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We generalize nonlinear response theory for autonomous systems so that it describes the response
of classical many-body systems to large time-dependent external fields. Our formalism represents the
first practical application of response theory to such problems. Our expressions for the nonlinear time-
dependent response are tested against nonequilibrium molecular dynamics computer simulation. The
relation of our results to known special cases (time-dependent linear response and time-independent
nonlinear response) is discussed. [S0031-9007(97)02384-3]
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When a sufficiently weak time-dependent external fie
perturbs a classicalN-particle system, and only the linea
response need be considered, the Green-Kubo form
[1] and the linear response theory [1,2] can be applie
For the time-independent fields, the general nonline
response can be found using either of the two equival
methods, Kawasaki response formula [3] or the transie
time-correlation function (TTCF) approach [4]. Ther
have been attempts to develop a formalism for treatm
of nonlinear response to time-dependent fields [5], whi
parallels the quantum mechanical perturbation metho
and makes use of the time-ordered exponentials
the definition of propagators. However, the resultin
expressions are so complex that no one has yet succee
in testing them against either laboratory or even compu
experiments.

In this Letter we describe an entirely new approach
the treatment of nonlinear nonautonomous systems. O
approach is based on the definition of an extended ph
space in which the system becomes autonomous. T
allows the computationally efficient TTCF method to b
applied. We discuss the relation of our results to know
special cases (time-dependent linear response and ti
independent nonlinear response).

The algorithm corresponding to this extended pha
space TTCF formalism is tested using computer simu
tion of a very simple system of two colored disks interac
ing with a color sensitive, time-dependent, external fie
0031-9007y97y78(7)y1199(4)$10.00
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We compare the response of field induced changes in
hydrostatic pressure to that predicted by our theory. T
changes in the hydrostatic pressure are an entirely non
ear effect. The results provide an emphatic validation
the theory.

Somewhat surprisingly our extended TTCF approa
enables the calculation of these time-dependent effe
with greater computational efficiency than direct obse
vation. This improved efficiency is apparent even in th
presence of very strong applied fields.

We consider a general isokineticN-particle system sub-
ject to a time-dependent external field which is introduce
at t ­ 0. The equations of motion of such a system are

Ùqi ­ piym 1 CisGdFestd ,

Ùpi ­ Fi 1 DisGdFestd 2 api ,
(1)

where the Gaussian thermostat multipliera, given by

a ­

P
i

Fi ? piymP
i

p2
i ym

1

P
i

Di ? piymP
i

p2
i ym

Fe , (2)

constrains the peculiar kinetic energyK ­
P

i p2
i y2m to

be a constant of motion. The state of the system can
represented by a point in the phase spaceG spanned by
fqi , pi si ­ 1, . . . , Ndg. We assume that the external fiel
is periodic in time, so thatFest 1 Ted ­ Festd.

For t # 0, the external field is zero and the system
is assumed to be at equilibrium. The time-independe
© 1997 The American Physical Society 1199
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equilibrium phase space probability distribution of th
isokinetic system is

f0sGd ­
expf2bUsGdgdsssKsGd 2 K0dddR

dG expf2bUsGdgdsssKsGd 2 K0ddd
, (3)

where U is the potential energy of the system,K0 ­
dNy2b is the kinetic energy,b ­ 1ykBT where T is
the temperature,kB the Boltzmann constant, andd is the
Cartesian dimensionality of the system.

After the time-dependent external field starts actin
upon the system (att $ 0), the phase space probabil
ity distribution changes fromf0sGd towards a periodic
long time nonequilibrium distributionf` ­ f`sG, td ­
f`sG, t 1 Ted.

Therefore a nonautonomous system features two diff
ent types of time dependence. The first one arises fr
the approach to the long time distribution through a s
quence of transient states, which is analogous to the c
of autonomous systems. The second type of time dep
dence arises from the fact that the long time distributi
itself is time dependent.

This complex picture [5], can be simplified by incorpo
rating a new variable

wstd ­ w 1 vt , (4)

which is directly proportional to time, into the equation
of motion (1)

Ùqi ­ piym 1 CisGdFeswd ,

Ùpi ­ Fi 1 DisGdFeswd 2 api , (5)

Ùw ­ v .

The new variablew is the generalization of the “phase
angle” of the sine or cosine functions. Thelinear time
dependence of this additional phase space coordinat
essential for the development of the extended TTC
algorithm, because it enables one to reach exactly
prescribed values ofw after a given number of time steps
The state of the system can now be represented by a p
in extendedphase spaceG0 ­ sG, wd ­ sqi , pi , w; i ­
1, . . . , Nd. Because of the periodicity of the external fiel
Fe, it is sufficient to consider values ofw in the range
w [ f0, vTeg.

