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Dressed Coherent States of the Anharmonic Oscillator
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Driving a damped, anharmonic oscillator produces stable, steady-state excitations according to the
familiar classical description. A quantum mechanical description, however, shows the surprising result
that such excitations are intrinsically unstable, and can be much smaller than classical expectations.
We illustrate by calculating the motion of one electron in a magnetic field. This physically realizable
system is among the simplest of nonlinear systems, being anharmonic because of special relativity and
being damped by the spontaneous emission of synchrotron radiation. [S0031-9007(96)01725-5]

PACS numbers: 03.65.Bz

The damped anharmonic oscillator (DAO) gives inter-ing ratey. such thaty. /27 = 2 Hz, but this spontaneous
esting quantum interference [1] even when coupled to &mission rate is enhanced or inhibited insofar as the elec-
thermal reservoir [2,3]. Classical and quantum analyseon cyclotron oscillator radiates into a surrounding mi-
agree that the energy of the undriven DAO damps expoerowave cavity [10] that is typically at temperature 4.2 K.

nentially at the classical decay raje. When a driving The starting point for our quantum analysis is the fa-
force is applied to the oscillator near its resonance, familmiliar harmonic oscillator Hamiltonia,. = fiw.(ata +
iar classical analysis [4] shows the driven DAO is bistable%), The energy eigenstategs) with n = 0, 1,..., often

(after the transients die away on a time scale/of) with  called number states, are equally spaced in enerdiuhy
either a large or a small steady-state excitation. A quantur coherent statda) of the harmonic oscillator is a su-
analysis is more challenging, and only correlation func-perposition of number states which is an eigenstate of the
tions forr — o have been obtained analytically so far [5]. lowering operator with eigenvaluex [6—8]. A coherent
The calculation reported here shows the surprising resultstate has a Gaussian spatial distribution which oscillates
that the large driven excitation of a DAO is intrinsically just like a classical harmonic oscillator, and is a minimum
unstable on a time scale longer thgn' (but well short of  uncertainty state which does not spread in time. Its energy
t — =), that observable excitations can be orders of magis /iw.(la|> + 1/2) and average principal quantum num-
nitude smaller than classical expectations, and that the staer isi = |a|>. For the one-electron cyclotron oscillator
ble, classical limit is attained only for a strong driving force Re(a) ~ (v,) ~ —(y) and Ima) ~ —(vy) ~ —(x) so
and not for large excitations alone. These features are réhat« in the complex plane locates a point in phase space.
lated to a metastable quantum distribution which we showFigure 1(b) represents a coherent staig) with 7 =
extends into regions of phase space in which the DAO i$a|*> = 50. We plot the square of its projectidtu | ao)|?
classically unstable. These metastable “dressed coherempon a coherent state) for eacha in the complex plane.
states of the anharmonic oscillator” are “dressed” by theThis is a special case of th@ distribution [7,8,11] for
presence of the driving field, and are “coherent states” i pure state with density operatpr= |ag){ap|. As in
that they oscillate like a classical anharmonic oscillatoran early comparison of (undamped and undriven) classi-
Unlike the familiar coherent states of the harmonic oscilla-cal and quantum oscillators [12], we use the generalization
tor [6—8], these states are not minimum uncertainty pack@(a) = {(a|p|a) to represent mixed states.
ets. They are slightly “squeezed” in amplitude, but are
extended in phase. .

A one-electron cyclotron oscillator is an example of a : (a)
DAO. Its anharmonicity comes from special relativity, and n =3 —F—
it damps via the spontaneous emission of synchrotron rg, o o ——
diation. A good approximation has been experimentally 1
realized with one electron in a 4.2 K Penning trap [9], ] + w-§
and we use typical experimental values to illustrate thisn=0——
theoretical study. The electron has a cyclotron frequenc 5
w:(y) = w./y = 27 (150 GHz) for a 5.8 T magnetic  +s«
field directed along. The relativistic factory = 1 +

2 2 e kinati FIG. 1. Energy levels of the anharmonic oscillator (a).
K /mc” (wherek'/mc” is the electron’s kinetic energy over Steady-stateQ distributions for dressed coherent states of

its rest energy) makes the motion anharmonic insofar 8Friven harmonic (b) and anharmonic (c) oscillators with

o (7y) depends upon excitation energy. The cyclotron 0S5 = 50, as a function of position in phase spaae,in a frame
cillator would radiate into free space with a classical damp+otating with the driving forceF.
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The anharmonic oscillator Hamiltonian differs by the ence and makes the distribution evolve toward the center
addition of a term quadratic iH., of the phase space. F&r= 0 the distribution eventually
s K2 becomes the Gaussian distribution of a coherent state cen-
— £ (1) tered at the origin.

