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Driving a damped, anharmonic oscillator produces stable, steady-state excitations according to
familiar classical description. A quantum mechanical description, however, shows the surprising re
that such excitations are intrinsically unstable, and can be much smaller than classical expecta
We illustrate by calculating the motion of one electron in a magnetic field. This physically realiza
system is among the simplest of nonlinear systems, being anharmonic because of special relativit
being damped by the spontaneous emission of synchrotron radiation. [S0031-9007(96)01725-5]

PACS numbers: 03.65.Bz
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The damped anharmonic oscillator (DAO) gives inte
esting quantum interference [1] even when coupled t
thermal reservoir [2,3]. Classical and quantum analy
agree that the energy of the undriven DAO damps ex
nentially at the classical decay rategc. When a driving
force is applied to the oscillator near its resonance, fam
iar classical analysis [4] shows the driven DAO is bistab
(after the transients die away on a time scale ofg21

c ) with
either a large or a small steady-state excitation. A quan
analysis is more challenging, and only correlation fun
tions fort ! ` have been obtained analytically so far [5
The calculation reported here shows the surprising res
that the large driven excitation of a DAO is intrinsicall
unstable on a time scale longer thang21

c (but well short of
t ! `), that observable excitations can be orders of m
nitude smaller than classical expectations, and that the
ble, classical limit is attained only for a strong driving forc
and not for large excitations alone. These features are
lated to a metastable quantum distribution which we sh
extends into regions of phase space in which the DAO
classically unstable. These metastable “dressed cohe
states of the anharmonic oscillator” are “dressed” by
presence of the driving field, and are “coherent states
that they oscillate like a classical anharmonic oscillat
Unlike the familiar coherent states of the harmonic oscil
tor [6–8], these states are not minimum uncertainty pa
ets. They are slightly “squeezed” in amplitude, but a
extended in phase.

A one-electron cyclotron oscillator is an example of
DAO. Its anharmonicity comes from special relativity, an
it damps via the spontaneous emission of synchrotron
diation. A good approximation has been experimenta
realized with one electron in a 4.2 K Penning trap [9
and we use typical experimental values to illustrate t
theoretical study. The electron has a cyclotron freque
vcsgd ­ vcyg ø 2p (150 GHz) for a 5.8 T magnetic
field directed alonĝz. The relativistic factorg ­ 1 1

Kymc2 (whereKymc2 is the electron’s kinetic energy ove
its rest energy) makes the motion anharmonic insofar
vcsgd depends upon excitation energy. The cyclotron
cillator would radiate into free space with a classical dam
0031-9007y97y78(7)y1211(4)$10.00
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ing rategc such thatgcy2p ­ 2 Hz, but this spontaneous
emission rate is enhanced or inhibited insofar as the el
tron cyclotron oscillator radiates into a surrounding m
crowave cavity [10] that is typically at temperature 4.2 K

The starting point for our quantum analysis is the fa
miliar harmonic oscillator HamiltonianHc ­ h̄vcsaya 1
1
2 d. The energy eigenstatesjnl with n ­ 0, 1, . . ., often
called number states, are equally spaced in energy byh̄vc.
A coherent statejal of the harmonic oscillator is a su-
perposition of number states which is an eigenstate of
lowering operatora with eigenvaluea [6–8]. A coherent
state has a Gaussian spatial distribution which oscilla
just like a classical harmonic oscillator, and is a minimu
uncertainty state which does not spread in time. Its ene
is h̄vcsjaj2 1 1y2d and average principal quantum num
ber isn̄ ­ jaj2. For the one-electron cyclotron oscillato
Resad , kyxl , 2k yl and Imsad , 2kyyl , 2kxl so
thata in the complex plane locates a point in phase spa
Figure 1(b) represents a coherent stateka0l with n̄ ­
ja0j

2 ­ 50. We plot the square of its projectionjkaja0lj2
upon a coherent statejal for eacha in the complex plane.
This is a special case of theQ distribution [7,8,11] for
a pure state with density operatorr ­ ja0l ka0j. As in
an early comparison of (undamped and undriven) clas
cal and quantum oscillators [12], we use the generalizat
Qsad ­ kajrjal to represent mixed states.

