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Planar Curve Representation of Many-Body Systems and Dynamics
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A method is introduced to represent many-body systems of arbitrary dimensionality by planar
curves. The positions and momenta of the particles are the parameters of a time-dependent nonlinear
transformation, which maps the many-body dynamics of the real system to the motion of the curve.
The description of the system as a point in a multidimensional phase space is thus replaced by a two-
dimensional continuous line. Expressions for the curvature along the curve and the dynamic structure
factor are obtained. The formulation holds for Hamiltonian and non-Hamiltonian systems, and two
explicit examples are analyzed: harmonic oscillators and a quadratic system. [S0031-9007(97)02340-5]
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An important theme in scientific studies is the inte
pretation and understanding of various physical theor
and formalisms in terms of geometry. This theme dom
nated the studies of giants such as Euclides, Riema
Minkovsky, and Einstein. One manifestation of this ide
in contemporary science, which focuses much attention
many fields, is the relation of partial differential equation
to symmetry groups and geometry. Another related asp
concerns the shape and motion of curves and surfac
which, besides its theoretical relevance, is also of practi
importance where the dynamics of interfaces and fro
is of interest. Examples abound in nature and in techn
logical applications: solidification processes, shock wav
kinematics of polymers, and motion of line vortices, t
name a few.

Here a different aspect of the usefulness of geome
cal representation is explored: the possibility to describ
many-body systems (MBS) as planar curves. The form
ism to be developed here has several intriguing aspe
First, it enables a low-dimensional visualizable descri
tion of systems. Second, it helps representing the s
tem’s dynamics as a moving curve, which in many cas
is more accessible to both numerical and analytical stu
Third, the correspondence between the distribution of t
particles of the MBS and the morphology of the curv
gives a new handle on statistical analysis of multipar
cles physical systems. Fourth, in many circumstance
continuous two-dimensional curve representation of a s
tem of N particles has an advantage over the tradition
view of a system as a point moving along a trajecto
in some huge 6N-dimensional phase space. An interes
ing application of this formalism is to communication
where the curve’s configuration can represent a comp
cated data and can be used as an efficient method for
reduction, storage, and presentation. In this context,
curve’s dynamics is a sequence of successive time s
configurations that correspond to a series of informati
strings. This formalism is applicable to any dynamic
system, Hamiltonian and non-Hamiltonian, describing
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set of time-dependent variables. Two examples are
plicitly discussed below.

Consider a MBS consisting of two-species particl
a and b of equal numbers. For simplicity, the system
discussed here will be assumed to have an even num
of particles, but this does not limit the formalism; a
odd number of particles can be augmented by a fictitio
extra particle with a predesigned behavior. In syste
of only one species one can generate an image of all
particles, which are then treated as the second specie
detailed below. The system is presumed to follow a
of dynamical equations

Ùqa,n ­ ga,n; n ­ 1, 2, . . . , N ; a ­ a, b . (1)
Denoting bypa,n ­ m Ùqa,n the momenta of the particles
we can construct a new set of equations by differentiat
the set (1) and replacing the momenta for the derivativ
of the positions on the right-hand side:

Ùpa,n ­ ha,ns $q, $pd . (2)
If the system is Hamiltonian, for example, the two sets$g
and $h can be cast in the form of Hamilton’s equations (s
below), which means that Eqs. (1) and (2) are deriva
from a scalar functionH. Our goal now is to represen
the MBSat any moment in timeby a planar curve whose
properties are uniquely determined by the momenta
values of the particles’ positions and momenta. T
representative curve is a complex functiongss, td whose
real and imaginary parts denote, respectively, thex and
y coordinates of the curve in a complex plane. T
parameters runs along the curve and takes on valu
between 0 and2p , and t denotes time. It is convenien
to describe the curve as the limit of a functionFsz, td,
which is defined over the entire complex plane. To th
end we consider the following conformal meromorph
map from the outside of the unit circle in the comple
z plane onto the outside of a simply connected (Jord
curve inz complex planez ­ u 1 iy,

dF
dz

­ F0 ­
NY

n­1

z 2 Qa,n

z 2 Qb,n
, (3)
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where Qa,n ­ qa,n 1 ipa,n. For brevity, denote in the
following Qa,n by Zn andQb,n by Pn. The curve is recov-
ered fromF by taking the limitgss, td ­ limz!eis Fsz, td.
We can now study the kinetics of the map by followin
the motion of the particles. Integrating Eq. (3) yields

