

'j.
The interactions between the AF spin waves can

described by the O(3) quantum NLsM [3]. From the
susceptibilities derived above, thesd 1 1d-dimensional
Euclidean action is given by (settinḡh ­ 1)

S0 ­
1

2g

X
kr,r0l

Z
dz

Z bLy

0
dt

3

∑
s≠znrd2 1 s≠tnrd2 1

R
L2

jnr 2 nr0 j2
∏

. (11)

Here nrsz, td is a three-component unit-modulus vect
field. It represents the local orientation of the AF ord
parameter. The discrete sum runs over the neighbor
lattice sites in the transverse directions. As usual,b ­
1ykBT , and L is a spatial cutoff at which the coupling
constant g ­ yyr0

s and r0
s ­ x'y2. The anisotropy

is contained inR ­ D2yz'y2 . 0.97z'sjJ'jyJd2 ø 1.
In terms of the unit vector field, the transverse sp
susceptibilityxssq, vd ­ m2

0kn1sq, vdn2sq, vdl and the
staggered magnetizationm ­ m0knzljT­0.
127
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The RG analysis ofS0 is subtle. Let us consider th
case whend ­ 0, i.e., for vanishing bond alternation
Notice that we did not keep track of the topological ter
explicitly since atu ­ p it does not renormalize unde
the RG. The effect of the latter is, however, cruc
for the renormalization of the coupling constantg in
the s1 1 1d-dimensional sector in the limitR ! 0 [10].
In the presence of the topological term,g flows to a
finite fixed point valuegs`d and the correlation length is
infinite, whereasg ! ` and the system develops a finit
correlation lengthjsyL ø e2pyg in its absence. Thus
during the RG transformation of Eq. (11), if the anisotro
is large enough such that

p
RyL ø 1yjs , further renor-

malization using thesd 1 1d-dimensional RG canno
eliminate this finite correlation length; the correct trea
ment of theS ­

1
2 system must include the effect of th

topological term. On the other hand, in the opposite lim
where1 ¿

p
RyL ¿ 1yjs, the long-wavelength physic

is essentially controlled by thesd 1 1d-dimensional RG
and the topological term would not make a qualitati
difference in the ordered phase. Below, we consider
two situations separately.

For
p

R ø e22pyg, we follow the analysis of dimen-
sional crossover [10,11]. SinceR is exponentially small,
the RG in thes1 1 1d-dimensional sector can be pe
formed independently by integrating out high-momentu
modes until the effective couplings become comparable
all directions at a larger cutoffL', i.e., whenRyL2g ø
1yL

2
'gsL'd. The sd 1 1d-dimensional RG is switched

on thereafter. For largeL', the couplinggsL'd flows
towards its limiting fixed point value which is of orde
one. Thus, the crossover length scale isL' ø Ly

p
R.

Since the scaling dimension of then field is zero in the
ordered phase, there is no need to rescale the latter in
interchain term in Eq. (11). Taking the continuum lim
in the transverse directions by absorbing the cutoffL

22
'

into defining the derivatives, Eq. (11) is reduced to a co
tinuous, isotropic action at an isotropic cutoffL',

S1 ­
1

2gd11

Z
dd21r

Z
dz

Z bL'y

0
dt

3 fs≠rnd2 1 s≠znd2 1 s≠tnd2g , (12)

wheregd11 ­ gsL'dLd21
' is the bare coupling constan

for the sd 1 1d-dimensional RG. ForR ! 0, gsL'd !