FIG. 1. Energy levels of the anharmonic oscillator (a
Steady-stateQ distributions for dressed coherent states o
driven harmonic (b) and anharmonic (c) oscillators wit
n̄ ­ 50, as a function of position in phase space,a, in a frame
rotating with the driving forceF.
© 1997 The American Physical Society 1211
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The anharmonic oscillator Hamiltonian differs by th
addition of a term quadratic inHc,

Haho ­ Hc 2
d

2vc

H2
c

h̄vc
. (1)

Number states are still energy eigenstates, and
constantd is the difference in the transition frequenc
between adjacent pairs of levels [Fig. 1(a)]. For t
one-electron cyclotron oscillator the relativistic anha
monic shift per quantum of excitation is extremely sma
with dyvc ­ h̄vcymc2 ø 1029. Cyclotron frequency
measurements with this accuracy can be imagined, a
quantum description is indicated, because transitions
tween lowest levels are well resolved withgcyd ø 1022.

A classical driving forceF ­ F0fx̂ cossvtd 1 ŷ sinsvtdg
is included by adding

Hdrive ­
1
2

h̄VRfeisvt2py2da 1 e2isvt2py2dayg (2)

to the Hamiltonian. The drive strength is given by the Ra
“frequency” VR ­ F0

p
2ymh̄vc. A drive resonant with

number statesjnl and jn 2 1l makes population oscillate
between these two levels at frequencyVn ­ VR

p
n, with

VR thus pertaining to the lowest two states. A suitab
rotating electric field produces such a driving force for t
one-electron cyclotron oscillator, andVR is proportional
to the drive amplitude.

Damping is added using the Markov approximati
to produce a master equation describing the evolu
of a system that is coupled to a reservoir [7,8]. T
one-electron cyclotron oscillator system is coupled w
coupling constantgc to a reservoir which is the QED
vacuum along with blackbody radiation at temperatureT .
A density operatorrstd is required because the loss
coherence to the reservoir changes any system pure s
to mixed states. The master equation is

≠r

≠t
­ 2

i
h̄

fHaho 1 Hdrive, rg

1
1
2

gcs2aray 2 ayar 2 rayad

1 N̄gcsayra 1 aray 2 ayar 2 raayd . (3)

The constantN̄ is a measure of the temperature of t
reservoir. ForT ­ 0 K we have N̄ ­ 0, while T ­
4.2 K givesN̄ ­ 0.2. When the oscillator is only excited
and deexcited by blackbody radiation and spontane
emission,n̄ ­ N̄ .

With no driving force (i.e.,VR ­ 0), the quantum me-
chanical solution for a DAO is known [1–3]. An initially
peakedQ distribution of a DAO spreads in phase b
cause anharmonicity makes the lower and higher ene
parts of the distribution rotate at different rates. Wh
the phase extent exceeds2p, the ring-shaped distribution
interferes with itself. Damping washes out the interfe
1212
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ence and makes the distribution evolve toward the cen
of the phase space. ForT ­ 0 the distribution eventually
becomes the Gaussian distribution of a coherent state
tered at the origin.

With no anharmonicity (i.e.,d ­ 0), the driven motion
of a damped harmonic oscillator (DHO) is also well know
[7]. Transients die out within several damping times, lea
ing the T ­ 0 K oscillator in a coherent state of th
harmonic oscillator, as illustrated in Fig. 1(b). This di
tribution is stationary in the reference frame which rotat
at the drive frequencyv, with a fixed phase (with respec
to that of the classical driving forceF) that depends upon
v 2 vc. The dressed (by the drive) coherent state of t
T ­ 0 K harmonic oscillator is simply a familiar coheren
state of the undriven harmonic oscillator.

When anharmonicity and an external driving force a
both present, we solve the master equation numeric
[13], starting typically from a coherent state of the co
responding harmonic oscillator. A finite base of num
ber states is kept large enough so that the highest en
state is never populated appreciably. Figure 1(c) show
Q function for a strongly driven DAO (withVR ­ 28d,
v 2 vc ­ 248.5d, andn̄ ­ 50) after the transients have
died out on the time scale ofg21

c . For time intervals less
than106g21

c , this wave packet does not change noticeab
(though we shall later see that it does decay on longer t
scales). Because of the anharmonicity, it is spread in ph
compared to its harmonic counterpart [Fig. 1(b)]. It is al
stationary in the frame that rotates with the drive atv,
with a mean phase that depends uponv 2 vcsgd. This
metastable state is what we call a dressed coherent sta
the anharmonic oscillator.

