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Weakly Coupled Antiferromagnetic Quantum Spin Chains
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Quasi-one- dlmenS|onaI guantum antiferromagnets formed bBydanensional hypercubic lattice of
weakly coupled sp|r§- antiferromagnetic Heisenberg chains are studied by combining exact results
in one-dimension and renormalization group analyses of the interchain correlations. It is shown that
d-dimensional magnetic long-range order develops at zero temperature for infinitesimal antiferromag-
netic or ferromagnetic interchain couplings. In the presence of weak bond alternations, the order-
disorder transition occurs at a finite interchain coupling. Relevances to the lightly doped quantum
antiferromagnets and multilayer quantum Hall systems are discussed. [S0031-9007(96)01994-1]

PACS numbers: 75.10.Jm, 05.30.—d

Low-dimensional quantum antiferromagnets (AFM) exceeds a finite critical value. Aside from obvious appli-
exhibit many remarkable properties. In strictly one di-cations to real msulatlng compounds behaving as weakly
mension, transitions into ordered states with brokercoupled AF spln- chains at low temperatures, we will
symmetry is absent. For the nearest-neighbor Heiserdiscuss the implications of our results on the magnetic
berg SpInS chains, the low-lying excitations are gaplessproperties of underdoped insulating cuprates and point out
spln guanta (spinons) for half-odd-integ&r whereas a the relevance to multilayer quantum Hall structures.
flnlte energy gap exists for integér[1]. This profound The starting Hamiltonian of the system is given by
difference is captured in the effective O(3) nonlinear . ;
model (NLoM) description by the value of the topologi- H=J ;[1 T O ISir - St
cal angle(@ = 27 S) inthe(1 + 1)-dimensional action [1]. ’

In two dimensions, spatially isotropic Heisenberg AFM TJ Z Sir * Sirtus 1)
on an unfrustrated lattice is proven rigorously to Néel S
order in the ground state f&f = 1 [2]. While no such whereS; ; is the spmi operator at lattice sité/, r) with
proof exists, it is widely believed that it is the case fori andr labeling the sites in the chaifz) and transverse
S = 5 as well. Indeed fod = 2 the long-wavelength, to the chain(r,) directions;u is summed over the, =
low-energy physics governing the interactions between thd(d — 1) nearest neighbors in the transverse directions.
spin waves in the ordered phase can be described by The intrachain exchange coupling is AF with alternating
(d + 1)-dimensional NloM [3]. strengths/(1 = &) > 0, whereas the interchain coupling

In this paper, we study quasi-one-dimensional quantungan be either AKJ, > 0) or FM (J. < 0). We are
AFM, and, in particular, the disorder-order transition as-interested in the case whese |/, |/J < 1.
sociated with the dimensional crossover. Specifically, we The mean-field decoupling of the interchain term in
considerS = 1 antiferromagnetic (AF) spin chains with Eq. (1) with respect to AF order in thedirection in spin
Heisenberg symmetry, arranged id-alimensional hyper- space leads to an effective Hamiltonian,
cubic lattice, and weakly coupled by AF or ferromagnetic i iqz
(FM) interchain exchang)g/e conllngg Finite mtrachgm Hip JZ[I TS - Sie hg( 1'si
bond alternations are included to study the competition (2)
between magnetic order and dimerization. Our strategplus a constant ternily = z, N,|J, |mj/2. Here N, is
is as follows. First, interchain coupling is considered atthe number of sites along the chain ang = (—1)/(S7)

a mean-field level [4,5] in order to treat the importantis the staggered magnetization. Equation (2) describes
correlations that first develop along the strongly coupledd 1D AFM in a self-consistent staggered magnetic field

chain direction. The resulting effective one-dimensionalt = z .|/ |my.

theory is transformed into the massive Thirring model Next, we performastandard Jordan- ngnertransforma—
whose exact Bethe ansatz solution [6] is used to obtaition S; = zp:rzpl -5, 8 = ¢, expliT Z’_l ¢j ¥j). In

the static and dynamical quantities. Then, we go beyonterms of the usual Ie(tL) and right(R) moving fermionic

the mean-field theory, and show that the order parametdields ¢, and ¢, the resulting theory in the continuum

fluctuations can be described by an anisotrdpict 1)-  limit is given by
dimensional NloM. Renormalization group (RG) analy-
ses are carried out to show that in the ground state dz[~ ”’(‘/’La Y — YRo-de)

d-dimensional magnetic long-range order occurs for in- B 1
finitesimal interchain couplingy/ | > 0. In the presence + 20l ki — WL+ ki)
of bond alternation, long-range order develops wtign + i(SJ(c,//Ze,//R - ¢,}L¢L)]. 3
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It is well known that the values af andg obtained inthe  x%(q., @) in the long wavelength limit [4]. The latter has
naive continuum limit are not correct in the Heisenbergthe following form:
limit. However, a comparison to the exact excitation

