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Noise Filtering in Communication with Chaos
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A method, based on fundamental properties of chaotic dynamics, is devised for filtebagdnoise
of an incoming signal generated by a chaotic oscillator. InitiallyZkhenod 1 map is used to illustrate
the procedure and then the method is applied to recover the message encoded in a realistic chaotic
signal, after the transmitted signal has been contaminated with noise. [S0031-9007(97)02452-6]

PACS numbers: 05.45.+b, 05.40.+j, 89.70.+c

The realization that chaos can be controlled by useomponent of the noise in the stable direction is reduced
ing small perturbations [1] has opened even more the abs one propagates forward along the chaotic signal, while
ready wide spectrum of potential applications for chaotiche component of the noise in the unstable direction is
dynamical systems. In particular, aiming at using chaoseduced as one propagates backward. In other words,
in communication, small perturbations have been used tm the expanding direction the chaotic signal is sensitive
make the symbolic dynamics of a chaotic system follow &o perturbations, whereas in the contracting direction it
desired symbol sequence [2]. This permits any message tamps them out. We make use of this contractiveness to
be encoded in the signal generated by a chaotic oscillatofilter the in-band noise and, in order to implement these
In addition, it was experimentally demonstrated [3] thatideas, we employ a method provided by chaos-control-
it is indeed feasible to use a nonlinear chaotic oscillatobased synchronization, as developed in Ref. [7], to zero-
as the source of a digital communication signal and thatn on the original signal. In this work, we demonstrate
any message can be encoded and then transmitted usihgw these fundamental ideas from chaotic dynamics can
chaotic oscillations. As a proof of principle, the double-be used to filter in-band noise in a simple nontrivial way,
scroll oscillator [4] was used as the experimental devicevith potential relevant technological applications [8].
due to its simplicity and well-known dynamics. A differ- Suppose that we haveteansmittedsignal {x,},c; (/
ent approach for using chaos in communication has beepeing the set of non-negative integers), generated by a
reported by several other authors [5]. chaotic oscillator, to which noisg, },c; is added along

A signal transmitted over a communication line, orthe transmission process. At the receiver, itheoming
channel, is generally subject to noise disturbances. Singggnal is {%, %, = x, + &,},e;. We want to obtain
noise is typically broadband, one part of its power spectrung signal{t,},e; that has less noise than the incoming
is within the frequency range of the transmitted sigiral ( signal{x.},c;. As a demonstration of principle and to
bandnoise), while the other part is outside that ranget{  Show how our ideas on noise filtering work, we first use
of-bandnoise). The in-band noise poses a greater deghe Bernoulli shift2x mod1 map to generate the signal
of difficulty than the out-of-band noise when the task issequence to be transmitted. Gaussian noise is added to
to increase the ratio of signal-to-noise power density byt and, for the purpose of illustration, it is assumed that,
lowering the noise power [6]. In this Letter we describeat the filter, the equations of motion (in this case the map)
how fundamental properties of chaotic dynamical system#1at generated the signal are known. This is reasonable
can be used to effectively reduce the in-band noise afte§ince the implementations of the transmitter and of the
the message bearing chaotic signal has been degraded #{er are based on the same dynamics. We show that
noise. Our main purpose is to show that a chaotic (noisy9Ur filtering method lets théx mod 1 signal pass through
signal carrying a predesigned encoded message can Wéthout attenuation, whereas the noise is attenuated. We
filtered yielding a less noisy signal. Our practical goal@lso estimate by how much the filter attenuates noise.
is to encode a message as was shown in Ref. [2], let this TO encode a symbol sequence containing a message, we
message be corrupted by noise during the transmission, at@Pel the left-hand sid¢d = x < 5) of the unit interval
then reproduce a less noisy version of the incoming chaotiwith the symbol “0,” and the right-hand sidjé =x=1)
signal. This less noisy version is, in a measurable sensgiith the symbol “1.” All symbol sequences are admissible
closer to the original signal before it became contaminateéor this system and trajectories with almost all initial
with noise. The dynamical basis for our ideas is that theeonditions with respect to Lebesgue measure generate
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symbol sequences in which the binary symbols “0” and(negative values below = 0, and positive values above
“1” have equal likelihood. Using a binary fraction to »r = 1). The noise disturbances can also kick a point
represent symbol sequences, each symbol sequenceoiger the partition, in which case the wrong symbol will
mapped into the real number=>Y_, b,27" (referred be assigned at the receiver. The points that are most
to as the symbolic state of the system), wheyeis the  vulnerable to this difficulty are those located nearest to
nth binary symbol generated by the dynamics. We wanta = % In this case we adopt the following approach.
specific symbol sequence, one carrying a message, say, t@@nsider, for instance, the point denoted in Fig 1 by the
word “chaos.” Using the seven-bit ASCII character setfilled square corresponding to the third bit to the right
the decimal binary sequeneg, = 0.0110001101101000  of the decimal point. This pointx{ = 0.553238 > %
represents the first two letters “ch.” The symbol “0” hasy,,, = 0.106491) corresponds to the symbol “1.” With
been added to initialize each seven-bit character and sgygitive Gaussian noise it becomés £ 0.467611 < %