For systems governed by (5), the equilibrium e
tended phase space distributionf 0

0sG0d is uniform in w,
f 0

0sG0ddG0 ­ f f0sGdyvTegdGdw.
For systems where the long time macroscopic avera

are not sensitively dependent on the initial phaseG0 ­
sG, wd, the long time distributionf 0

`sG0d will be time
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independent, but dependent onw. This is analogous to the
approach to a unique steady state in autonomous syste
The only time dependence comes from the change
f 0

0sG0d to f 0
`sG0d when the external fieldFeswd is applied.

Clearly this lack of sensitivity to the initial phase will
eventually break down if the external field is sufficiently
strong. We do not consider such systems here.

Let us consider a phase variableBsGd which is a
function ofG, and which by definition does not explicitly
depend on time, or therefore on the additional phase spa
coordinatew. Although BsGd is solely a function ofG,
we can see from the equations of motion (5) that the pha
G that the system evolves to at timet, namelyGstd, is a
function of the initialextendedphaseG0 ­ sG, wd. Thus
it is more revealing to writeBstd ­ BsssGst; G, wdddd. In
order to know the value of a phase function at timet,
in addition to the elapsed time, we need to specify th
initial phase vectorG and the initial phase anglew of the
external field.

The average over extended phase space ofB, taken at
time t, is

kBstdl0 ­
Z

dG0f 0sG0, tdBsGd

­
Z

dG0f 0sG0, 0dBsssGst; G0dddd

­
Z

dG0f 0
0sG0dBsssGst; G, wdddd

­
Z

dGdw
f0sGd
vTe

BsssGst; G, wdddd , (6)

in the Schrödinger and Heisenberg pictures, respective
As the equilibrium distributionf 0

0sG0d is known and given
by (3), it is simpler to use the Heisenberg picture. Usin
the definition of the dissipative fluxJ [6],

b
X

i

fCisGd ? Fi 2 DisGd ? piymg ; bJsGd ,

and the adiabatic incompressibility of phase space con
tion [6] sAIGd, one can show that since

kBfGst; wstd ­ wPdgl ­ kBsssGstdddddssswstd 2 wPdddl0

­ dG0f 0
0sG0dBsssGst; G, wdddd

3 dsw 2 wP 1 vtd , (7)

averages taken over the standard phase spaceG for a
particular value ofw ­ wP at time t are given by
kBfGssst; wstd ­ wPdddgl ­ kBfGsss0; ws0d ­ wPdddgl 2 b
Z t

0
dsFeswP 2 vsd

3 kBfGssss; wssd ­ wPdddgJfGsss0; ws0d ­ wP 2 vsdddgl . (8)



VOLUME 78, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 FEBRUARY 1997

f

s

e

e

f

e
n
ith
e
al
The average valuekBsssGstd; wstd ­ wPdddl in (8) means
the average over all values of the phaseG, at the timet,
for a particular chosen constant valuewP of the phase
angle at timet, wstd; wstd ­ wP . If all possible values
of wP from the interval f0, vTeg are substituted into
(8), the dependence ofkBsssGstd; wstd ­ wPdddl on wP at
the timet can be found. It should be pointed out tha
this dependence cannot be obtained by direct calculatio
from a set of trajectories starting from thesingle initial
value of ws0d. Such a set could only give the value o
kBsssGstd; wstd ­ w0 1 vtdddl at the timet, kBsssGst 1 dtd;
wstd ­ w0 1 vst 1 dtddddl at the timet 1 dt, etc. It
should also be observed that in the integrals on bo
sides of (8)wssd is a constant equal towP . However,
as the times changes, trajectories which contribute to
the correlation function at some particular value ofs
change. For different timess they start at different initial
values ofw0 ­ wP 2 vs. Therefore, in order to find the
evolution ofkBsssGstd; wstd ­ wPdddl for the chosen value of
wstd ­ wP , we need to know the behavior of trajectorie
with all possible initialws0d at all previous times.

The expression (8) is the general expression for th
nonlinear response to a time-dependent external fie
For time-independent fields, there is now dependence
in the distribution function, and all extended phases th
differ only in the extended phase space coordinatew

become identical, so that (8) reduces to the TTCF formu
for autonomous systems [1]. The linear time-depende
response formula [1], applicable in the low amplitud
and high frequency limit, is obtained from (8) if the
equilibrium correlation function is substituted for the
transient correlation in the integrand of (8).