. . . - . w
spectrum of tie Hamiltonian |n_Eq. 2 dt = §=0 X2 (g, w) = Iy —— + M(0? - v2q§).
[7] leads tov = wJa/2, wherea is the lattice constant qg; — @

set to unity hereafter. The terms proportional#tand (8)

8J in Eq. (3) are easily seen in their blosonized formsHere the pole in the first term arises from the lowest
to be relevant operators of dimensien= 5 [8]. These energy triplet excitation which corresponds to an added
competing (AF order vs dimerization) interactions will fermion in the Thirring model. The functiorM (x)

induce a mass gaf\) with scaling exponent/(2 — x).  contains the contributions from the continuum involving

Thus,A/v « (h/v, 8)%3. particle-hole excitations in the Thirring model. The latter
Under a global chiral rotationy;, — exp(if/2)#.,  has a threshold singularity at and a vanishing spectral
Yr — exp(—i6/2)yr with § = tan ! 8J/A¢ andA§ =  weight below » = 2A. Thus x(q, ) in Eq. (7) is

h? + 8%J%, terms proportional té@ andsJ transforminto  dominated by the collective excitations fer < 2A. We
—A0(¢Z¢R + e,//RTgbL). The resulting Hamiltonian is then will neglect the contributions fromM (x) in Eq. (8),
identical to the massive Thirring model with bare masswhich is equivalent to the single mode approximation
Ay and interactiong, which was solved by Bethe ansatz (SMA). The constantw in Eq. (8) is then fixed at
[6]. Following Ref. [4], we obtairg = 2v = 7J andthe w = A%/z,|J, | by the conditiony?(0,0) = 1/z,1J.].

ground state energy gain per site dueng Solving for x(q, w) in Eq. (7) using the SMA, we
obtain the staggered transverse susceptibilit
AE =z, |7, |m2/2 — J(7/107'3) (Ao /D). (4) 99 ) , p2 y
A 1 — h*/A
The self-consistent value for the staggered magnetization Xs(q, w) = 5 / > (9)

is obtained by minimizingAE with respect tom,. We 2ilVil 0§ — o

find a critical value for the interchain coupling, wherew is the gapless spin-wave dispersion (Goldstone

1| = (1571/3/ 142, )7 8%, (5) modes), wg = A1 — f(q.)/z.] + T2¢? in terms of

ifi W = 1 = h2/A2
which separates an AF phase fdr. | > |J¢| where the tﬁo\/c\/i?akly_m()d/—l?e_d Z;?ZSz 332 to fhelinter}::rﬁn' (?c?r?e-
lized mass gap = (14+/3/57)z, |/, | and oclty v = v . : -
renorma LI lations [9]. The uniform static susceptibility

172 1 14\3/2 1/2 3\1/2
e () )15 () g
T 15

1 X T 01— mAr

Eg"%f‘ﬂ9}5;‘?;'5/?daﬁ£';je:f%“_'i' < Vil where Az, In the limit |7,] — 0 and § = 0, x, = 1.07(1/72)).

The mean-field theory predicts a Néel temperafure The close agreement of the latter Wlth the exact 1D
2./, ] in the ordered phase. While this can be Correcfesult_(l[wzj) suggests that the SMA is a rather accurate
when the coordination number, is large, it obviously ~description. Wherd # 0, y, and thus the spin stiffness
contradicts the Mermin-Wagner theorem, i.e., AF long-vanishes linearly al/ | — |J7|. ,
range order should not be possible at any finite temperature 11€ interactions between the AF spin waves can be
ind = 2. Itis thus necessary to go beyond the mean-field€Scribed by the O(3) quantum MM [3]. From the
theory and include the order parameter fluctuations. TGUSCeptibilities derived above, the + 1)-dimensional
this end, we turn to the dynamical spin correlations in the=uclidean action is given by (settirig= 1)

J1

J

(10)

ordered phase. Note that the ordering wave veQor 1 BAv

(Q.,m) whereQ, = (7, 7,..)forJ, >0andQ, = 50:%2]612]0 dr

(0,0,...) for J, < 0. Since the translation symmetry is (r.r’) X

broken, the uniform and the staggered components of the % [(aznr)z + (9mp)? + —5 0y — nr’|2:|~ (11)
spins are coupled by umklapp scattering with momentum A

transferq — q + Q. The transverse susceptibility in the Here n,(z, 7) is a three-component unit-modulus vector
random phase approximation is therefore givenBy-a2  field. It represents the local orientation of the AF order
matrix relation, parameter. The discrete sum runs over the neighboring