The energy width of the driven anharmonic oscillator
wave packet is slightly squeezed (i.e., amplitude sque
ing). The energy uncertaintȳhvcDn is given by the fa-
miliar sDnd2 ­ ksayad2l 2 kayal2. For the one-electron
oscillator we find thatDn is proportional to the “minimum
uncertainty value”

p
n̄ for a coherent state of the harmoni

oscillator, andDn is independent of drive strength an
small changes in damping. The proportionality consta
is 0.7 forT ­ 0 K, but is 20% larger forT ­ 4.2 K.

The phase widthDf in Fig. 1(c) is clearly larger than
for a coherent state of a driven harmonic oscillator
Fig. 1(b), but narrows with increasing drive strengthVR

as illustrated in Fig. 2(a). In the absence of an ope
tor whose average value gives the phase spread, we
Df to be the half-width of theQ distribution in the
azimuthal direction. (A comparable procedure gives a
liable measure ofDn.) Anharmonicity makes the highe
and lower energy parts of the distribution rotate at diffe
ent frequencies, givingDf ­ sDnddtspread. The phase
spreads for a timetspread which is on the order of the period
for “quantum collapse and revival” which is observed (e.
Fig. 3) during the damping to the steady state. The u
driven DAO revives with period2pyd [1–3]. However,
the calculation shows that the driven DAO withVR . d
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FIG. 2. Phase width (a) and loss rate (b) for dressed coher
states of the anharmonic oscillator, for30 # n̄ # 90 and3d ,
VR , 38d.

revives on the much shorter time scalepy
p

Vnd, indepen-
dent of Dn. This suggests thatDf , Dn

p
dyVn. The

solid curve in Fig. 2(a) shows a good fit of this equation
individual calculations (points), with proportionality con
stant approximately equal to 1.

A most striking difference between the dressed cohere
states of the harmonic and anharmonic oscillators is th
the dressed coherent states of the DHO [e.g., Fig. 1(b)]
completely stable while the dressed states of the DAO [e
Fig. 1(c)] are intrinsically unstable. The strongly drive
packet in Fig. 1(c) seems stable, but close inspection sho
it decays at the extremely slow rate of2 3 1026gc. A
weaker driveVR ­ 4d, however, allows loss of the driven
excitation at a rate ofgcy4 (Fig. 4). The coherently driven
excitation maintains a stable shape, but population
clearly being lost to a symmetric inner ring which eventu
ally damps to a peak in the center of phase space. Wh
the loss rate is low, it is easiest to get this rate directly fro
the decay ofn̄, andDn from the operator average value
mentioned. For high loss rates, however, we isolate t
coherently excited part of the density operator to determi
its loss rate andDn.

The calculated loss rategloss depends dramatically upon
both the drive strengthVR and the level of excitation̄n.
Figure 2(b) shows

glossygc ~ e22VnyfdsDnd2g , e24VRysd
p

n̄ d, (4)

so that increasing the drive strength by only a factor of
decreases the loss rate by106 (when the same excitation̄n
is maintained by adjustingv). Increasing the excitation̄n
(by adjustingv with VR fixed) also increases the loss rate
demonstrating clearly that a large excitation by a classic
drive does not necessarily give a stable classical lim
A sufficiently strong drive is also required. Quantum

FIG. 3. Q distribution for a strongly driven DAO (VR ­
28d, v 2 vc ­ 248.5d) collapses from and revives to a
coherent state of the harmonic oscillator withn̄ ­ 50 in a short
time py
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FIG. 4. Qsad for a weak drive (VR ­ 4d, v ­ vc 2 50.2d)
decays at rategloss ø gcy4 despite a large initial excitation to
n̄ ­ 50, in sharp contrast to the stability expected classically

fluctuations are larger for larger excitationsn̄. If one
imagines these to be due to an effective stochastic fo
then only when the classical driving force is stronger th
this “fluctuation force” can the classical limit be attained