F ­ z 1

NX
n­1

Cn lnsz 2 Pnd , (4)

where the coefficientsCn are the residues of the produc
in (3) at the pointsz ­ Qb,n,

Cn ­ sPn 2 Znd
NY

m0­1

Pn 2 Z0
m

Pn 2 P0
m

; m0 fi n .

These coefficients are independent of the spatial coo
nate z but can vary with time. The map is conformal
meromorphic, and we require therefore that it possess
branch far from the unit circle, viz.,

H
G Fdz ­ 0, where

G is a contour atz ! `. Upon integrating Eq. (3) it can
be readily found that this condition implies

NX
n­1

Cn ­ 0 , (5)

which can be shown [1] to be equivalent to requiring th
NX

n­1

Zn ­
NX

n­1

Pn . (6)

It would be appropriate to term condition (6) “dipola
neutrality” because the different species can be regar
as positive and negative charges of a charge neu
system. Equation (6) then represents the vanishing of
dipolar sum ofN two-dimensional vectors each extendin
from a positive particle to a negative, with the pair
chosen arbitrarily. The conditions of charge and dipol
neutrality are necessary for mapping the unit circle in t
z plane onto a simply-connected curve in thez plane.
Before continuing, let us make precise the definition
the second species in a one-species system: GiveK
particles, define a new particleZ0 whose dynamics are
such that the dipolar sum always vanishes,

PK
n­0 Zn ­ 0.

Now defineK 1 1 image particles byPn ­ 2Zn as the
second species (poles). The new system has2K 1 2
particles that can be described by the present formalism

The description of the curve in Fourier modes
obtained as follows: Using relation (5), expand relatio
(4) in powers ofz,

F ­ z 1
X̀
k­1

dkz2k ; dk ­
1
k

NX
n­1

CnPk
n , (7)

and take the limitz ! expsisd. Note that the quantity
dk11 can be regarded as thekth moment of the distribution
of Pn, with (complex) weightCnPn. We point out that
the time dependence of the curve enters only throu
the coefficientsdkstd. The form ofFszd in (7) is called
univalent, a class of functions whose properties are w
known. In particular, for such a function to map the un
circle onto asimply-connectedcurve, it is sufficient that
1204
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the coefficientsdk satisfy the Bieberbach requirement

jdK j # 2ysk 1 1d . (8)

This condition may be, however, too strong, an iss
that will be addressed elsewhere [2]. The above is
bare result of this paper: the mapping of a discrete M
onto an equivalentcontinuousplanar curve. Before we
continue we note that the MBS can be recovered from
kinetics of the curve: Given the equation forFsz, td, ÙF ­
F , whereF is a function ofF, =F, z, etc., perform the
following Cauchy-integral along a contour that contai
Gn ­ Zn or Pn,

1
2pi

I
Gn

ÙF 0yF0dz ­
1

2pi

I
Gn

F 0yF0dz .

This yields the equation of motion of that particle,ÙGns­
2 ÙZn or ÙPn). Thus the seeming increase in dimensional
sfinite ! infinited is an artifact of the nonlinear transfor
mation, and the continuous description contains, in fa
no information beyond the original system. One can no
translate any of the quantities that are useful for the stu
of MBS to the curve representation and vice versa. F
example, a useful measure along the curve is the curva
expressed as a function of the parameters. A straightfor-
ward calculation shows that, in terms of the positions a
momenta of the particles, the curvature is given by

kssd ­
1

jF0j

Ω
1 1 Re

NX
n­1

X
a

∑
ea

1 2 Qa,ne2is

∏æ
, (9)

where ea ­ 1s21d when a ­ as bd, represents the
“charge” of the particle. Thus the value of the curv
ture at each points along the planar curve is uniquely
determined by the particular configuration of the particl
Qa, making the planar curve description a one-to-o
representation of the particles configuration.