gs`d. Thus, the stability of the AF ordered state at infin
tesimalR is determined by whethergd11 is smaller than
the critical couplinggc

d11 of thesd 1 1d-dimensional RG.
The latter predicts aT ­ 0 fixed point atgc

d11yL
d21
' ­

sd 2 1d2dpdy2Gsdy2d to one-loop order [3].
Since the exact solution ofH1D in Eq. (2) describes

the fixed point physics in thes1 1 1d-dimensional
sector, gs`d ­ 1yx'y can be calculated using th
results in Eqs. (9) and (10). (i) Ford ­ 0, gs`d ­
bf1 2 s2ybpdz'jJ'jyJg1y2 with b ­ 810y14p2, which
approaches the valuegs`d ­ 5.86 from below as
jJ'j ! 0. Thus, the condition for AF order,gd11 ;
128
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gd11sL'dygc
d11 , 1, is satisfied and improved furthe

with increasingz'jJ'j. This one-loop result is consisten
with the numerical series expansion analysis ind ­ 2 for
AF coupled chains [10]. We therefore conclude that,
the absence of bond alternation, long-range order deve
for infinitesimal AF or FM interchain couplings ind $ 2.
The physical origin of this behavior should be traced ba
to the gapless power-law correlations in the spin-1

2 Heisen-
berg chain. Ford ­ 2, a finite temperature fixed poin
does not exist in the NLsM, and the ordered phase is st
ble only atT ­ 0. This corrects the naive mean-field pr
diction of a finite TN . (ii) When d is finite, jJc

'j fi 0
in Eq. (5). Forz'jJ'jyJ ø 1, we find gs`d . bs1 2

jJc
'yJ'j3d21 which diverges asjJ'j is reduced toward

jJc
'j, indicating a transition into a disordered phase with

nite dimerization. The critical coupling is at ajJp
'j (.jJc

'j
predicted in the mean-field theory) wheregd11 ­ 1. To
one-loop order,jJp

'j ­ jJc
'j s1 2 gd­0

d11 d21y3. The renor-
malized spin stiffness vanishes on approaching the tra
tion according tors ­ r0

s s1 2 gd11d. Since ksnzd2l ­
s1 2 gd11d, the renormalized staggered magnetizat
m2 ­ m2

0s1 2 gd11d.
In the above discussion, the coupling constantg defined

at cutoffL in Eq. (11) was taken to be close to the (ord
one) fixed point value ofH1D . From the point of view of
the effective NLsM, this does not have to be the case.
g ø 1, the independents1 1 1d-dimensional RG should
be replaced by thesd 1 1d-dimensional RG once the
reduced anisotropy is in the range1 ¿

p
R0 ¿ e22pygsL0d

at a cutoffL0 ­ L
p

R0gyRgsL0d. Further analysis then
belongs to the second parameter regime which is a
relevant for a large-S AFM whereg , 2yS.

For 1 ¿
p

R ¿ e22pyg, becauseR is no longer ex-
ponentially small, thes1 1 1d-dimensional RG does no
transform independently. Instead, one should treat
sd 1 1d-dimensional RG with anisotropic cutoffs and e
pect the residual anisotropy to persist down to thesd 1

1d-dimensional fixed point. Taking the continuum lim
in the transverse directions at cutoffL' ­ Ly

p
R in

Eq. (11) leads to an action like the one in Eq. (1
with bare couplinggd11 ­ gL

d21
' . The important dif-

ference is that the momentum cutoffs are now anisotro
jk'j , km

' ­ pyL', jkzj , km
z ­ pyL. We have car-

ried out the momentum shell RG by integrating out mod
in the high-momentum layers of thed-dimensional box
in k space withkm

' . jk'j . km
'e2l and km

z . jkzj .

km
z e2l whereel is the length rescaling factor. AtT ­ 0,

the one-loop RG equation isdgd11ydl ­ s1 2 ddgd11 1

g2
d11ygc

d11sRd. The critical couplinggc
d11sRd depends on

the anisotropyR. For d ­ 2, we find

gc
211sRd ­ 2pL'

p
Rf lns

p
1 1 R 1

p
R d

1
p

R lns
p

1 1 1yR 1 1y
p

R dg21.
(13)

