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Quarkonia in Hamiltonian Light-Front QCD
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A constituent parton picture of hadrons with logarithmic confinement naturally arises in w
coupling light-front QCD. Confinement provides a mass gap that allows the constituent pi
to emerge. The effective renormalized Hamiltonian is computed toO sg2d, and used to study
charmonium and bottomonium. Radial and angular excitations can be used to fix the couplia,
the quark massM, and the cutoffL. The resultant hyperfine structure is very close to experime
[S0031-9007(97)02413-7]
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The solution of Quantum Chromodynamics in the n
perturbative domain remains one of the most impor
and interesting unsolved problems in physics. The
sic assumption upon which our work is based is that
possible toderive a constituent picture for hadrons fro
QCD [1–3]. If this is possible, nonperturbative bou
state problems in QCD can be approximated as coup
few-body Schrödinger equations.

To arrive at a constituent approximation to QC
we first want to separate vacuum fluctuations. This
achieved by formulating the theory on the light-fro
where the vacuum is trivial in the presence of cutoffs.
start with the canonical light-front Hamiltonian, regulat
by a cutoff on light-front energy, and use the similar
renormalization group to renormalize [4]. We expect
Hamiltonian to contain novel finite counterterms wh
there is spontaneous symmetry breaking [1], but
vacuum is unchanged by spontaneous breaking.

Renormalization of light-front Hamiltonians is mo
complicated than that of Lagrangians because many s
metries are not kinematically manifest, because ther
a separate power counting for longitudinal and transv
directions, and because locality is violated in the long
dinal direction.

The basic idea of the similarity renormalization gro
is illustrated in Fig. 1. Figure 1(a) schematically show
regulated bare light-front Hamiltonian matrix. The reg
lator used for illustration is a cutoff restricting light-fro
energies, and it makes the Hamiltonian matrix finite. Th
are different ways to impose the cutoff, but the specifics
not important for this discussion. The bare Hamilton
contains couplings between all energy scales. This is
source of ultraviolet divergences. In order to renorma
the Hamiltonian, one needs to find counterterms that
move dependence on the cutoff. The similarity renorm
ization group is based on the following observation: I
Hamiltonian has a band diagonal form, as the Hamilton
in Fig. 1(b), then no ultraviolet divergence can appea
any finite order of perturbation theory because of the fi
width of the Hamiltonian, as long as its matrix elements
finite. Therefore, if one can find a similarity transform
tion that transforms a bare HamiltonianHB as in Fig. 1(a)
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to a band diagonal HamiltonianH 0 as in Fig. 1(b),
H 0 ­ SHBSy 1 counterterms, (1)

it is possible to identify counterterms by requiring th
the matrix elements of the band diagonal Hamiltonian a
independent of the regulator. This ensures that phys
observables will also be independent of the regulator.

The similarity renormalization can be done in steps
continuously [4]. In what follows, we use a discrete pertu
bative formulation around the free light-front Hamiltonian

FIG. 1. (a) An example of a bare regulated Hamiltonian
light-front energy space. Energies run from zero up to
initial cutoff which is indicated by the subscripts of the firs
and the last diagonal elements.a in this figure schematically
indicates nonzero matrix elements, but the matrix elements
not necessarily equal. The Hamiltonian couples states of
energy scales. (b) An example of a band diagonal Hamiltoni
The energies run up to the initial cutoff, but the Hamiltonia
couples only states which are close in energy.
© 1997 The American Physical Society 1227
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With the divergences removed, the remaining task is
adjust finite parts of the counterterms. This is, in prin
ple, achieved by restoring Lorentz invariance and other
act symmetries in physical observables. However, if
similarity transformation can be done analytically, as
the calculation presented here, it is straightforward to
coupling coherence [5], which uniquely fixes all counte
erms without explicit reference to underlying symmetrie
The basic idea of coupling coherence is the following:
the Hamiltonian restricted by symmetries, albeit not ma
fest, the strengths of all operators are not independent
depend only on a finite number of independent cano
s
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cal parameters. Under a full renormalization group tra
formation (including change of scale and rescaling),
Hamiltonian reproduces itself in form exactly, apart fro
the change of the explicit cutoff and the running of tho
few independent couplings. All dependence on the cu
is absorbed into the independent running couplings. O
one obtains a Hamiltonian that reproduces itself as the
off is lowered and subtracts the divergences, any ini
cutoff can be sent to infinity.