20 ho, With no anharmonicity (i.e.§ = 0), the driven motion

Number states are still energy eigenstates, and th@f@damped harmonic oscillator (DHO)is also well known
constants is the difference in the transition frequency L/)- Transients die out within several damping times, leav-
between adjacent pairs of levels [Fig. 1(a)]. For thelnd the 7' =0 K oscillator in a coherent state of the
one-electron cyclotron oscillator the relativistic anhar-narmonic oscillator, as illustrated in Fig. 1(b). This dis-
monic shift per quantum of excitation is extremely Sm(,i”'trlbutlon is stationary in th_e refe_rence frame WhICh rotates
with 8/w, = hw,/mc2 = 10~°. Cyclotron frequency at the drive frequencw, with a fixed phase (with respect

measurements with this accuracy can be imagined, and!g that of the classical driving forcg) that depends upon
quantum description is indicated, because transitions bé? — @c- The dressed (by the drive) coherent state of the
tween lowest levels are well resolved with/6 ~ 102, T = 0 K harmonic oscillator is simply a familiar coherent

A classical driving forcef = Fo[& codw1) + § sin(ws)] ~ State of the undriven harmonic oscillator.
is included by adding When anharmonicity and an external driving force are

both present, we solve the master equation numerically
[13], starting typically from a coherent state of the cor-
responding harmonic oscillator. A finite base of num-
o ) o ber states is kept large enough so that the highest energy
to the Hamiltonian. The drive strength is given by the Rabistate is never populated appreciably. Figure 1(c) shows a
“frequency” Qg = Foy2/mhiw.. A drive resonant with ¢ function for a strongly driven DAO (witt2z = 288,
number state$:) and|n — 1) makes population oscillate ,, — w. = —48.58,andn = 50) after the transients have
between these two levels at frequeriey = Qr+/n, with  died out on the time scale of . For time intervals less
Q thus pertaining to the lowest two states. A suitablythan106y !, this wave packet does not change noticeably
rotating electric field produces such a driving force for the(though we shall later see that it does decay on longer time
one-electron cyclotron oscillator, arfdlg is proportional  scales). Because of the anharmonicity, it is spread in phase
to the drive amplitude. compared to its harmonic counterpart [Fig. 1(b)]. Itis also
Damping is added using the Markov approximationstationary in the frame that rotates with the driveast
to produce a master equation describing the evolutioRyith a mean phase that depends upen- w.(y). This
of a system that is coupled to a reservoir [7,8]. Themetastable state is what we call a dressed coherent state of
one-electron cyclotron oscillator system is coupled withthe anharmonic oscillator.
coupling constanty. to a reservoir which is the QED  The energy width of the driven anharmonic oscillator's
vacuum along with blackbody radiation at temperatlire wave packet is slightly squeezed (i.e., amplitude squeez-

A density operatorp(t) is required because the loss of ing). The energy uncertaintjw.An is given by the fa-
coherence to the reservoir changes any system pure stai@fiiar (An)? = ((ata)?) — (ata)?. For the one-electron

Hano = H,

1 . .
Hrive = E EQR[el(wt_ﬂ-/Z)a + e_l(wt_w/Z)aT] (2)

to mixed states. The master equation is oscillator we find that\n is proportional to the “minimum
ap i uncertainty value’/7 for a coherent state of the harmonic
Py E[Hah" + Hgrive, p] oscillator, andAr is independent of drive strength and

small changes in damping. The proportionality constant
is 0.7 forT = 0 K, but is 20% larger fo" = 4.2 K.
The phase widthA ¢ in Fig. 1(c) is clearly larger than
3) for a coherent state of a driven harmonic oscillator in
Fig. 1(b), but narrows with increasing drive strengia
The constantV is a measure of the temperature of theas illustrated in Fig. 2(a). In the absence of an opera-
reservoir. ForT = 0 K we have N = 0, while T =  tor whose average value gives the phase spread, we take
4.2 K givesN = 0.2. When the oscillator is only excited A¢ to be the half-width of theQ distribution in the
and deexcited by blackbody radiation and spontaneouszimuthal direction. (A comparable procedure gives a re-
emissionji = N. liable measure oAn.) Anharmonicity makes the higher
With no driving force (i.e.Qx = 0), the quantum me- and lower energy parts of the distribution rotate at differ-
chanical solution for a DAO is known [1-3]. An initially ent frequencies, givindh¢ = (An)d7spreaa. The phase
peakedQ distribution of a DAO spreads in phase be- spreads for a timespc.a Whichis on the order of the period
cause anharmonicity makes the lower and higher energipr “quantum collapse and revival” which is observed (e.g.,
parts of the distribution rotate at different rates. WhenFig. 3) during the damping to the steady state. The un-
the phase extent exceetls, the ring-shaped distribution driven DAO revives with perio@7 /8 [1-3]. However,
interferes with itself. Damping washes out the interfer-the calculation shows that the driven DAO wifty > 6

1
+ 5 yeQRapat — atap — pata)

+ Nyc(ana + apaJr — aTap - paaT).
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2 d trate,s = y./4 d it | initial itation t
An[S/Qn]1’2 Q. /[5(an)] ecays at ratey, v./4 despite a large initial excitation to

i = 50, in sharp contrast to the stability expected classically.

