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Visual Perception of Stochastic Resonance
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Stochastic resonance can be used as a measuring tool to quantify the ability of the human brain to
interpret noise contaminated visual patterns. Here we report the results of a psychophysics experimen
which show that the brain canconsistently and quantitativelyinterpret detail in a stationary image
obscured with time varying noise and that both the noise intensity and its temporal characteristics
strongly determine the perceived image quality. [S0031-9007(97)02344-2]
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Internal noise has long been associated with the n
vous system [1–7], thus prompting speculations tha
may serve a useful role in neural computation [2–4,
or signal averaging by summation across a populat
of neurons in parallel [9,10]. Though tantalizing, th
idea remains undemonstrated in any biological expe
ment. What has been shown is thatexternalnoise added
to a weak signal can enhance its detectability by the
ripheral nervous systems of crayfish [11], crickets [1
rats [13], and humans [14,15] including possible medi
applications [14,16], and within membranes [17] by t
process ofstochastic resonance(SR) [18–20]. Excepting
a recent experiment which demonstrated SR in the hum
tactile system [21], the results of these works were o
tained by computer analysis of neural recordings. B
how does a complex organ such as a brain analyze sim
weak and noisy signals?

SR has shown in several experiments that external n
added to a weak environmental signal can enhance the
formation content of evoked responses in the periphe
nervous system [11–16]. In these experiments, reco
ings of temporal sequences of neural action potent
were made and analyzed by computer for the signal
noise ratio [11,14–16], Shannon information rate, a
the transinformation [12] or stimulus-response cohere
or action potential timing precision [13]. Though nois
enhanced information in the peripheral nervous syst
was demonstrated in all experiments, the question rem
whether animals, including man, can make use of the
hancement. Specifically, could the computers previou
used for signal and noise analysis in the physiologi
experiments be replaced by the human brain in a psyc
physics experiment, and if so, would the results be co
parable? We show here that the results are compara
accurate, and repeatable and that the process is more
cient for a stationary image with time varying noise th
for the same image with static noise.

Our experiment works with the human visual syste
[22–25] and derives from the simplest paradigm
SR: the nondynamical or threshold theory [26,27]. A
shown in Fig. 1(a), the necessary components are
0031-9007y97y78(6)y1186(4)$10.00
-
it
,
n

i-

-
,
l

n
-
t
ar

se
in-
al
d-
ls
-

d
e

m
ns
-

ly
l
o-
-
le,
ffi-

f

a

threshold, a subthreshold signal, and additive noise. Th
system is assumed capable of transmitting single bits o
information, each of which marks a threshold crossing
as shown by the pulse train above. Figure 1(b) is
visual realization, where the subthreshold “signal” is an
image digitized on a gray scale and depressed benea

FIG. 1. (a) The threshold paradigm of SR. A subthreshold
signal is shown by the sine wave plus Gaussian noise who
mean lies D below the threshold (horizontal line). Each
positive going threshold crossing is marked by a standard puls
as shown above, the temporal sequence of which transmits t
only information available about the signal through the system
(b) Visual images composed of a single signal—the picture o
Big Ben—digitized on a 1 to 256 gray scale with a spatia
resolution of 256 by 256 pixels. A random numberj, from a
Gaussian distribution with zero mean and standard deviations,
is added to the original gray valueI, in every pixel. Thus
the noise in each pixel is incoherent with that in all other
pixels though the standard deviation is the same for all. Th
resulting image is then threshold filtered according to the rule
if I 1 j , D, the gray value in that pixel is replaced with 256
(white), otherwise with 1 (black), in this example. The pictures
shown were made forD ­ 30 and fors ­ 10, 90, and 300 on
the gray scale (left to right).
© 1997 The American Physical Society
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a threshold. Noise is added to the gray value in ev
pixel, and the result compared to a threshold value. Pix
containing a gray value above the threshold are pain
white and the others black. Thus in every pixel one
of information is retained, white marking a pixel where
the threshold has been crossed and black otherw
Figure 1(b) shows the result of adding noise of thr
intensities, increasing from left to right. As with SR, the
is an optimal noise intensity [Fig. 1(b), center pictur
which maximizes the information content.

Pictures of edifices are not suitable for a quantitat
determination of image quality in psychophysics expe
ments. Instead, a pattern determined by a function of a
plitude A, or contrast, with variable spatial frequency,
shown in Fig. 2(a) is used. A maximum contrast, no
free strip with gray values determined by the function
(a) and without threshold filtering is shown in the low
panel. Three example strips for a single noise intens
s (near to the optimal value) and thresholdD, but with
contrast values decreasing from bottom to top are sho
in Fig. 2(b). Subjects were presented with a sequenc
images, each composed of a set of seven such strips.
threshold remained constant throughout the experim
but the standard deviation of the noise for each prese
tion was chosen randomly from a set of ten values. S
jects were asked to count up from the bottom until th
reached a strip for which they could no longer distingui
a specified fine feature, for example, one of the high f
quency vertical bands toward the right of the strips. Th
they find their perceptive contrast thresholdAth, for that
particular feature and noise intensity.

