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Planar Curve Representation of Many-Body Systems and Dynamics

Raphael Blumenfeld

Cambridge Hydrodynamics, P.O. Box 1403, Princeton, New Jersey 08542
and Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 11 July 1996

A method is introduced to represent many-body systems of arbitrary dimensionality by planar
curves. The positions and momenta of the particles are the parameters of a time-dependent nonlinear
transformation, which maps the many-body dynamics of the real system to the motion of the curve.
The description of the system as a point in a multidimensional phase space is thus replaced by a two-
dimensional continuous line. Expressions for the curvature along the curve and the dynamic structure
factor are obtained. The formulation holds for Hamiltonian and non-Hamiltonian systems, and two
explicit examples are analyzed: harmonic oscillators and a quadratic system. [S0031-9007(97)02340-5]

PACS numbers: 03.20.+i

An important theme in scientific studies is the inter-set of time-dependent variables. Two examples are ex-
pretation and understanding of various physical theorieplicitly discussed below.
and formalisms in terms of geometry. This theme domi- Consider a MBS consisting of two-species particles
nated the studies of giants such as Euclides, Riemania, and b of equal numbers. For simplicity, the systems
Minkovsky, and Einstein. One manifestation of this ideadiscussed here will be assumed to have an even number
in contemporary science, which focuses much attention inf particles, but this does not limit the formalism; an
many fields, is the relation of partial differential equationsodd number of particles can be augmented by a fictitious
to symmetry groups and geometry. Another related aspeetxtra particle with a predesigned behavior. In systems
concerns the shape and motion of curves and surfacesf only one species one can generate an image of all the
which, besides its theoretical relevance, is also of practicgbarticles, which are then treated as the second species, as
importance where the dynamics of interfaces and frontgletailed below. The system is presumed to follow a set
is of interest. Examples abound in nature and in technoef dynamical equations

logical applications: solidification processes, shock waves, Gan = 8ans n=12,....,N: a=ab. (1
kinematics of polymers, and motion of line vortices, 10 penoting byp,, = mga.., the momenta of the particles,
name a few. we can construct a new set of equations by differentiating

Here a different aspect of the usefulness of geometrige set (1) and replacing the momenta for the derivatives
cal representation is explored: the possibility to described the positions on the right-hand side:

many-body systems (MBS) as planar curves. The formal- . .

i be developed here h | intrigui : Pan = han(q,p). (2)

ism to be developed here has several intriguing aspect?1r . . 2
the system is Hamiltonian, for example, the two sgts

First, it enables a low-dimensional visualizable descrip-" = = ) . .
tion of systems. Second, it helps representing the Sysalndh can be cast in the form of Hamilton’s equations (see

tem’s dynamics as a moving curve, which in many caseS€/ow), which means that Egs. (1) and (2) are derivable
is more accessible to both numerical and analytical study©™M @ scalar functiord. Our goal now is to represent

Third, the correspondence between the distribution of th&'® MBSat any moment in timéy a planar curve whose
particles of the MBS and the morphology of the curveProperties are uniquely determined by the momentary

gives a new handle on statistical analysis of multiparti-values of the particles’ positions and momenta. The

cles physical systems. Fourth, in many circumstances £Presentative curve is a complex functipfy, /) whose
continuous two-dimensional curve representation of a syd€al and imaginary parts denote, respectively, xhend
tem of N particles has an advantage over the traditional coordinates of the curve in a complex plane. The
view of a system as a point moving along a trajectoryparameters runs along the curve and tgkes on vglues
in some huge B-dimensional phase space. An interest-Petween 0 an@, andt denotes time. It is convenient

ing application of this formalism is to communication, {0 describe the curve as the limit of a functidfz, 1),

where the curve’s configuration can represent a compliwhich is defined over the entire complex plane. To this
d we consider the following conformal meromorphic

cated data and can be used as an efficient method for deft& i -2 ’
reduction, storage, and presentation. In this context, thE'@P from the outside of the unit circle in the complex
curve’s dynamics is a sequence of successive time stepPlan€ onto the outside of a simply connected (Jordan)
configurations that correspond to a series of informatiorfUrve ing complex planey et

strings. This formalism is applicable to any dynamical aF _ Fl = l—[ 2 = Qan 3)

system, Hamiltonian and non-Hamiltonian, describing a dz 0l 2= Qb
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where Qun = gan + ipan. FOr brevity, denote in the the coefficientsi, satisfy the Bieberbach requirement

following Q.. by Z, andQ,, , by P,. The curve is recov-

ered fromF by taking the limity(s,7) = lim .« F(z,1). _ - il = 2/(k +1). (8_)

We can now study the kinetics of the map by following This condition may be, however, too strong, an issue

the motion of the particles. Integrating Eq. (3) yields  that will be addressed elsewhere [2]. The above is the
bare result of this paper: the mapping of a discrete MBS

