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Nonlinear Response for Time-dependent External Fields
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We generalize nonlinear response theory for autonomous systems so that it describes the response
of classical many-body systems to large time-dependent external fields. Our formalism represents the
first practical application of response theory to such problems. Our expressions for the nonlinear time-
dependent response are tested against nonequilibrium molecular dynamics computer simulation. The
relation of our results to known special cases (time-dependent linear response and time-independent
nonlinear response) is discussed. [S0031-9007(97)02384-3]

PACS numbers: 02.70.Ns, 05.20.-y, 61.20.Ja, 61.20.Lc

When a sufficiently weak time-dependent external fieldWe compare the response of field induced changes in the
perturbs a classicaV-particle system, and only the linear hydrostatic pressure to that predicted by our theory. The
response need be considered, the Green-Kubo formukhanges in the hydrostatic pressure are an entirely nonlin-
[1] and the linear response theory [1,2] can be appliedear effect. The results provide an emphatic validation of
For the time-independent fields, the general nonlineathe theory.
response can be found using either of the two equivalent Somewhat surprisingly our extended TTCF approach
methods, Kawasaki response formula [3] or the transiergénables the calculation of these time-dependent effects
time-correlation function (TTCF) approach [4]. There with greater computational efficiency than direct obser-
have been attempts to develop a formalism for treatmentation. This improved efficiency is apparent even in the
of nonlinear response to time-dependent fields [5], whictpresence of very strong applied fields.
parallels the quantum mechanical perturbation methods We consider a general isokinefit-particle system sub-
and makes use of the time-ordered exponentials foject to a time-dependent external field which is introduced
the definition of propagators. However, the resultingat: = 0. The equations of motion of such a system are

expressions are so complex that no one has yet succeeded Q@ = pi/m + Ci(D)F,(t)
in testing them against either laboratory or even computer ’ ’ ’ e 1)
experiments. pi = Fi + D;(F.(t) — ap;,

In this Letter we describe an entirely new approach tayhere the Gaussian thermostat multipiergiven by
the treatment of nonlinear nonautonomous systems. Our SF, -pi/m SD;-pi/m
approach is based on the definition of an extended phase _ i 4 4 F )
space in which the system becomes autonomous. This @ S pi/m S p?/m €

L L

allows the computationally efficient TTCF method to be

applied. We discuss the relation of our results to knowrconstrains the peculiar kinetic energy= 3, p7/2m to

special cases (time-dependent linear response and timiee a constant of motion. The state of the system can be

independent nonlinear response). represented by a point in the phase spHEcepanned by
The algorithm corresponding to this extended phaséq;,p; (i = 1,...,N)]. We assume that the external field

space TTCF formalism is tested using computer simulais periodic in time, so thak,(t + T,) = F.(¢).

tion of a very simple system of two colored disks interact- For ¢ = 0, the external field is zero and the system

ing with a color sensitive, time-dependent, external fieldis assumed to be at equilibrium. The time-independent
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equilibrium phase space probability distribution of theindependent, but dependent @n This is analogous to the

isokinetic system is approach to a unique steady state in autonomous systems.
_ _ The only time dependence comes from the change of
e u)ls(k@T K
fo(I) = X~ pUD]S(K(I) 0) ()  fu(I') to fL(I'') when the external field,(¢) is applied.

JdT exd~BU[)]5(K () — Ko) Clearly this lack of sensitivity to the initial phase will

where U is the potential energy of the syster, = eventually break down if the external field is sufficiently

dN/28 is the kinetic energy8 = 1/kzT where T is strong. We do'not consider such'systems he're. '
the temperaturek; the Boltzmann constant, antlis the Let us consider a phase variabl(I") which is a
Cartesian dimensionality of the system. function of I', and which by definition does not explicitly

After the time-dependent external field starts actingd®Pend on time, or therefore on the additional phase space
upon the system (at = 0), the phase space probabil- coordinatee. Although B(T') is solely a function ofl",

ity distribution changes frony,(T") towards a periodic W€ can see from the equations of motion (5) that the phase

long time nonequilibrium  distributiory., = f.(I',7) = I that the system evolves to at timenamelyI'(x), is a
fol,t + T). function of the initialextendegphasel” = (I', ¢). Thus

Therefore a nonautonomous system features two diffeft 1S more revealing to writeB(r) = B(L'(1; I, ¢)). In
ent types of time dependence. The first one arises frofAfder to know the value of a phase function at time
the approach to the long time distribution through a sein addition to the elapsed time, we need to specify the
quence of transient states, which is analogous to the caddtidl phase vectol” and the initial phase angle of the
of autonomous systems. The second type of time depefXternal field.
dence arises from the fact that the long time distribution, Th€ average over extended phase spaca, aaken at

itself is time dependent. time 7, is
This complex picture [5], can be simplified by incorpo-
rating a new variable (B(1)Y = f dT' £'(T", 1)B(T)
p(1) = ¢ + o1, (4)