The coupling coherent solution at second order in
generic interactiony (around the free light-front Hamil-
tonianh0) is [2]
Hab ­ kajh0 1 yjbl 1
X
k

yakykb

"
usjDak j 2 l2yP 1dusjDakj 2 jDbkjd

Dak
1

usjDbk j 2 l2yP 1dusjDbkj 2 jDakjd
Dbk

#
, (2)
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where Dij ­ E0i 2 E0j is the difference in light-front
free energies,l2yP 1 is the similarity scale, and the sum
over statesk is limited by the initial cutoff and the explicit
similarity cutoff in Eq. (2). A self-energy counterterm i
also needed but is not shown (see Ref. [2]).

We would like to note that the similarity renormalizatio
scheme which results in band diagonal effective Hamilt
nians is a renormalization method that brings us closer
the desired constituent picture of hadrons. Indeed, if t
constituents are massive, then at any finite order of pert
bation theory with the band diagonal Hamiltonian, there
only a finite number of Fock states that couple to the lowe
Fock component in the hadron. In our work low energ
gluons acquire a mass gap due to a mass counterterm
due to the confining interaction, and high multiplicities o
gluons are suppressed.

After renormalization is completed, one is left with
the effective Hamiltonian band diagonal with the widt
of a hadronic scale. The effective Hamiltonian contai
complicated potentials, which result from eliminating th
coupling between high and low energy states. It st
contains emission and absorption interactions, but th
no longer mix states of high and low energies. Howev
if one tries to diagonalize the effective Hamiltonia
directly, the wave function of a hadron must conta
arbitrarily many parton components. Instead, we divi
the effective Hamiltonian into a partH0 which is solved
nonperturbatively, and the remaining partV is treated in
bound-state perturbation theory. The division is arbitra
but a choice ofH0 missing an important part of physics
of the system under consideration would lead to diverge
bound state perturbation theory. Therefore, we want
chooseH0 that approximates the physics relevant fo
hadronic bound states as closely as possible, and
the same time we want it to be manageable. We ta
a hint from the constituent quark model and includ
constituent masses and two-body potentials produced
the similarity transformation.

A major simplification is achieved by not including
emission and absorption of low energy gluons inH0.
Once the particle-number-changing interactions are
-
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in V , different Fock states decouple to leading orde
The HamiltonianH0 provides an approximateqq valence
quark description of mesons. The errors in approximati
can be determined from bound-state perturbation theory
V which links theqq to multibody Fock states. Mixing
of different Fock components first enters at second-ord
bound-state perturbation theory. The valence approxim
tion is best justified for heavy quarkonia.

Based on the success of the constituent quark mod
it is reasonable to choose a nonrelativistic limit of th
effective Hamiltonian forH0. This approximation, too, is
best justified for heavy quarkonia.

We have already used the effective Hamiltonia
approach to study properties of heavy-light mesons, in p
ticular B mesons. In this Letter we present numeric
results obtained by applying the approach to charmoni
and bottomonium for which the approximations are bet
justified. We fit 1S, 1P, and 2S levels for both systems.
We then predict hyperfine splitting in the charmoniu
ground state. The prediction is in good agreement w
experiment.

We find the effective Hamiltonian toO sg2
Ld. The

effective Hamiltonian, which is generated by the sim
larity transformation and coupling coherence to orderg2,
is band-diagonal in light-front energy with respect to
hadronic scaleL2yP 1, and it can be written as [3]

Heff ­ Hfree 1 y1 1 y2 1 y2 eff , (3)

whereHfree is the light-front kinetic energy [we remind the
reader that the light-front kinetic energy of a particle wit
transverse momentump' and longitudinal momentump1

is sp'2 1 m2dyp1], y1 is O sgd emission and absorption
with nonzero matrix elements only between states w
energy difference smaller than the hadronic scaleL2yP 1.

