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Quarkonia in Hamiltonian Light-Front QCD
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A constituent parton picture of hadrons with logarithmic confinement naturally arises in weak
coupling light-front QCD. Confinement provides a mass gap that allows the constituent picture
to emerge. The effective renormalized Hamiltonian is computed®t@?), and used to study
charmonium and bottomonium. Radial and angular excitations can be used to fix the caupling
the quark masa/, and the cutoffA. The resultant hyperfine structure is very close to experiment.
[S0031-9007(97)02413-7]

PACS numbers: 12.38.Lg, 11.10.Gh, 14.40.Gx

The solution of Quantum Chromodynamics in the non-to a band diagonal Hamiltoniai’ as in Fig. 1(b),
perturbative domain remains one of the most important H' = SHSt + counterterms 1)
and interesting unsolved problems in physics. The bait is possible to identify counterterms by requiring that
sic assumption upon which our work is based is that it ighe matrix elements of the band diagonal Hamiltonian are
possible toderive a constituent picture for hadrons from independent of the regulator. This ensures that physical
QCD [1-3]. If this is possible, nonperturbative bound observables will also be independent of the regulator.
state problems in QCD can be approximated as coupled, The similarity renormalization can be done in steps or
few-body Schrédinger equations. continuously [4]. In what follows, we use a discrete pertur-

To arrive at a constituent approximation to QCD, bative formulation around the free light-front Hamiltonian.
we first want to separate vacuum fluctuations. This is
achieved by formulating the theory on the light-front (a) (
where the vacuum is trivial in the presence of cutoffs. We
start with the canonical light-front Hamiltonian, regulated
by a cutoff on light-front energy, and use the similarity ¢ a a .. a a
renormalization group to renormalize [4]. We expect the
Hamiltonian to contain novel finite counterterms when
there is spontaneous symmetry breaking [1], but the
vacuum is unchanged by spontaneous breaking. a ¢ a .. a a

Renormalization of light-front Hamiltonians is more
complicated than that of Lagrangians because many sym-

@ @ a .. a a

metries are not kinematically manifest, because there is \ ¢ ¢ @ 4 G
a separate power counting for longitudinal and transverse
directions, and because locality is violated in the longitu- (b)

. . . Ao A 0 ... 0 0
dinal direction.

The basic idea of the similarity renormalization group A A A 0 0
is illustrated in Fig. 1. Figure 1(a) schematically shows a
regulated bare light-front Hamiltonian matrix. The regu- 0 A A 0 0
lator used for illustration is a cutoff restricting light-front
energies, and it makes the Hamiltonian matrix finite. There
are different ways to impose the cutoff, but the specifics are
not important for this discussion. The bare Hamiltonian

. . . 0 0 0o .. A A

contains couplings between all energy scales. This is the
source of ultraviolet divergences. In order to renormalize 0 0 0 .. A A

the Hamiltonian, one needs to find counterterms that re-

move dependgnce on the cutoff. Th,e similarity r_enormaIFlG_ 1. (a) An example of a bare regulated Hamiltonian in
ization group is based on the following observation: If ajight-front energy space. Energies run from zero up to an
Hamiltonian has a band diagonal form, as the Hamiltoniarinitial cutoff which is indicated by the subscripts of the first
in Fig. 1(b), then no ultraviolet divergence can appear agnd the last diagonal elements: in this figure schematically

any finite order of perturbation theory because of the ﬁniténdicates nonzero matrix elements, but the matrix elements are
not necessarily equal. The Hamiltonian couples states of all

V,Vi(_jth ofthe Hamilt_onian, as Iong as it§ matrix elements ar'E‘energy scales. (b) An example of a band diagonal Hamiltonian.
finite. Therefore, if one can find a similarity transforma- The energies run’up to the initial cutoff, but the Hamiltonian

tion that transforms a bare Hamiltoni@f, as in Fig. 1(a) couples only states which are close in energy.
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With the divergences removed, the remaining task is taal parameters. Under a full renormalization group trans-
adjust finite parts of the counterterms. This is, in princi-formation (including change of scale and rescaling), the
ple, achieved by restoring Lorentz invariance and other exHamiltonian reproduces itself in form exactly, apart from
act symmetries in physical observables. However, if theghe change of the explicit cutoff and the running of those
similarity transformation can be done analytically, as infew independent couplings. All dependence on the cutoff
the calculation presented here, it is straightforward to usé absorbed into the independent running couplings. Once
coupling coherence [5], which uniquely fixes all countert-one obtains a Hamiltonian that reproduces itself as the cut-
erms without explicit reference to underlying symmetries.off is lowered and subtracts the divergences, any initial
The basic idea of coupling coherence is the following: Incutoff can be sent to infinity.
the Hamiltonian restricted by symmetries, albeit not mani- The coupling coherent solution at second order in a
fest, the strengths of all operators are not independent bgeneric interactions (around the free light-front Hamil-
depend only on a finite number of independent canqnitonianho) is [2]