the whole word “chaos” is represented by a sequence g{iﬂ — 0.247353), which corresponds to the symbol “0,”
40 symbols. For the particular case of the characterg, Fig. 1 denoted by the filled circle. Similar problem

“ch,” its decimal binary sequence is the finite precisionpappens with three other points in the 40-bit sequence. The
number 0.388 306. The nextiterate of themod 1 mapis  yerall consequence is that at the receiver, without noise

0.766 611, which is equivalent to “left shifting” the decimal e qyction, three symbols will be switched and the word
binary sequence to 0.1100011011010000 and deleting thespaoh” will be received instead of “chaos.” To recover
bit to the left of the decimal point. The first bit to the {he signal (and hence the word “chaos” to be read correctly
right of the dlemmal point (most significant bit) defines 4; the receiver), we need to filter the noise. This is done
whetherr = 5 or r < 5. It is possible to control the py repeatedly performing our filtering procedure, which,
sequence of points at the transmitter in order to mat@  for each application of the filter, consists of backward
be above or below the partition value= % in a desired iterating each point of the message. Therefore one picks,
sequence, an operation that can be executed with trajectofygr instance, the point mentioned above (filled circle in
perturbations [2,3,9]. Any desired binary sequence cafrig. 1) with coordinate$x;, x;+;). To obtain a less noisy
be produced, meaning that any desired message can bstimate of this point, we backward iterate it. Each
encoded. In Fig. 1 the word “chaos” is represented bybackward iteration makes use of the contractiveness of the
the squares as it was encoded by the transmitter, ardi/namics along the unstable direction. However, notice
as this message is transmitted through the channel that the map is noninvertible, and therefore the backward
becomes corrupted by noise, here introduced as additivieeration for this process is not so trivial. For one iterate,
8.5% normally distributed random deviates. The noisythere are two preimages for each point, and for the point
signal is represented in Fig. 1 by circles, and the noiseve chose as example, the two preimagessidrand ¥,
disturbances eventually can kick a point (located closest tavhere L and R stand for “left” and “right,” respectively.
r = 0 andr = 1) out of the unit interval. This difficulty The preimage to be picked is the one located closest to
is overcome by extending the interval to the real valuesy;. For this example, the two preimages of the ordinate
%4 aresl = % and#f = % + . We comparex
ot e to %4 + ; (halfway between the two preimages). xif
is greater tharts! + 1, we pick 21 + 1; otherwise, we
pick 5. Here we picki® = %1 + 1 = 0.623676 as
the filtered abscissa of the point. The filtered ordinate
(which is the same as the filtered abscissa of the next point)
is obtained by following the same steps now considering
the ordinate of the next poin&;+; = 0.247335,%;12, =
0.078351), represented in Fig. 1 by the circle with a
“X" (the corresponding noiseless point is represented by
the square with a X"). After backward iteration of
] {x:+2} and decision for preimage picking we obtdin| =
~R ] 0.039176. The filtered point is represented in Fig. 1 by
L PA the “+” mark, already on the right-hand side of the map
0.0 0.2 0.4 0.6 0.8 1.0 where it belongs. For the next filtered point the procedure
T is repeated, and all the way to the last point of the message,
" completing in this manner the first iterate of the filter.
FIG. 1. The Bemoulli shif2xmod1 map with the encoded |n practice, it can be easily implemented experimentally
word “chaos” to be transmitted (squares), and the same sign nd quickly executed in a circuit using discrete-analog

with additive Gaussian noise (circles). The point denoted b . . . .
the filled square on the “1" side of the map is kicked to the€lectronics. In the second iterate, we start with the first