. lattice sites in the transverse directions. As usyik=
X(@,0) = x°(g 0)[1 — 1717 @)x g @)1, (7) =

1/kpT, and A is a spatial cutoff at which the coupling
whereq = (q..¢:), andf(q.) = X, expliq, - ). Us- constantg = v/p? and p{ = y,v>. The anisotropy
ing the equations of motion obtained féf,p, and the is contained inR = A?/z, v? = 097z, (|7, |/J)* < 1.
Lorentz invariance off{p, valid at low energiess < J,it  In terms of the unit vector field, the transverse spin
is straightforward to show that the components of the 1Dsusceptibility y;(q, w) = min*(q, 0)n"(q, w)) and the
susceptibilityx? , x°., andy?, are entirely determined by staggered magnetizatiom = mq(n)|7—o.
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The RG analysis ofSy is subtle. Let us consider the gy+1(A1)/g5+1 < 1, is satisfied and improved further
case whend = 0, i.e., for vanishing bond alternation. with increasingz, |/, |. This one-loop result is consistent
Notice that we did not keep track of the topological termwith the numerical series expansion analysig ir 2 for
explicitly since até = # it does not renormalize under AF coupled chains [10]. We therefore conclude that, in
the RG. The effect of the latter is, however, crucialthe absence of bond alternation, long-range order develops
for the renormalization of the coupling constagtin  for infinitesimal AF or FM interchain couplings i = 2.
the (1 + 1)-dimensional sector in the limik — 0 [10].  The physical origin of this behavior should be traced back
In the presence of the topological termg, flows to a tothe gapless power-law correlations in the sbiHeisen-
finite fixed point valueg(ec) and the correlation length is berg chain. Ford = 2, a finite temperature fixed point
infinite, whereagy — o and the system develops a finite does not exist in the NizM, and the ordered phase is sta-
correlation lengthé,/A =~ ¢27/¢ in its absence. Thus, ble only atZ = 0. This corrects the naive mean-field pre-
during the RG transformation of Eq. (11), if the anisotropydiction of a finite 7. (ii) When & is finite, [J{| # 0
is large enough such thafR/A < 1/¢,, further renor- in Eq. (5). Forz |J.|/J < 1, we find g(») = b(1 —
malization using the(d + 1)-dimensional RG cannot |J¢/J,|*)~!' which diverges adJ,| is reduced toward
eliminate this finite correlation length; the correct treat-|J¢ |, indicating a transition into a disordered phase with fi-
ment of theS = % system must include the effect of the nite dimerization. The critical coupling is al &} | (>|J{|
topological term. On the other hand, in the opposite limitpredicted in the mean-field theory) whegg,, = 1. To
wherel > +R/A > 1/&,, the long-wavelength physics one-loop order|J5| = [J$| (1 — g9:))"'/3. The renor-
is essentially controlled by thel + 1)-dimensional RG malized spin stiffness vanishes on approaching the transi-
and the topological term would not make a qualitativetion according top, = p°(1 — g,,;). Since((n%)?) =
difference in the ordered phase. Below, we consider th¢l — g,.,), the renormalized staggered magnetization
two situations separately. m? = mi(1 — Bye1)-

For VR < e 27/8, we follow the analysis of dimen-  In the above discussion, the coupling constadefined
sional crossover [10,11]. Singeis exponentially small, at cutoff A in Eq. (11) was taken to be close to the (order
the RG in the(l + 1)-dimensional sector can be per- one) fixed point value oH,,. From the point of view of
formed independently by integrating out high-momentumhe effective NloM, this does not have to be the case. If
modes until the effective couplings become comparable iz « 1, the independentl + 1)-dimensional RG should
all directions at a larger cutoff |, i.e., whenR/A’*g =  be replaced by thdd + 1)-dimensional RG once the
1/A%g(Ay). The(d + 1)-dimensional RG is switched reduced anisotropy is in the ranges VR’ 3 ¢~ 27/¢(\)
on thereafter. For largd ;, the couplingg(A ) flows  at a cutoffA’ = A/R’g/Rg(A’). Further analysis then
towards its limiting fixed point value which is of order belongs to the second parameter regime which is also
one. Thus, the crossover length scaleAis =~ A/+/R.  relevant for a larges AFM whereg ~ 2/S.