FIG. 2. (a) The spatial functionA sins1yxd 1 128, where x
is the horizontal coordinate, used to generate the stripes
spatially varying gray levels as shown below, for the case
maximum contrast (amplitude)A ­ 128. (b) Three example
stripes for decreasing contrastA ­ 128, 78, and 28 (bottom
to top), threshold filtered withs ­ 250 and D ­ 150. The
temporal development of the noise was generated by writin
new realization of the noise into each frame, threshold filteri
and presenting the images on a high speed computer monit
a frame rate of 60 Hz (about 16.6 ms per frame), a time inter
which is considerably faster than known averaging times in
visual system [29].
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We emphasize that Figs. 1(b) and 2(b) show only t
static effect of a single realization of the noise, the on
possibility for presentation on a printed page. All resu
reported in this Letter were, however, obtained usi
images created withtemporal variations of the noise,
which, when switched on, result in a striking improveme
in perceived picture quality. Subjects viewed compu
generated animations which presented the seven s
image with time dependent noise [28].

A graph of perceptive thresholdAth versus noise
intensity s for a single session with an example subje
is shown in Fig. 3(a). Subjects indicate high percepti
thresholds for both small and large noise intensities a

FIG. 3. (a) Perceptive contrast thresholdAth versus noise
intensity s for subject number 6. Each subject was presen
with 10 different noise intensities chosen at random with ea
noise intensity visited (randomly) 10 times for a total o
100 presentations in a single session. The error bars are
standard deviations of the 10 determinations ofAth by the
subject at each noise level. The solid line is Eq. (1) wi
D ­ 81, and for K ­ 0.289 determined by nonlinear leas
squares fit. (b) TheK values were obtained in three sessio
each for each of 11 subjects: 5 males and 6 females betw
the ages of 18 and 26 with no known visual impairments oth
than eye glasses. The experiments were performed in a sm
dimly illuminated room. The subjects viewed the monito
screen at a comfortable distance (about 40 cm). The to
radiant power density from the monitor screen subtended at
approximate location of the subject’s eyes was 5.2mWycm2

for all sessions and varied less than 10% during a session o
the entire range of presented noise levels. The room was q
and free of distractions.
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a minimum threshold at an optimal noise intensity. Th
solid curve is taken from threshold SR theory [26] b
solving for the signal amplitudeA, which results in
a specific signal power density, proportional toK , as
obtained from the power spectrum of a pulse train as
Fig. 1(a),

Ath ­ Ks expfD2y2s2g . (1)

This equation was fit to the data usingK as the only
adjustable parameter. A significant finding is that subjec
respond to thepower in the signal image rather than to
an inherent, or subjective, signal-to-noise ratio [26]. Th
value ofK is a quantitative measure of the sensitivity o
the subject to the power contained in the signal part
the image and thus of the subject’s ability to distinguis
detail in the noise contaminated scene. We have fou
this to be a remarkably robust and repeatable measure
shown in Fig. 3(b) by the tight clusters of threeK values
for each subject, obtained in sessions often separated b
week or more.

The quality of the fit of Eq. (1) to the psychophysica
data is surprisingly good. Equation (1) was derived fro
the power spectrum, and thus from the Fourier transfor
of a train of identical pulses similar to neural action
potentials determined by a combination of random an
weakly coherent processes [26,27]. Thus this fit of th
psychophysical data to a theory essentially based on
power spectrum of the pulse train suggests that the br
may make use of a similar computation when processi
noisy images.

FIG. 4. Perceptive contrast thresholdAth versus noise cor-
relation time t for subject number 4. The noise in each
pixel is now correlated in time with auto correlation function
kjstdjssdl ­ sN2ytd expf2jt 2 sjytg, where N2 ­ tkj2l ;
ts2 is the zero frequency amplitude of the noise power spe
trum. The amplitude of the noise, and therefore the total noi
power, is held constant ats ­ 320 as the noise correlation
time is changed. In this way, the noise correlation time dete
mines only the meanrate at which random threshold crossings
occur in each pixel and thus the mean sampling frequency
the underlying subthreshold image.
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As a bridge between the behavior with temporal
varying and static noise, we have performed percept
threshold contrast experiments using the same protocol
the same set of subjects. In these experiments, howe
the noise intensity was held constant while the noi
correlation time was varied. The results for an examp
subject are shown in Fig. 4. The perceptive threshold
lowest for the shortest correlation time and approaches
static result (not shown) for long correlation times. Th
rise in the curve in the range of 40 to 60 ms is in goo
agreement with other measures of characteristic averag
times in the visual system [29].

These experiments have demonstrated the utility of S
as quantitative measure of the efficiency with which th
visual system processes noisy information. The repea
bility and stability of the measure for individual subject
suggests that it may become useful as a diagnostic t
in tracking or detecting visual impairments in humans
in selecting individuals with exceptional ability (smallK)
to perceive and interpret fine detail within noise contam
nated images.
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