(Al = A2/PHOA x| — 1Au]) | 0(Ap] — A2/ PO Ak — [Aukl)
A * A - @)
ak bk

Hup =(alho + v|b) + Zvakvkb|:
x

where Aij = Ey; — Ey; is the difference in Iight-front| in Vv, different Fock states decouple to leading order.
free energiesA?/P™ is the similarity scale, and the sum The HamiltonianH, provides an approximaigg valence
over statek is limited by the initial cutoff and the explicit quark description of mesons. The errors in approximation
similarity cutoff in Eq. (2). A self-energy counterterm is can be determined from bound-state perturbation theory in
also needed but is not shown (see Ref. [2]). V which links theqqg to multibody Fock states. Mixing
We would like to note that the similarity renormalization of different Fock components first enters at second-order
scheme which results in band diagonal effective Hamiltobound-state perturbation theory. The valence approxima-
nians is a renormalization method that brings us closer ttion is best justified for heavy quarkonia.
the desired constituent picture of hadrons. Indeed, if the Based on the success of the constituent quark model,
constituents are massive, then at any finite order of pertuit is reasonable to choose a nonrelativistic limit of the
bation theory with the band diagonal Hamiltonian, there iseffective Hamiltonian foird,. This approximation, too, is
only a finite number of Fock states that couple to the lowesbest justified for heavy quarkonia.
Fock component in the hadron. In our work low energy We have already used the effective Hamiltonian
gluons acquire a mass gap due to a mass counterterm aagproach to study properties of heavy-light mesons, in par-
due to the confining interaction, and high multiplicities of ticular B mesons. In this Letter we present numerical
gluons are suppressed. results obtained by applying the approach to charmonium
After renormalization is completed, one is left with and bottomonium for which the approximations are better
the effective Hamiltonian band diagonal with the width justified. We fit 15, 1P, and 2 levels for both systems.
of a hadronic scale. The effective Hamiltonian containswe then predict hyperfine splitting in the charmonium

complicated potentials, which result from eliminating theground state. The prediction is in good agreement with
coupling between high and low energy states. It stillexperiment.
contains emission and absorption interactions, but these We find the effective Hamiltonian ta@ (g3). The

no longer mix states of high and low energies. Howevereffective Hamiltonian, which is generated by the simi-
if one tries to diagonalize the effective Hamiltonian |arity transformation and coupling coherence to orglar
directly, the wave function of a hadron must containjs hand-diagonal in light-front energy with respect to a

arbitrarily many parton components. Instead, we dividenadronic scale\2/2?*, and it can be written as [3]
the effective Hamiltonian into a paf, which is solved

nonperturbatively, and the remaining pafttis treated in Het = Hiree + 1 + 02 + Vaerr (3)
bound-state perturbation theory. The division is arbitrarywhereHs... is the light-front kinetic energy [we remind the
but a choice ofHy, missing an important part of physics reader that the light-front kinetic energy of a particle with
of the system under consideration would lead to divergentransverse momentupr- and longitudinal momentump ™
bound state perturbation theory. Therefore, we want tas (p? + m?)/p*], v, is O(g) emission and absorption
choose Hy that approximates the physics relevant forwith nonzero matrix elements only between states with
hadronic bound states as closely as possible, and anergy difference smaller than the hadronic sdaigP .
the same time we want it to be manageable. We take Let p;, k; be the light-front three-momenta carried by
a hint from the constituent quark model and includea quark and an antiquarky;, A; are their light-front
constituent masses and two-body potentials produced hyelicities;u(p, o), v(k, A) are their spinors; indek= 1, 2
the similarity transformation. refers to the initial and final states, respectively. fet

A major simplification is achieved by not including p; — p» be the exchanged momentum apd= ¢*2/4".
emission and absorption of low energy gluons Al3. v, in Eq. (2) is anO (g?) instantaneous interaction with
Once the particle-number-changing interactions are puhe following matrix element for free states containing a
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quark and an antiquark:

_ _ v 1 A2 _ _ _ _
—grTi(p2. 2)y*u(py, 01)T(ka, Ao)y v(kls)\1)<TaTh>F77,u77V0(F —lpr + k) —(py +&)D,  (4)

where n,v* = v* defines the unit vectom,. va includes the® (g?) effective interactions generated by the
similarity transformation. The effective interactions generated to this order contain one-body and two-body operators.
In particular, the effective one-body quark operator is:

C pt Pt Pt XZP_J;AZ 3 pt 1 MZP_J;AZ
A f{2—+A2|n< +>+2—+A2InP+L—__+A2+_+
2P P eP P Xapr A2 + M2 2 P 2 xope A2 + M2
M? M?
+3 In P*—}’ (5)
Xa xaFA2 + M?

where x, = p//P" is the longitudinal fraction of the! the effective one-body operator exactly cancels against a
momentum carried by the constituent under consideratiordivergence in the effective two-body operator if the state
M is its mass,P" is the total longitudinal momentum is a color singlet [2].

of the state,P* is the longitudinal scale required in the The effective two-body operators have the following
cutoff by dimensional arguments, andis an infrared matrix elements between states containing a qarénd
cutoff which is to be taken to zero. The divergence |inan antiquark:

— gAtil(pa, )y u(py, ) (ka, A2)y" v(ky, MNTaTp)

i 0(D1| — A2/PH0Di| — D)) . 6(Dal = A>/P)6(Ds] - IDy )
< ow@ 5 - 5. ). ©®)

CFC(£
T

I . 8
where  D,,(q)=(q"%/¢"mum, + (1/¢)ugs +  H, = 4M[—LV2 5 - G
1,9,) — &x, IS the gluon propagator in light-front gauge, 2m r

Dy, D, are energy denominator®,=p; —p, —q~ 7
and Dy =k, —k; —q . It has been shown thalle;r  \wherem is the reduced mass,is an equal-time separa-
contains a logarithmic confining interaction in addition totion petween the quark and the antiquark, aadL r) is

(L |,

the Coulomb interaction [2]. ~ the angular average of the confining potential generated
This is the output of the second order similarity hy the similarity transformation. It depends only on the
transformation folzg matrix elements. separation of the quarks:

For the purpose of bound-state calculations, we split

the effective Hamiltonian(3) into Ho, which is solved y,(ry) = 2InR — 2Ci(R) + 4SIR) _ {1 — cosR)

nonperturbatively, anf = H.;; — Ho. First, we make a R R2
nonrelativistic reduction of the effective Hamiltoni&s). sinR
In the nonrelativistic limit, the light-front scald?/?* t2mp TSt 2y, 8

is naturally replaced by = (A2/P*)(P*/2M), where , - ,

M is the mass of the heavy quark, ao@l carries the WhereR = Lr andy is Euler constant.X contains the
dimension of mass [3]. Further, light-front momenta arefinite shift produced by the self-energies after subtracting
naturally replaced by center-of-mass equal-time momenti'ms needed to make the confining potential vanish at the

in the nonrelativistic limit [3]. origin:
The spin-independent part of the two-body effective in- ~ aCp L 3M M
teractions includes a short-range Coulomb potential and 2= . [(1 + E>|n<m>

a rotationally noninvariant long-range logarithmic poten-
tial. The confining potential arises due to an incomplete S 9)
cancellation of instantaneous gluon exchange, and it con- 4 L +M 4
fines both quarks and gluons. The confining potential is a The remaining part of the effective HamiltoniaW,
complicated function but in the nonrelativistic limit it can contains, among other terms, emission and absorption
be double Fourier transformed (for longitudinal and trans-of low energy gluons. Interactions that change particle
verse separation), and expanded in even Legendre polpumber enter at second-order bound-state perturbation
nomials [3]. theory, which requires solutions to the nonperturbative
For Hy we choose the nonrelativistic reduction of the three-body bound-state problem.
kinetic energy, the effective one-body operators, Coulomb V also contains a rotationally noninvariant part of the
potential and rotationally symmetric part of the confiningeffective confining potential. Our choice &f, does not
potential with constituent masses. The Hamiltontanis lead to any first-order corrections ®states due to the

1 M 5i|
— -
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rotationally noninvariant part of the potential, and for anylying P state isMp =3.5 GeV. Note that these values
[ # 0 state it minimizes the number of terms which give are reasonable approximations given the magnitude of
nonzero corrections, thus making the calculations easierknown corrections. We obtait,. = 1.5 GeV, a = 0.5,