:]dI"f’(F’,O)B(F(l; ")

which is directly proportional to time, into the equations
of motion (1)
~ [ arsyrsweT. )
q; = pi/m + Ci(I)F.(¢),

Jo(I)

b = F; + Di(I)F.(¢) — ap;. 5) = f dlde = =BT, ), (6)

¢ = w.

in the Schrodinger and Heisenberg pictures, respectively.
The new variablep is the generalization of the “phase As the equilibrium distributiorf$(I') is known and given
angle” of the sine or cosine functions. Thirear time by (3), it is simpler to use the Heisenberg picture. Using
dependence of this additional phase space coordinate flse definition of the dissipative flux [6],
essential for the development of the extended TTCF
algorithm, because it enables one to reach exactly the ﬁZ[Ci(F) - F; — D;I") - p;/m] = BJ(),
prescribed values a@p after a given number of time steps. i
The state of the system can now be represented by a point
in extendedphase spacd” = (I', ¢) = (qi,pi, ¢; i = and the adiabatic incompressibility of phase space condi-
1,...,N). Because of the periodicity of the external field tion [6] (AIT'), one can show that since
F., it is sufficient to consider values af in the range

¢ €[0,0T,]. (BIT'(1; (1) = ¢p)]) = (B('(1))8((1) — ¢p))
For systems governed by (5), the equilibrium ex- — T (T .

tended phase space distributigh(I'’) is uniform in ¢, dU fo(T)BIE T, )

Fo@ndr’ = [ fo()/wT,]dTde. X d(p — op + wt), (7)

For systems where the long time macroscopic averages
are not sensitively dependent on the initial phd8e=  averages taken over the standard phase spader a
(T, ¢), the long time distributionf.(I'') will be time  particular value ofp = ¢p at timer are given by

|
(BII'(t; (1) = ¢p)]) = (B[I'(0; 9(0) = @p)]) — ,3[0 dsF.(¢p — ws)

X (B[I'(s: ¢(s) = ¢p)J[L(0; 0(0) = ¢p — ws)]). (8)
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The average valuéB(I'(r); ¢ (1) = ¢p)) in (8) means
the average over all values of the phdeat the timer,
for a particular chosen constant valge of the phase
angle at timer, ¢(¢); ¢(t) = ¢p. If all possible values
of ¢p from the interval[0, wT.] are substituted into
(8), the dependence dB(I'(¢); (1) = ¢p)) ON @p at
the timer can be found. It should be pointed out that

sureP,

1
P 3(Pxx + pyy)

(3

i=1

1

2 2
L Pxi + Pyi
2V

+ xiFy + )’iFvi>>, (10)
" )

this dependence cannot be obtained by direct calculations

from a set of trajectories starting from tlséngle initial
value of ¢(0). Such a set could only give the value of
(B(I'(2); () = @9 + wt)) at the timer, (B(I'(+ + 51);
o(t) = g9 + w(t + 81))) at the timer + ¢, etc. It
should also be observed that in the integrals on bot
sides of (8)¢(s) is a constant equal t¢p,. However,
as the times changes, trajectories which contribute to
the correlation function at some particular value sof
change. For different timesthey start at different initial
values ofpg = ¢p — ws. Therefore, in order to find the
evolution of(B(I'(r); ¢ (1) = ¢p)) for the chosen value of
¢(t) = ¢p, we need to know the behavior of trajectories
with all possible initialg(0) at all previous times.

The expression (8) is the general expression for the
nonlinear response to a time-dependent external field.

For time-independent fields, there is ro dependence

in the distribution function, and all extended phases that

differ only in the extended phase space coordinate

become identical, so that (8) reduces to the TTCF formula
for autonomous systems [1]. The linear time-dependent

response formula [1], applicable in the low amplitude
and high frequency limit, is obtained from (8) if the
equilibrium correlation function is substituted for the
transient correlation in the integrand of (8).

This formalism is illustrated by the example of
nonequilibrium molecular dynamics simulation of a
system of two disks with periodic boundary conditions,
subject to a time-dependent color field [7].

The interactionF; between disks is characterized by
the WCA (Weeks-Chandler-Anderson) potential [8]. In
this work the effective diameter of the disks the depth

of the potential well of the corresponding Lennard-Jones

potentiale, and the particle mass are all set to unity.

The disks differ by color labels;; = (—1)), i = 1,2,
which determine the interaction of each disk with the
external color fieldF.(¢) acting in thex direction. We

assume a sinusoidal time dependence of the color field for

t >0, F.(t) = Fysin(gg + wt).