Let pi, ki be the light-front three-momenta carried b
a quark and an antiquark;si , li are their light-front
helicities;usp, sd, ysk, ld are their spinors; indexi ­ 1, 2
refers to the initial and final states, respectively. Let$q ­
$p1 2 $p2 be the exchanged momentum andq2 ­ q'2yq1.
y2 in Eq. (2) is anO sg2d instantaneous interaction with
the following matrix element for free states containing
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e
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quark and an antiquark:

2g2
Lusp2, s2dgmusp1, s1dysk2, l2dgnysk1, l1dkTaTbl

1
q12

hmhnusss L2

P 1 2 jsp2
1 1 k2

1 d 2 sp2
2 1 k2

2 djddd , (4)

where hmym ­ y1 defines the unit vectorhm. y2eff includes theO sg2d effective interactions generated by th
similarity transformation. The effective interactions generated to this order contain one-body and two-body ope
In particular, the effective one-body quark operator is:

aLCF

2pP1

Ω
2

P1

P 1
L2 ln

µ
P1

eP 1

∂
1 2

P1

P 1
L2 ln

x2
a

P1

P 1 L2

xa
P1

P 1 L2 1 M2
2

3
2

P1

P 1
L2 1

1
2

M2 P1

P 1 L2

xa
P1

P 1 L2 1 M2

1 3
M2

xa
ln

M2

xa
P1

P 1 L2 1 M2

æ
, (5)
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where xa ­ p1
a yP1 is the longitudinal fraction of the

momentum carried by the constituent under considerat
M is its mass,P1 is the total longitudinal momentum
of the state,P 1 is the longitudinal scale required in th
cutoff by dimensional arguments, ande is an infrared
cutoff which is to be taken to zero. The divergence
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the effective one-body operator exactly cancels agai
divergence in the effective two-body operator if the s
is a color singlet [2].

The effective two-body operators have the follow
matrix elements between states containing a quark$pi and
an antiquark:
2 g2
Lusp2, s2dgmusp1, s1dysk2, l2dgnysk1, l1dkTaTbl

3

∑
1

q1
Dmnsqd

µ
usjD1j 2 L2yP 1dusjD1j 2 jD2jd

D1
1

usjD2j 2 L2yP 1dusjD2j 2 jD1jd
D2

∂∏
, (6)
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where Dmnsqd ­ sq'2yq12dhmhn 1 s1yq1dshmq'
n 1

hnq'
m d 2 g'

mn is the gluon propagator in light-front gauge
D1, D2 are energy denominatorsD1 ­ p2

1 2 p2
2 2 q2

and D2 ­ k2
2 2 k2

1 2 q2. It has been shown thatHeff

contains a logarithmic confining interaction in addition
the Coulomb interaction [2].

This is the output of the second order similari
transformation forqq matrix elements.

For the purpose of bound-state calculations, we s
the effective Hamiltonians3d into H0, which is solved
nonperturbatively, andV ­ Heff 2 H0. First, we make a
nonrelativistic reduction of the effective Hamiltonians3d.
In the nonrelativistic limit, the light-front scaleL2yP 1

is naturally replaced byL ; sL2yP 1dsP1y2Md, where
M is the mass of the heavy quark, andL carries the
dimension of mass [3]. Further, light-front momenta a
naturally replaced by center-of-mass equal-time mome
in the nonrelativistic limit [3].

The spin-independent part of the two-body effective
teractions includes a short-range Coulomb potential a
a rotationally noninvariant long-range logarithmic pote
tial. The confining potential arises due to an incomple
cancellation of instantaneous gluon exchange, and it c
fines both quarks and gluons. The confining potential i
complicated function but in the nonrelativistic limit it ca
be double Fourier transformed (for longitudinal and tran
verse separation), and expanded in even Legendre p
nomials [3].

For H0 we choose the nonrelativistic reduction of th
kinetic energy, the effective one-body operators, Coulo
potential and rotationally symmetric part of the confinin
potential with constituent masses. The HamiltonianH0 is
,
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H0 ­ 4M

∑
2

1
2m

$=2 1 S̃ 2
CFa

r
1

CFaL

p
V0sL rd

∏
,

(7)

wherem is the reduced mass,$r is an equal-time separa
tion between the quark and the antiquark, andV0sL rd is
the angular average of the confining potential genera
by the similarity transformation. It depends only on th
separation of the quarks:

V0sLrd ­ 2 ln R 2 2CisRd 1 4
SisRd

R
2 2

s1 2 cosRd
R2

1 2
sinR

R
2 5 1 2g , (8)

whereR ; Lr andg is Euler constant.S̃ contains the
finite shift produced by the self-energies after subtracti
terms needed to make the confining potential vanish at
origin:

S̃ ­
aCFL

p

∑µ
1 1

3M
4L

∂
ln

µ
M

L 1 M

∂
1

1
4

M
L 1 M

1
5
4

∏
. (9)

The remaining part of the effective Hamiltonian,V ,
contains, among other terms, emission and absorpt
of low energy gluons. Interactions that change partic
number enter at second-order bound-state perturba
theory, which requires solutions to the nonperturbati
three-body bound-state problem.