For R ø 1, gc
211sRd ø 2pL'y lns2y

p
R d. The ratio

of the bare coupling to the fixed point value is th
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g211sRd ø sgy2pd lns2y
p

R d ø 1 in this parameter
regime. In fact, for alld $ 2 one can showgc

d11sRd ~

pL
d21
' y lns2y

p
R d such that gd11sRd ø 1. Thus the

conclusion is again that the weakly coupled spin cha
are in the ordered phase. Whend fi 0, the uniform sus-
ceptibility x' decreases with decreasingjJ'j. Thusg in-
creases until

p
R , e22pyg. The ordered phase becom

unstable at a critical valueRc defined bygd11sRcd ­ 1
where a transition into the dimerized phase takes pla
Close to the transition,rs ­ r0

s

p
R f1 2 gd11sRdg and

m2 ­ m2
0f1 2 gd11sRdg.

The finite temperature properties close to the tran
tion are described by the scaling behavior of thesd 1

1d-dimensional quantum NLsM. The correlation length
sjd at low temperatures can be obtained by integrat
the one-loop RG equations [3]. Ford ­ 2, in the
quantum critical regime,j ­ sh̄yykBT d2pLyg211sRcd
at g211sRcd ­ 1, where y is the effective spin-wave
velocity along the chain direction. ForRc ø 1,
j ~ sh̄yykBT d

p
Rcj ln

p
Rcj. In the renormalized classi

cal regime, j ~
p

Rj ln
p

Rj sh̄yykBT d exps2prsykBT d.
Thus the effects of anisotropy enter the prefactors
theses universal functions.

Recently, it was proposed that the destruction of
long-range order in the lightly doped insulating cupra
may be explained by the dimensional crossover of a
Heisenberg AFM with increasing anisotropy [12]. Sin
the effective theory is motivated by the physics of t
striped phases [13–15] with a large correlation length co
pared to the distance between the stripes, the effective
quantum number of the AFM presumably depends on
number of spin-12 chains between neighboring stripes. T
latter is, unfortunately, not known precisely. It was show
in Ref. [12] that, for integer effective spins, AF long-
range order disappears below afinite critical interchain
coupling related to Eq. (13). In the case where the
fective spin corresponds to a half-integer, our results sh
that AF long-range order is stable forarbitrarily small in-
terchain couplings. However, in order to destroy AF ord
in this case, small dimerization is necessary in addition
anisotropy. Note that the amount of dimerization (bo
alternation) necessary to disorder the system and ope
a spin gap isdc ~ sJ'yJd3y2 which can be very small
whereasdc ø 0.3 on a dimerized square lattice Heise
berg AFM without spatial anisotropy [15].

The properties of theS ­
1
2 AF spin chains can provide

useful insights into the integer quantum Hall transition
In a single layer quantum Hall structure (QHS), the lat
is in the universality class of the dimerization (spin-Peier
transition of an SUs2nd AF quantum spin chain in the limi
n ! 0 [16]. The double-layer (or spin Landau level mix
ing) case corresponds to two FM coupled spin chains [1
These results suggest qualitatively similar phase struct
in then ­ 1 andn ! 0 cases. The difference in the un
versal properties of the phase transitions can be sum
rized by the changes in the critical exponents withn. A
s

s
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coupled multilayer QHS corresponds naturally to an arr
of FM coupled spin chains, where the interchain couplin
originates from tunneling between the layers. The qua
1D spin chains may order for infinitesimaljJ'j . 0, as
we have shown forn ­ 1. The resulting spin-wave spec
trum just describes the diffusive modes that would appe
in a disordered metal, suggesting the formation of a met
lic phase between the insulator/quantum Hall states, c
sistent with recent numerical simulations [18]. The co
responding phase transitions are thus in the universa
class of theUs2ndyUsnd 3 Usndjn !0 NLsM. Interest-
ingly, the latter also describes the 3D Anderson transiti
in the presence of time-reversal symmetry breaking.
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