FIG. 2. Phase width (a) and loss rate (b) for dressed coherent
states of the anharmonic oscillator, & < 7 = 90 and36 <
Qp < 3865. fluctuations are larger for larger excitations If one

imagines these to be due to an effective stochastic force,

revives on the much shorter time scai¢/Q, 5, indepen-  then only when the classical driving force is stronger than
dent of An. This suggests thak¢ ~ Any/8/Q,. The this “fluctuatlo'n fgrce_" can the class!cal limit be attained.
solid curve in Fig. 2(a) shows a good fit of this equation to Quantum distributions are superimposed upon a clas-
individual calculations (points), with proportionality con- Sical stability diagram in Fig. 5. The strorgr = 285
stant approximately equal to 1. drive of Fig. 1(c) and Flg. 3is rt.epres.ented in Fig. 5_(a),
A most striking difference between the dressed cohererind the weaklg = 44 drive of Fig. 4 is represented in
states of the harmonic and anharmonic oscillators is thdt!d- 5(P). A classical excitation to any point in the shaded
the dressed coherent states of the DHO [e.g., Fig. 1(b)] af€gion of phase space remains excited, damping to the
completely stable while the dressed states of the DAO [e_g;s:teady—state attractor “"A.” Excitations to all oth_er points
Fig. 1(c)] are intrinsically unstable. The strongly drivenin phase space damp to the essentially unexcited attrac-
packet in Fig. 1(c) seems stable, but close inspection showW8 marked “C,” and “B” is an unstable equilibrium point.
it decays at the extremely slow rate df< 10 5y.. A Actually, only_the .begln.nlng of a shaded spiral which con-
weaker driveQ; = 48, however, allows loss of the driven tinues encircling itself is shown because the shaded and
excitation at a rate of. /4 (Fig. 4). The coherently driven gnshaded ba}r?ds get too closely.spaced to be visible except
excitation maintains a stable shape, but population i§! the magnified views. Superimposed are the (dashed)
clearly being lost to a symmetric inner ring which eventu-contours at which the metastable quantgndistributions
ally damps to a peak in the center of phase space. Whdall t0 10% of their maximum values. Thg distribution
the loss rate is low, it is easiest to get this rate directly fronfor the strong drive mostly fits inside the classically sta-
the decay ofi, and An from the operator average value ble region in Fig. 5(@), but the_broadened d|str|t_)ut|or_1 for
mentioned. For high loss rates, however, we isolate thé® weak drive in Fig. 5(b) spills over substantially into
coherently excited part of the density operator to determinée classically unstable region of phase space. A classi-
its loss rate andz. cal distribution, broadened by thermal or other stochastic
The calculated loss ratg.ss depends dramatically upon fluctuations to fill the phase space area of the quantum

both the drive strengti)z and the level of excitation.  distribution, would thus be similarly unstable. A semi-
Figure 2(b) shows classical solution for the driven DAO (as proved useful

_ JeS _ = for the undriven Kepler problem [14]) might provide a
e e e N O deeper understanding of these features.

so that increasing the drive strength by only a factor of 8

decreases the loss rate by (when the same excitation

is maintained by adjusting). Increasing the excitatiom 10 ===

(by adjustingw with Q fixed) also increases the loss rate, -
demonstrating clearly that a large excitation by a classice 5 10
drive does not necessarily give a stable classical limit2
. . . . . E 5
A sufficiently strong drive is also required. Quantum =
-5 B
E 0
-10
-10 5
- I 0 5 0 5 10
C . Ref)
FIG. 3. Q distribution for a strongly driven DAO ({z =
286, w — w. = —48.58) collapses from and revives to a FIG. 5. Quantum@ distributions (10% contours are dashed)
coherent state of the harmonic oscillator with= 50 in a short  superimposed upon classical stability diagrams for a strongly
time 7/V/Q,.5. (a) and weakly (b) driven DAO as described in the text.
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Observable steady-state excitations can be dramatically In summary, a quantum calculation of the driven,
smaller than classical expectations because of the quantudiamped, anharmonic oscillator coupled to a thermal
instability. For a given drive strengtflz, the maximum reservoir reveals dressed coherent states of the DAO that
classical excitation is given by differ in crucial respects from their familiar harmonic

i = K /i, = (QR/%)Z (5) cognterparts qnt_j from_ classical expectations. _l\_/lost
striking are their instability, the need for a strong driving
force to approach a stable classical limit, and maximum
Bbservable excitations that can be orders of magnitude
‘ lower than classical expectations for experimentally real-
adl = a(Qg/6)>. (6) izable systems. A classical analysis represents a steady

The proportionality constant is a logarithmic function ~State, driven excitation as a single point in phase space.
of the time that an excitation must persist for it to be ob-Quantum fluctuations make the oscillator occupy a larger
served, and is a function of temperatire If an excitation ~ @rea in phase space, an area extending into regions of
must persist on average for 1 s to be observed fi,g,/ Phase space which are classically unstable.
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