Quantum distributions are superimposed upon a cl
sical stability diagram in Fig. 5. The strongVR ­ 28d

drive of Fig. 1(c) and Fig. 3 is represented in Fig. 5(a
and the weakVR ­ 4d drive of Fig. 4 is represented in
Fig. 5(b). A classical excitation to any point in the shad
region of phase space remains excited, damping to
steady-state attractor “A.” Excitations to all other poin
in phase space damp to the essentially unexcited att
tor marked “C,” and “B” is an unstable equilibrium poin
Actually, only the beginning of a shaded spiral which co
tinues encircling itself is shown because the shaded
unshaded bands get too closely spaced to be visible ex
in the magnified views. Superimposed are the (dash
contours at which the metastable quantumQ distributions
fall to 10% of their maximum values. TheQ distribution
for the strong drive mostly fits inside the classically st
ble region in Fig. 5(a), but the broadened distribution f
the weak drive in Fig. 5(b) spills over substantially int
the classically unstable region of phase space. A cla
cal distribution, broadened by thermal or other stochas
fluctuations to fill the phase space area of the quant
distribution, would thus be similarly unstable. A sem
classical solution for the driven DAO (as proved usef
for the undriven Kepler problem [14]) might provide
deeper understanding of these features.

FIG. 5. QuantumQ distributions (10% contours are dashed
superimposed upon classical stability diagrams for a stron
(a) and weakly (b) driven DAO as described in the text.
1213



VOLUME 78, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 FEBRUARY 1997

t

b

a

c
(
e

e

)
d

s

n

ly
m
o
t

c

o
m

,
al
hat

st
g
m
de
l-

ady
ce.
er
of

-
nd
rk
T

g,
a-

t.

,

l.
Observable steady-state excitations can be dramatic
smaller than classical expectations because of the quan
instability. For a given drive strengthVR, the maximum
classical excitation is given by

n̄max ­ Kyh̄vc ­ sVRygcd2 (5)

when the drive is resonant with the shifted cyclotro
frequency. In sharp contrast, quantum instability adds
condition [from Fig. 2(b) forgc # d]

n̄qi
max ­ asVRydd2. (6)

The proportionality constanta is a logarithmic function
of the time that an excitation must persist for it to be o
served, and is a function of temperatureT . If an excitation
must persist on average for 1 s to be observed (i.e.,glossy
gc ø 1021), thena ­ 1.4 for T ­ 0 K, and 0.7 for 4.2 K.
In this case, the quantum instability condition [Eq. (6
limits any observable excitation of the one-electron c
clotron oscillator to a remarkable1024 of the classical
expectation in Eq. (5), sincēnqi

maxyn̄max ­ asgcydd2 ø
1024. Such a large discrepancy between classical
quantum descriptions is not observed with ordinary clas
cal oscillators (e.g., a weight and a slightly overstretch
spring) because typicallygc ¿ d for such oscillators, in
which case the extra quantum condition Eq. (6), dedu
for smaller damping, is already less stringent than Eq.

The quantum condition makes some experiments l
straightforward than previously thought—those that se
to probe the quantum structure of a one-electron oscilla
[9,15] and measurevc at accuracyd. Maintaining a de-
tectable excitation at̄n ­ 50 for 1 s, for example, requires
a drive strengthVR ø 9d. This unfortunately is also the
resolution which can be attained when probing the low
states. (The uncertainty principle relates the limited tim
spent in the lowest state,V

21
R to an energy uncertainty.

The apparent cyclotron frequency also shifts. For a wi
and shift large compared tod, both a high signal-to-noise
ratio and a model of the shift are required to distingui
number states and determinevc to accuracyd.

One less straightforward possibility is to achieve a o
d accuracy with aVR ø d drive, which is then increased
in strength to make the excitation persist for detectio
Another is to detect an excitation much more quick
using another motion of the electron as a 1 bit me
ory as has been demonstrated [16]. Detailed calculati
[13,17] confirm these and other possibilities to resolve
quantum structure, even with stochastic fluctuations invc

added to eliminate the biggest difference between the
culation discussed so far and experiments at 4.2 K. N
experiments at much lower temperatures (e.g., electr
recently confined at 50 mK [18]) should remove the co
plication of fluctuations.
1214
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In summary, a quantum calculation of the driven
damped, anharmonic oscillator coupled to a therm
reservoir reveals dressed coherent states of the DAO t
differ in crucial respects from their familiar harmonic
counterparts and from classical expectations. Mo
striking are their instability, the need for a strong drivin
force to approach a stable classical limit, and maximu
observable excitations that can be orders of magnitu
lower than classical expectations for experimentally rea
izable systems. A classical analysis represents a ste
state, driven excitation as a single point in phase spa
Quantum fluctuations make the oscillator occupy a larg
area in phase space, an area extending into regions
phase space which are classically unstable.
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