This formalism is illustrated by the example of
nonequilibrium molecular dynamics simulation of a
system of two disks with periodic boundary conditions
subject to a time-dependent color field [7].

The interactionFi between disks is characterized by
the WCA (Weeks-Chandler-Anderson) potential [8]. In
this work the effective diameter of the diskss, the depth
of the potential well of the corresponding Lennard-Jone
potential´, and the particle massm are all set to unity.

The disks differ by color labels,ci ­ s21di , i ­ 1, 2,
which determine the interaction of each disk with th
external color fieldFcstd acting in thex direction. We
assume a sinusoidal time dependence of the color field
t . 0, Fcstd ­ F0 sinsw0 1 vtd.

The additional coordinatew is defined from (4) so that
the equations of motion fort . 0 in extendedphase space
G0 ­ sqi , pi, wd, i ­ 1, 2 are

Ùqi ­ piym ,

Ùpi ­ Fi 1 iciF0 sinw 2 api ,

Ùw ­ v , (9)

with the thermostatting terma given by (3).
In this system the dissipative flux is given byJ ­P
i­1,2 ci Ùxi, and the response of the hydrostatic pres
t
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P ­
1
2

sPxx 1 pyyd

­
1

2V

ø NX
i­1

µ
p2

xi 1 p2
yi

m
1 xiFxi 1 yiFyi

∂¿
, (10)

FIG. 1. The direct simulation and TTCF results for th
pressure in the periodic color field. Both the direct simulatio
and the TTCF results show that the pressure oscillates w
twice the frequency of the color field. The amplitude of th
pressure oscillations changes in time from zero to the fin
value. (a) Pressure as a function ofw at different times.
(b) Pressure at a constant value ofw. (c) Pressure as a function
of time for ws0d ­ 0.
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to a sinusoidal color field was monitored as a functio
of the anglew and timet. The response was calculated
from (8) with B replaced byP.

The simulations were done at a densityr ­ NyV ­
0.396850 and at a temperatureT ­ 1.0, using the fourth-
order Runge-Kutta method of integration of the equatio
of motion (9) with a time step ofdt ­ 0.002.

The simulations were carried out for2 3 50 000 ini-
tial phases from the isokinetic equilibrium ensemble, fo
each of the 100 initial values ofws0d, and for a time
0 , t , 5. From each starting phaseG ­ sqi , pid, an
additional starting point was generated using the tim
reversal mappingMT sGd ­ sqi , 2pid, in order to im-
prove the statistics and to reduce the systematic err
This additional starting phase point ensures that the a
erage initial current is identically zero.

The equilibrium correlation function under the time
integral in (8), kPstdJxs0dl, vanishes at all times, and
therefore in the linear approximation the pressure is ju
equal to its equilibrium value. However, for strong field
the pressure oscillates with twice the frequency of th
external field (since it is even underMT ). The pressure
shift is a strictly nonlinear effect and therefore provide
a powerful test of our theory. In Fig. 1 are shown th
results obtained by the direct simulation and the tim
dependent TTCF method. Since the effect is very sma
the direct simulation data are very noisy and therefo
there is still some disagreement at early times. At la
times, the agreement between the two sets of calculatio
is excellent. This agreement is all the more remarkab
because of the complex shape of the response curves
the fact that these responses are entirely nonlinear. T
chance of accidental agreement, particularly in Fig. 1(b
must be negligible.

In Fig. 1(b) we see the response forwstd ­ 0, p and
for wstd ­ py2, 3py2. By symmetry the response in
each of these pairs should be identical. The dispar
gives a reasonable estimate of the statistical uncertai
in the TTCF and the direct response curves. Although t
direct and the extended TTCF curves are computed fro
the same number of simulation time steps, the extend
1202
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TTCF curves always have a smaller variance. This
somewhat surprising given that the field amplitude is
large (TTCF methods will always be more efficient tha
direct methods at sufficiently small fields). We believ
that this improvement in efficiency is related to the fa
that in Eq. (8) the response at a given time and spe
fied phase angle is computed from an ensemble aver
of trajectory responses which span the initial phase an
distribution. This cross phase averaging results in sup
rior efficiency.

It is hoped that this development of a tractable no
linear response theory for nonautonomous systems w
open the way to studying a wide variety of nonlinear time
dependent phenomena [9].
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