N
F =7+ Z C,In(z — P,), (4) onto an equivalentontinuousplanar curve. Before we
=l continue we note that the MBS can be recovered from the
where the coefficients’, are the residues of the product Kinetics of the curve: Given the equation (z, 1), F =
in (3) at the pointg = Q. F, where F is a function ofF, VF, z, etc., perform the
N , following Cauchy-integral along a contour that contains
P, —Z -
Cn:(Pn_Zn)l_[ 7’”; m/il’l. Fn_ZnorPn;
w=1 Pn = P, 1 . 1
These coefficients are independent of the spatial coordi- 2mi Jr F'/F'dz = i fr F'/Fldz.
natez but can vary with time. The map is conformal- ! ] o .
meromorphic, and we require therefore that it possess nbhis yields the equation of motion of that particle, (=
branch far from the unit circle, viz$; Fd. = 0, where ~ —Z, or P,,). Thus the seeming increase in dimensionality
T is a contour at — . Upon integrating Eq. (3) it can (finite — infinite) is an artifact of the nonlinear transfor-
be readily found that this condition implies mation, and the continuous description contains, in fact,
N no information beyond the original system. One can now
Z c, =0, (5) translate any of the quantities that are useful for the study
=1 of MBS to the curve representation and vice versa. For

which can be shown [1] to be equivalent to requiring that€xample, a useful measure along the curve is the curvature
N N expressed as a function of the parameteA straightfor-
Z Z, = Z P,. (6)  ward calculation shows that, in terms of the positions and
n=1 n=1 momenta of the particles, the curvature is given by
It would be appropriate to term condition (6) “dipolar 1 N €4
neutrality” because the different species can be regarded Kk(s) = 17| {1 + Re Z Z[W“ 9)
as positive and negative charges of a charge neutral n=l a o
system. Equation (6) then represents the vanishing of th¥here €. = 1(—1) when « = a(b), represents the
dipolar sum ofN two-dimensional vectors each extending charge” of the particle. Thus the value of the curva-
from a positive particle to a negative, with the pairsture at each poins along the planar curve is uniquely
chosen arbitrarily. The conditions of charge and dipoladdetermined by the particular configuration of the particles
neutrality are necessary for mapping the unit circle in thele, Making the planar curve description a one-to-one
z plane onto a simply-connected curve in tfieplane. representation of th.e particles conflgura.tlon.
Before continuing, let us make precise the definition of Another quantity is the curve’s dynamic structure factor
the second species in a one-species system: Given defined through
particles, define a new particl&, whose dynamics are _( dsds'didt’ 1N ig(s—s) Fiw(—t')
such that the dipolar sum always vanishg%.,z, — 0. 5@ @) = f Qm) (s, 0)y(s', 1)e :
Now defineK + 1 image particles by, = —Z, as the (10)
second species (poles). The new system D&Es+ 2 . . i
particles that can be described by the present formalism.Using Eq. (7) in (10) we find that
Th_e description of th_e curve in Fourier modes.is S(q, ®) = dy(w)d,(—w), (11)
obtained as follows: Using relation (5), expand relation

(4) in powers ofz where d;(w) is the Fourier transform ofli(r). These

two quantities can also be used for a statistical analysis
of the curve’s shape and its correspondence to the initial
system’s statistics.

Next we want to derive the relation between the
dynamics of the particles and the motion of the curve.
Clearly, the evolution of the curve is dependent on the

inetics of the particles through their equations of motion,
9 ) and (2). The evolution of the map(z, ) is governed

oo 1 N
F=z+ Y dz% di=-—)CP, (@
k;k k kﬂ; (7)

and take the limitz — exp(is). Note that the quantity
di+1 can be regarded as thkth moment of the distribution
of P,, with (complex) weightC,P,. We point out that
the time dependence of the curve enters only throu
the_ coefficientsd, (). The _form of F(z) in (7) is called Ilf)y the partial differential equation
univalent, a class of functions whose properties are we N .
k_nown. In pa_rticular, for such a func_:tign to map the unit F= Z |:Cn Iniz - P,) — C, P, } (12)
circle onto asimply-connectedurve, it is sufficient that - P

n=1 n
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Using their definition, the values ¢€} can be expressed
in terms of{Q.}, which in turn are given by the functions

g andh in Egs. (1) and (2). Thus the entire sum on the
right-hand side of (12) can be expressed in terms of only
the momentary positions and momenta of the particles,
F = F({Z},{P}). Taking again the limit — exp(is) in

F gives the required equation of motion fs, ¢), which
establishes the correspondence between the curve and tl
MBS dynamics.