V also contains a rotationally noninvariant part of th
effective confining potential. Our choice ofH0 does not
lead to any first-order corrections toS states due to the
1229
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rotationally noninvariant part of the potential, and for an
l fi 0 state it minimizes the number of terms which giv
nonzero corrections, thus making the calculations easie

The spin-dependent part of the two-body effectiv
operators is included inV , and it is treated in first-
order bound-state perturbation theory. We will consid
only the spin-spin hyperfine splitting in the ground stat
because it can be calculated using the lowest or
effective Hamiltonian [6]. After a change of the spino
basis [6], the spin-spin part of the two-body effectiv
interactions is

yspin ­ 4s2Md2aCFL 3

∑
8p

3
d3s $Rd 1

2
p

fs $Rd
∏

3
1

4M2
$sa ? $sb . (10)

The function fs $Rd is rotationally noninvariant with
respect to the angleu. Its angular average is

kfsRdl ­
2
3

∑
sinR

R3 2
2s1 2 cosRd

R4

∏
. (11)

This completes our discussion onH0 andV .
We now want to solve nonperturbatively the eigenval

problem forH0:

H0jPlL ­ M2jPlL , (12)

whereM2 is the invariant mass of the bound state. W
assume that the scaleL is small enough so that the stat
is dominated by itsqq component [3], i.e.,

jPlL ­
Z d2k'dx

2s2pd3
p

xs1 2 xd
csk', xdbydyj0l . (13)

Let the mass of the bound state be

M2 ­ s2Md2 1 4ME , (14)

which definesE.
The eigenvalue problem for the HamiltonianH0 leads

to a dimensionless Schrödinger equation [3]:∑
2

d2

d $R2
1 c

µ
1
p

Vconfs $Rd 1 VCoulsRd
∂∏

cs $Rd

­ ecs $Rd , (15)

where

c ;
2maCF

L
, (16)

e ;
2msE 2 S̃d

L 2
. (17)

In Ref. [3] we show the dimensionless eigenvaluee for
a few low-lying states, forc ranging up to 1. From the
ratio of the splittings between 1S and 1P, and 1P and
2S charmonium states, we find thatc should be around
0.6. For charmonium, we find values of the quark ma
Mc, the cutoffL, anda ­ g2y4p so that (i)c ­ 0.6 (or,
equivalently, the ratio of the 1S-1P splitting to the 1P-2S
splitting is roughly correct), (ii) the mass of the groun
state isM1S ­ 3.0 GeV, and (iii) the mass of the lowes
1230
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lying P state isM1P ­ 3.5 GeV. Note that these values
are reasonable approximations given the magnitude
known corrections. We obtainMc ­ 1.5 GeV, a ­ 0.5,
andL ­ 1.7 GeV. Similarly, for bottomonium we require
c ­ 1.0, M1S ­ 9.4 GeV, andM1P ­ 9.9 GeV leading
to a bottom quark massMb ­ 4.8 GeV, a ­ 0.4, and
L ­ 3.5 GeV. It is important to note that this coupling
need not run exactly likeaMS or alattice.

With the parameters fixed, we can predict the hyperfi
splitting in the charmonium ground state using Eq. (10
The functionfs $Rd is rotationally noninvariant, but atc ­
0.6 the violation of rotational symmetry is negligible. We
predict that the splitting between the ground state vec
and singlet in charmonium is0.13 GeV, in reasonable
agreement with experiment (0.118 6 0.002 GeV).

Next, we evaluate corrections due to the rotationa
noninvariant part of the confining potential. There a
first-order corrections to theP state, and theS state is
corrected in second-order bound-state perturbation theo
Corrections to the ground state are consistently a f
percent even forc as small as0.1. Corrections to the
excited states atc ­ 0.6 and c ­ 1.0 are about 30%.
This is a reasonable starting point because corrections
one higher power ofa are of this same order.

In conclusion, the logarithmic confining potential whic
arises at second order is a promising starting point
QCD calculations. Corrections to the energy levels d
to rotational symmetry violating terms in this potential a
negligible for the ground state, and for the lowest excit
states they are small enough that corrections from high
order terms may restore rotational symmetry. This calc
lation is not intended to compete with phenomenologic
constituent quark model calculations. It is intended as
initial crude step toward an accurate first principles, ligh
front QCD calculation.
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