“0” side (filled circle) of the map because of nois¢/ andz® filtered point and go all the way through to the last using
correspond to the two preimagesiof ;. the same procedure. For the same point we are working
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with, its position after this second iteration is represented 20F
in Fig. 1 by the “+” mark, and it is visible that each iterate ’
of the filter brings the point closer to its original position :
(filled square) before noise was added. After just four 10¢
iterations of the filter, the ratio of signal-to-noise power ‘
density goes up by a factor of 270. This, more than 2 .
orders of magnitude increase in the ratio of signal-to-noise ?é 0 :
power density, is due to the zeroing in effect of the inverse &
process. Since the slope of the map is 2, the filter shrinks
noise by a factor of 2 at each filter iteration. The idea is
that if there is a point on the trajectory within a distance
e of the true2x mod 1 point, its preimage lies within a HHS
distancee/2. Repeating the procedure for the same point _o0t
on the next filtering iterate one gets another factor of 2.
The noise standard deviation is reduced by a factor of =20 =10 0 10 20
2 in each preiterate. The signal, however, obeying the x
dynamics passes unaltered through the filter, with unitgain'iIG 2 Lorenz attractor built bv apolving time delay embed
The ratio of signal-to-noise power density is multiplied byding to thex(¢) noisy signal. T%/we Ft)vr\)/g Iiges interse}c/ting the
a factor of 4 in each iterate of the filter. lobes represent two branches of a Poincaré surface of section to
So, by using the discrete-tinfix mod 1 map, we have which the binary symbols “0” and “1” have been associated.
demonstrated how our ideas on noise filtering can be
implemented. We now apply our filtering procedurethe x(z) clean signal. After five iterations of the filter,
to a more realistic and more significant model thanthe ratio of signal-to-noise power density is raised by a
the 2x mod 1 map, namely, the continuous-time signalsfactor of 680. The power spectrum of the residual noise
produced by the Lorenz system [10] (with the standards depicted in Fig. 4 by curve.
parameter valuesr = 10, b = 8/3, and R = 28). Its The present method’s convergence depends on the noise
attractor is basically a two-lobe structure, and, if westatistics and on the system dynamics. For example, for
associate each cycle of an attractor lobe with a binaryhe shift map it is possible to control the system on a sub-
symbol, then it becomes a source of almost equally likelyset of the natural invariant set that avoids the neighborhood
symbol sequences. For instance, by labeling one lobef the pointx, = % If the noise density is uniform and
with the symbol “0” and the other with the symbol “1,” not too big, there will never be errors and convergence
each time the system cycles on the “0” lobe it produces & guaranteed to the correct signal. More general cases
“0,” and likewise for the “1” lobe. The sequence of cyclesdepend on the noise density function and on the dynam-
on the lobes can be controlled by using a simple controics of the transmitter. Also, this method can, in princi-
technique [11] to generate a desired binary sequencele, be extended to higher-dimensional systems. In that
In doing so we have encoded the message “A minatase both backward and forward iterations are necessary:
stretched by a new idea never shrinks back to its former
dimensions” [12] in the Lorenz(z) component. As this
signal is transmitted, it becomes infected with noise and at
the receiver, time delay embedding is used to reconstruct
the attractor, shown in Fig. 2. The return map is then . 06
built by Poincaré sampling this attractor with the two & ,,

~10F

map without notse noisy map

0.8 $

branches of the crossing surfaces defined in same way a N

. . . . 0.2

in Ref. [11]. Since there is no closed algebraic formula

for this Poincaré map, we produce a piecewise linear 0.2 0'4x0»6 0.8 0.2 04 0608
t t

fitting of it, preferable from the point of view of possible
technological application, as opposed to a polynomial after 2 filter iterates after 5 filter iterates

fitting. And, as we now have the noisy return map and 0.8 2

a piecewise linear fitting of it, backward iterations are 06

applied to each point in the same way as was done for ¢ &

the shift map [13]. Figure 3 shows a sequence of return 0-4

maps, starting with the clean map, followed by the noisy 0.2 )
map, then after 2 iterates and after 5 iterates of the filter, 02 04 06 0.8 0.2 0.4 0.6 0.8
as indicated. The power spectrum density of the clean , =2

x(r) signal is shown in Fig. 4, curve denoted by the IetterFIG. 3. Return maps built from the clean signal, from the

a. Curve b represents the power spectrum density Ofnoisy signal, from the signal after 2 iterates of the filter, and
the in-band white Gaussian noise [14] that was added tafter 5 iterates, as indicated.
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FIG. 4. Power spectrum density of the Lorenz signal prior to
noise addition (curve), of the white Gaussian in-band noise
(curveb), and of the noise residue (curegafter five 5 iterates
of the filter.

backward along the unstable direction, forward along the
stable direction.

In conclusion, this single input filter has no equivalent
in traditional filtering theory [15]. It takes advantage
of the nonlinear character of the signal and removes
noise in a way that cannot be done with conventional
digital signals. For the purpose of practical technological

applications, it seems that placing several single input[

filters in series (cascade form) is desirable. In fact, if the
channel is too noisy, it is indispensable to clean the signal
periodically along the transmission process.
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