Hamiltonian dynamical systems form a special class of
MBS, whereg and are related by a scalar energy func-
tion. Consider a system of twd-particle species with the
Hamiltonian H({g},{p}) and canonical variablegy, .},
{avn}s {Pants {Ppn}. The dynamics follow Hamilton’s
equations:

oH ) 9H
= ; p , = — .
Dan o dqan

In terms of the complex variable8,, = gan + iPan,
Hamilton’s equations can be written as

Qun = —i0H/0Q;,, ,
where Q) = ¢q, — ip, is the complex conjugate of
Q.. Substituting relations (13) in (1) and (2), and FIG. 1. A system of four harmonic oscillators in one dimen-
using the above formulation, gives the dynamics of thesion: (a) in real space, and (b) in the complex plane.
equivalent curve. Since Hamilton’s equations, (13), hold
in any dlm_en3|on with the different spatial componentsthe explicit curve trajectory is given by
of the positions and momenta treated as independent P2 _ 2 is _ p
degrees of freedom, then the present formalism naayys y(s,1) = e + —! Lin& L
d-dimensional systeinto a planar curve. _ _ _ 2Py e+ P
For illustration, let us analyze two examples: the first, al his curve is an ellipse that oscillates with time. The
system of (canonical) harmonic oscillators. For clarity, Fourier representation follows from (16):
| fo.cus_ on _four pa_rticlesl undergoing simple harmonic dy = (22 — PPk, k odd,
oscillations in one dimension:
1 2 dp =0, keven. a7)
H=— > [Pan + danl, (14)  From this expression it is straightforward to compute
a=ab n=1 d,(w) and, using (11)S(g, @), which turns out to consist
where the particles (and their dynamics) are symmetricadf a finite number of delta functions. The curvature along
about the origin, as shown in Fig. 1. The generalizatiorthe curve is given in terms of the oscillatdfs andP; as
to higher dimensions and to more patrticles is straightfor- | 2 _ 52 is is
. . e P e e
ward. The trajectories are B Yo— {1 + ZRG[ . 7 = 2“
eZzs — Z1 eZzs — Zl eZzs — Pl

dan = Aa,n[xa,n + COil + ea,n)]’ (18)
As a less straightforward example consider a quadratic

Qan (13)

(16)

Pan = éa,n s (15)

dissipative dynamical system
where A, ,, x.,, and 6,, are, respectively, the am- . )
plitudes, the normalized central positions, and the A = —1.55A%/3A¢ + 0.2AB/3B,
phases of Fhe oscnlanons’. Since th_eoscﬂlators are B = —5.5ByA2/3A2 + 0.1B%/3B,,
the mirror image of thea's at any time, the system o -
is automatically charge and dipolar neutral, and weWith the initial conditionsA(z = 0) = Ao = 1/+/1.2025
have An, = Ags = Ay, Xai = —Xu2 = Xx,, and and B(t = 0) = By = 1/+/4.24. The evolution of this
0u1 = 04, + ™ = 0,. The locations of the poles and SYStém follows:
the zeros are shown schematically in Fig. 1 both in the A= A[2/(1 + 031) — 1/(1 + 0.150)],
(1D) real space and in the complexp plane. Using 20)
Eq. (4), we find thatC; = (P} — Z})/2P, = —C,, and B = Bo[11/(1 + 0.31) — 10/(1 + 0.15¢)].

(19)
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FIG. 2. A quadratic system of two variables and their mirror
images: (a) the particles trajectories in tiep plane; (b) the
corresponding curve evolution.

The assigned particles arg; = A + iA = —Z, and
Py =B + iB = —P,, and the curve representing this
system is then given by Eq. (16). The coefficieditsare
given by (17) and the curvature along the curve is

1206

‘ L+ L= P
eZiS_le ) ,
Zi — P
X [1 + 2Re— s ZA}.
e?s — (Zi + Py) + PiZiexp s

(21)

The trajectories of the particles are shown in Fig. 2(a)
and the corresponding curve evolution in Fig. 2(b). With
time, y(s) changes from an elongated twisted form (at
t = 0) to an ellipse, while slowly rotating in the process.
As t — o the curve tends to a circle due to the decaying
solution.

To summarize, it was shown that amydimensional
many-body system, confined to within a finite support,
can be represented by a closed Jordan curve in a com-
plex plane. The correspondence between the dynamics of
the particles of the MBS and the motion of the curve was
established. It was shown that an explicit expression for
the curvature along the curve in terms of the momentary
distribution of the particles can be given, and the dynamic
structure factor was derived. The application to Hamilton-
ian and non-Hamiltonian systems was illustrated with two
examples that were analyzed explicitly. It is emphasized
that the dynamics of the curve, which are governed by one
partial differential equation (12), is completely equivalent
to thefinite set of discrete equatiors and i, and there-
fore should be useful in analyzing many-body systems in
general. It should be noted that the conformal map used
here is only one of many that can be employed to trans-
form a MBS to a curve, which makes this formalism quite
flexible. The reduction of the description to two dimen-
sions, rather than the traditional huge phase space, is ex-
pected to lead to many advantages, in particular where
statistical analyses are relevant. The application of statis-
tical mechanical tools to Hamiltonian systems within this
formalism is currently one of the issues being explored.
For practical purposes, the planar curve representation can
help in data reduction and storage, two key issues in to-
day’s computational-oriented technology. It can also be
used for visual comparison between systems and for pat-
tern recognition by devices using visual-like processes.
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