The spin-dependent part of the two-body effectiveandA = 1.7 GeV. Similarly, for bottomonium we require
operators is included ir¥/, and it is treated in first- ¢ = 1.0, M5 = 9.4 GeV, andMp = 9.9 GeV leading
order bound-state perturbation theory. We will consideito a bottom quark massf, = 4.8 GeV, « = 0.4, and
only the spin-spin hyperfine splitting in the ground state,A = 3.5 GeV. It is important to note that this coupling
because it can be calculated using the lowest ordameed not run exactly likegs OF apatice -
effective Hamiltonian [6]. After a change of the spinor With the parameters fixed, we can predict the hyperfine
basis [6], the spin-spin part of the two-body effectivesplitting in the charmonium ground state using Eg. (10).
interactions is The functionf (R) is rotationally noninvariant, but at =
0.6 the violation of rotational symmetry is negligible. We
predict that the splitting between the ground state vector
and singlet in charmonium i8.13 GeV, in reasonable
agreement with experimer.(18 = 0.002 GeV).

Next, we evaluate corrections due to the rotationally
noninvariant part of the confining potential. There are
first-order corrections to th® state, and theS state is
corrected in second-order bound-state perturbation theory.
Corrections to the ground state are consistently a few

3L RS R* percent even for as small ad).1. Corrections to the
This completes our discussion éfy andV. excited states at = 0.6 and ¢ = 1.0 are about 30%.

We now want to solve nonperturbatively the eigenvalueThis is a reasonable starting point because corrections of
problem forHy: one higher power o are of this same order.

HolP)s = M2|P)y . (12) .In conclusion, the Iogarithmic conjining potgntial WhiCh
arises at second order is a promising starting point for
where M ? is the invariant mass of the bound state. WeQCD calculations. Corrections to the energy levels due
assume that the scale is small enough so that the state to rotational symmetry violating terms in this potential are
is dominated by itg;g component [3], i.e., negligible for the ground state, and for the lowest excited

vopin = 4@M)2aCr L 3[%” S3(R) + %f(f{)}
1
am2 ¢

The function f(’f{) is rotationally noninvariant with
respect to the angleé. Its angular average is

(F(R)) = g[sinR o201 — cos’R)]

X (10)

“Tp.

(11)

d*ktdx N t ot states they are small enough that corrections from higher-

|P)a = f 2(27)3m¢(" ,x)b"d"0). (13)  order terms may restore rotational symmetry. This calcu-
lation is not intended to compete with phenomenological

Let the mass of the bound state be constituent quark model calculations. It is intended as an
M? = (2M)* + 4ME, (14) initial crude step toward an accurate first principles, light-

front QCD calculation.
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which definesE.
The eigenvalue problem for the Hamiltoni@h leads
to a dimensionless Schrodinger equation [3]:

2 1 S N
|:_d'ji2 + C<; Vconf(R) + VCoul(R)>j|¢(R)
= elp(ff{) , (15) [1] K.G. Wilson et al., Phys. Rev. D49, 6720 (1994); Report
No. hep-th/9401153.
where [2] R.J. Perry, inProceedings of Hadrons 94edited by
2maCr V. Herscovitz and C. Vasconcellos (World Scientific,
=—7 (16) Singapore, 1995); Report No. hep/g#07056.
~ [3] M. Brisudova and R. Perry, Report No. hep/p511443;
o= 2m(E — 3) 17) Phys. Rev. D54, 1831 (1996).
L2 ) [4] St.D. Gtazek and K.G. Wilson, Phys. Rev. 48, 5863

(1993); 49, 4214 (1994). Similar flow equations for
Hamiltonians were proposed by F. Wegner, Ann. Phys.
(Leipzig) 3, 77 (1994).

R.J. Perry and K.G. Wilson, Nuc. Phy$3403 587
(1993); R.J. Perry, Ann. Phys. (N.Y232 116 (1994);
Report No. hep-tf9402015. Similar ideas were previ-

In Ref. [3] we show the dimensionless eigenvaduer
a few low-lying states, foe ranging up to 1. From the
ratio of the splittings betweenSland P, and P and
2S charmonium states, we find thatshould be around
0.6. For charmonium, we find values of the quark mass

(5]

M., the cutoff A, anda = g?/47 so that (i)c = 0.6 (or,
equivalently, the ratio of theQ1P splitting to the P-2S
splitting is roughly correct), (ii) the mass of the ground [6]
state isM s = 3.0 GeV, and (iii) the mass of the lowest
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