Another quantity is the curve’s dynamic structure fact
defined through

Ssq, vd ­
Z dsds0dtdt0

s2pd4 gss, tdgss0, t0deiqss2s0d1ivst2t0d.

(10)

Using Eq. (7) in (10) we find that

Ssq, vd ­ d̃qsvdd̃qs2vd , (11)

where d̃ksvd is the Fourier transform ofdkstd. These
two quantities can also be used for a statistical analy
of the curve’s shape and its correspondence to the in
system’s statistics.

Next we want to derive the relation between th
dynamics of the particles and the motion of the curv
Clearly, the evolution of the curve is dependent on t
kinetics of the particles through their equations of motio
(1) and (2). The evolution of the mapFsz, td is governed
by the partial differential equation

ÙF ­
NX

n­1

∑
ÙCn lnsz 2 Pnd 2 Cn

ÙPn

z 2 Pn

∏
. (12)
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Using their definition, the values ofh ÙCj can be expressed
in terms ofh ÙQaj, which in turn are given by the functions
$g and $h in Eqs. (1) and (2). Thus the entire sum on th
right-hand side of (12) can be expressed in terms of o
the momentary positions and momenta of the particl
ÙF ­ ÙFshZj, hPjd. Taking again the limitz ! expsisd in
F gives the required equation of motion ofgss, td, which
establishes the correspondence between the curve and
MBS dynamics.

Hamiltonian dynamical systems form a special class
MBS, where$g and $h are related by a scalar energy func
tion. Consider a system of twoN-particle species with the
Hamiltonian Hshqj, hpjd and canonical variableshqa,nj,
hqb,nj, hpa,nj, hpb,nj. The dynamics follow Hamilton’s
equations:

Ùqa,n ­
≠H

≠pa,n
; Ùpa,n ­ 2

≠H
≠qa,n

. (13)

In terms of the complex variablesQa,n ­ qa,n 1 ipa,n,
Hamilton’s equations can be written as

ÙQa,n ­ 2i≠Hy≠Qp
a,n ,

where Qp
a ­ qa 2 ipa is the complex conjugate of

Qa . Substituting relations (13) in (1) and (2), an
using the above formulation, gives the dynamics of t
equivalent curve. Since Hamilton’s equations, (13), ho
in any dimension with the different spatial componen
of the positions and momenta treated as independ
degrees of freedom, then the present formalism mapsany
d-dimensional systeminto a planar curve.

For illustration, let us analyze two examples: the first,
system of (canonical) harmonic oscillators. For clarit
I focus on four particles undergoing simple harmon
oscillations in one dimension:

H ­
1
2

X
a­a,b

2X
n­1

fp2
a,n 1 q2

a,ng , (14)

where the particles (and their dynamics) are symmetri
about the origin, as shown in Fig. 1. The generalizati
to higher dimensions and to more particles is straightfo
ward. The trajectories are

qa,n ­ Aa,nfxa,n 1 cosst 1 ua,ndg,

pa,n ­ Ùqa,n , (15)

where Aa,n, xa,n, and ua,n are, respectively, the am-
plitudes, the normalized central positions, and t
phases of the oscillations. Since theb oscillators are
the mirror image of thea’s at any time, the system
is automatically charge and dipolar neutral, and w
have Aa,1 ­ Aa,2 ; Aa, xa,1 ­ 2xa,2 ; xa, and
ua,1 ­ ua,2 1 p ; ua . The locations of the poles and
the zeros are shown schematically in Fig. 1 both in t
(1D) real space and in the complexq-p plane. Using
Eq. (4), we find thatC1 ­ sP2