The additional coordinate is defined from (4) so that
the equations of motion far > 0 in extendeghase space
I'" = (qi,pi» ¢)i = 1,2 are

q; =pi/m,
pi = Fi + iCiF()SingD - ap;,
¢
with the thermostatting termx given by (3).
In this system the dissipative flux is given by=

(9)
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FIG. 1. The direct simulation and TTCF results for the
pressure in the periodic color field. Both the direct simulation
and the TTCF results show that the pressure oscillates with
twice the frequency of the color field. The amplitude of the
pressure oscillations changes in time from zero to the final
value. (a) Pressure as a function of at different times.
(b) Pressure at a constant valuegof (c) Pressure as a function

D.i—1ncix;, and the response of the hydrostatic pres-of time for ¢(0) = 0.
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to a sinusoidal color field was monitored as a functionTTCF curves always have a smaller variance. This is
of the angley and timet. The response was calculated somewhat surprising given that the field amplitude is so
from (8) with B replaced byP. large (TTCF methods will always be more efficient than
The simulations were done at a densjity= N/V =  direct methods at sufficiently small fields). We believe
0.396850 and at a temperature = 1.0, using the fourth- that this improvement in efficiency is related to the fact
order Runge-Kutta method of integration of the equationghat in Eq. (8) the response at a given time and speci-
of motion (9) with a time step oé¢ = 0.002. fied phase angle is computed from an ensemble average
The simulations were carried out f@rx 50000 ini-  of trajectory responses which span the initial phase angle
tial phases from the isokinetic equilibrium ensemble, fordistribution. This cross phase averaging results in supe-
each of the 100 initial values ap(0), and for a time rior efficiency.
0 <t <5. From each starting phase = (q;,p;), an It is hoped that this development of a tractable non-
additional starting point was generated using the timelinear response theory for nonautonomous systems will
reversal mappingM’(I') = (q;, —p;), in order to im- open the way to studying a wide variety of nonlinear time-
prove the statistics and to reduce the systematic errodependent phenomena [9].
This additional starting phase point ensures that the av-
erage initial current is identically zero.
The equilibrium correlation function under the time
integral in (8), (P(r)J,(0)), vanishes at all times, and
therefore in the linear approximation the pressure is just[1] M.S. Green, J. Chem. Phy22, 398 (1954); R. Kubo,
equal to its equilibrium value. However, for strong fields J. Phys. Soc. Jpri2, 570 1957.
the pressure oscillates with twice the frequency of the [2] R. Zwanzig, Annu. Rev. Phys. Chend6, 67 (1965);
external field (since it is even undM?). The pressure R. Zwanzig, Lectures on Theoretical PhysicgWiley
shift is a strictly nonlinear effect and therefore provides . Interscience, New York, 1961), Vol. lll, p. 135.
a powerful test of our theory. In Fig. 1 are shown the ! T1.9Y6a7mada and K. Kawasald, Prog. Theor. Pt§8, 1031
results obtained by the direct simulation and the time- ( )

. . [4] W.M. Vischer, Phys. Rev. Al0, 2461 (1974); J.W.
dependent TTCF method. Since the effect is very small, Dufty and M. J. Lindenfeld, J. Stat. Phy0, 259 (1979);

the direct simulation data are very noisy and therefore g G p. cohen, Physica (Amsterdarh]8A 17 (1983);

there is still some disagreement at early times. At late  G.p. Morriss and D. J. Evans, Mol. Phy&, 629 (1985);

times, the agreement between the two sets of calculations G.P. Morriss and D.J. Evans, Phys. Rev. 35, 792

is excellent. This agreement is all the more remarkable  (1987).

because of the complex shape of the response curves an@] D.J. Evans and G.P. Morriss, Mol. Phy&4, 521 (1988);

the fact that these responses are entirely nonlinear. The B.L. Holian and D.J. Evans, J. Chem. Ph@3, 3560

chance of accidental agreement, particularly in Fig. 1(b), _ (1985). . o .

must be negligible. [6] D.J. Ev_gn; and GP Morrls§t§tlstlcal Mechanics of
In Fig. 1(b) we see the response fefz) = 0, 7 and ?ggg)qumbnum Liquids (Academic Press, New York,

for ¢(r) = 77/2’37/2' By symnf_letry.the respon_se in_ [7] D.J. Evans, W. G. Hoover, B.H. Failor, B. Moran, and

each of these pairs sh_ould be |dent|ca_l. . The dlsparlty A.J.C. Ladd, Phys. Rev. 28, 1016 (1983).

gives a reasonable estimate of the statistical uncertaintytg] j p. Weeks, D. Chandler, and H.C. Andersen, J. Chem.

in the TTCF and the direct response curves. Althoughthe ~ pnys 54 5237 (1971).

direct and the extended TTCF curves are computed from[9] See, for example, R.l. TanneEngineering Rheology

the same number of simulation time steps, the extended (Oxford Science Publications, New York, 1985).
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