Since the scaling dimension of thefield is zero in the For 1 > /R > ¢ 27/¢, becauseR is no longer ex-
ordered phase, there is no need to rescale the latter in tR@nentially small, thel + 1)-dimensional RG does not
interchain term in Eq. (11). Taking the continuum limit transform independently. Instead, one should treat the
in the transverse directions by absorbing the cutoff (4 + 1)-dimensional RG with anisotropic cutoffs and ex-
into defining the derivatives, Eq. (11) is reduced to a conpect the residual anisotropy to persist down to tiet+

tinuous, isotropic action at an isotropic cutdff, 1)-dimensional fixed point. Taking the continuum limit
1 BA.T in the transverse directions at cutof, = A/+R in

S = ]dd’lr] dzf dr Eqg. (11) leads to an action like the one in Eg. (12)
28a+1 0 with bare couplinggs+1 = gA%"'. The important dif-

X [(9,n)* + (9,n)* + (9,n)?], (12) ference is that the momentum cutoffs are now anisotropic,
it _ k. | <k@ =a/AL k| <kl"=m/A. We have car-
wheregy+; = g(A)A% " is the bare coupling constant ried out the momentum shell RG by integrating out modes
for the (d + 1)-dimensional RG. FoR — 0, g(A1) = in the high-momentum layers of thé-dimensional box
g(«0). Thus, the stability of the AF ordered state at infini-jn ¢ space withk” > |k | > k"¢ ! and km > k.| >
tesimalR is determined by whethef,+; is smaller than ke~ wheree! is the length rescaling factor. At = 0,
the critical couplingg;+, of the(d + 1)-dimensional RG. the one-loop RG equation i 1/dl = (1 — d)gg+1 +
The latter predicts & = 0 fixed point atgg,1 /AT = 2., /45, (R). The critical couplingg(R) depends on
(d — 1)2¢m*/T'(d/2) to one-loop order [3]. the anisotropyR. Ford = 2, we find

Since the exact solution ofip in Eq. (2) describes
the fixed point physics in the(l + 1)-dimensional g5:i(R) = 2w A VR[In(V1+ R + VR)
sector, g(») = 1/y.7 can be calculated using the + VR In(1+1/R + 1/NR)]™".
results in Egs. (9) and (10). (i) Foé = 0, g(«) = (13)
b[1 — 2/bm)z. 1. 1/J]"? with b = 810/1472, which B
approaches the valug() =586 from below as For R < 1, g5.(R) = 27w A,/In2/~/R). The ratio
|7, | — 0. Thus, the condition for AF orderg,,, = of the bare coupling to the fixed point value is thus
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2,41(R) = (g/27)In(2/v/R) < 1 in this parameter coupled multilayer QHS corresponds naturally to an array
regime. In fact, for alld = 2 one can showj.(R) «  of FM coupled spin chains, where the interchain coupling
7AY/In2/VR) such thatg,,,(R) < 1. Thus the originates from tunneling between the layers. The quasi-
conclusion is again that the weakly coupled spin chaindD spin chains may order for infinitesimfl, | > 0, as
are in the ordered phase. Whén# 0, the uniform sus- we have shown for = 1. The resulting spin-wave spec-
ceptibility y, decreases with decreasify |. Thusg in-  trum just describes the diffusive modes that would appear
creases until/R ~ ¢~27/¢, The ordered phase becomesin a disordered metal, suggesting the formation of a metal-
unstable at a critical valug. defined byg,,,(R.) = 1 lic phase between the insulator/quantum Hall states, con-
where a transition into the dimerized phase takes placsistent with recent numerical simulations [18]. The cor-
Close to the transitionp, = p®+/R[1 — g,,,(R)] and responding phase transitions are thus in the universality
m? = mj[l — 2441 (R)]. class of theU(2n)/U(n) X U(n)l,—o NLoM. Interest-
The finite temperature properties close to the transiingly, the latter also describes the 3D Anderson transition
tion are described by the scaling behavior of fae+  in the presence of time-reversal symmetry breaking.
1)-dimensional quantum NkM. The correlation length The author thanks A.H. Castro Neto for a discussion.
(¢) at low temperatures can be obtained by integratingrhis work was supported in part by an award from
the one-loop RG equations [3]. Faf =2, in the Research Corporation.
guantum critical regime£ = (Av/kgT )27 A/gr+1(R.)
at g,,,(R.) =1, where v is the effective spin-wave
velocity along the chain direction. FoR,. < 1,
& « (hv/kgT)\/R:|In V/R.|. In the renormalized classi-
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