1 2 Z2
1 dy2P1 ­ 2C2, and
e
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FIG. 1. A system of four harmonic oscillators in one dimen
sion: (a) in real space, and (b) in the complex plane.

the explicit curve trajectory is given by

gss, td ­ eis 1
P2

1 2 Z2
1

2P1
ln

eis 2 P1

eis 1 P1
. (16)

This curve is an ellipse that oscillates with time. Th
Fourier representation follows from (16):

dk ­ sZ2
1 2 P2

1 dPk21
1 yk, k odd ,

dk ­ 0, k even . (17)

From this expression it is straightforward to compu
d̃qsvd and, using (11),Ssq, vd, which turns out to consist
of a finite number of delta functions. The curvature alon
the curve is given in terms of the oscillatorsZ1 andP1 asÇ

e2is 2 P2
1

e2is 2 Z2
1

Ç Ω
1 1 2Re

∑
eis

e2is 2 Z2
1

2
eis

e2is 2 P2
1

∏æ
.

(18)
As a less straightforward example consider a quadra

dissipative dynamical system

ÙA ­ 21.55A2y3A0 1 0.2ABy3B0 ,

ÙB ­ 25.5B0A2y3A2
0 1 0.1B2y3B0 ,

(19)

with the initial conditionsAst ­ 0d ­ A0 # 1y
p

1.2025
and Bst ­ 0d ­ B0 # 1y

p
4.24. The evolution of this

system follows:

A ­ A0f2ys1 1 0.3td 2 1ys1 1 0.15tdg ,

B ­ B0f11ys1 1 0.3td 2 10ys1 1 0.15tdg .
(20)
1205
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FIG. 2. A quadratic system of two variables and their mirr
images: (a) the particles trajectories in theq-p plane; (b) the
corresponding curve evolution.

The assigned particles areZ1 ­ A 1 i ÙA ­ 2Z2 and
P1 ­ B 1 i ÙB ­ 2P2, and the curve representing th
system is then given by Eq. (16). The coefficientsdk are
given by (17) and the curvature along the curve is
1206
or

is

Ç
1 1

Z2
1 2 P2

1

e2is 2 Z2
1

Ç
3

∑
1 1 2Re

Z2
1 2 P2

1

e2is 2 sZ2
1 1 P2

1 d 1 P2
1Z2

1 exp22is

∏
.

(21)

The trajectories of the particles are shown in Fig. 2(
and the corresponding curve evolution in Fig. 2(b). Wi
time, gssd changes from an elongated twisted form (
t ­ 0) to an ellipse, while slowly rotating in the proces
As t ! ` the curve tends to a circle due to the decayi
solution.

To summarize, it was shown that anyd-dimensional
many-body system, confined to within a finite suppo
can be represented by a closed Jordan curve in a c
plex plane. The correspondence between the dynamic
the particles of the MBS and the motion of the curve w
established. It was shown that an explicit expression
the curvature along the curve in terms of the moment
distribution of the particles can be given, and the dynam
structure factor was derived. The application to Hamilto
ian and non-Hamiltonian systems was illustrated with tw
examples that were analyzed explicitly. It is emphasiz
that the dynamics of the curve, which are governed by o
partial differential equation (12), is completely equivale
to thefinite set of discrete equations$g and $h, and there-
fore should be useful in analyzing many-body systems
general. It should be noted that the conformal map us
here is only one of many that can be employed to tra
form a MBS to a curve, which makes this formalism qui
flexible. The reduction of the description to two dimen
sions, rather than the traditional huge phase space, is
pected to lead to many advantages, in particular wh
statistical analyses are relevant. The application of sta
tical mechanical tools to Hamiltonian systems within th
formalism is currently one of the issues being explore
For practical purposes, the planar curve representation
help in data reduction and storage, two key issues in
day’s computational-oriented technology. It can also
used for visual comparison between systems and for p
tern recognition by devices using visual-like processes
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