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Rheology of “Wet” Polymer Brushes via Brownian Dynamics Simulation:
Steady vs Oscillatory Shear

Patrick S. Doyle, Eric S. G. Shagfeh, and Alice P. Gast

Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025
(Received 14 August 1996

The rheology of solvent-filled polymer brushes under steady and oscillatory shear is studied by
Brownian dynamics simulation. The flow field is solved self-consistently with the polymer dynamics.
We find that under steady flow the brushes are shear thinning in both normal forces and shear viscosity.
During oscillatory flow, extreme shear thickening occurs when the ratio of the Weissenberg number to
the dimensonless flow frequency Y¥i =~ 3. Shear-induced diffusiois shown to create this thickening.
These findings serve to explain the recent measurements made byeKiirjNature 352 143 (1991);

370, 634 (1994); Discuss Faraday S@8, 173 (1994)]. [S0031-9007(97)02368-5]

PACS numbers: 83.10.Nn, 47.15.Gf, 83.20.Jp

The rheological implications of adsorbed or tetheredshort, we use rigid link Kramers [14] freely draining
polymer layers have recently become a subject of wide inehains to model the polymers. The beads contain the
terest [1-3]. These layers can form the basis for very efeenters of all forces, both intramolecular and intermolecu-
fective lubrication [4], they can stabilize colloids [5], and lar, which are exerted on the chains. These include drag
recent data suggest that they can also have profound effedtem the mean flow, excluded volume (via truncated
on the rheology of colloidal suspensions [6]. Models forLennard-Jones potentials on all beads [15]), Brownian
these brushes under flow are few and they are developed dorces, and the tensions in the rigid links which serve
ther under the@ssumptiorof effective porous medium be- to constrain the link length [13]. The magnitude of
havior [7,8] or under flow conditions near equilibrium [8]. each Cartesian component of the Brownian force on a
It is unclear whether these models adequately account fdread is selected randomly from the uniform distribution
the intermolecular interactions between brush molecules dr(6kT'¢/81)'/2, (6kT ¢ /81)'/?], where ¢ is the drag
for brush elasticity under shearing conditions. coefficient, kT is the Boltzmann temperature, aid is

Recently the shortcomings of our physical understandthe time step size. The stochastic Brownian forces model
ing of the brush-solvent and brush-wall interactions havesollisions of the solvent molecules on the beads and are
been brought into focus through the experiments of Kleirchosen to satisfy the fluctuation-dissipation theorem. The
et al.[1,2]. These experiments have shown that the norhydrodynamic drad” on thejth bead is
mal forces exerted during the shear flow of brushes can be JR
drastically altered if the brushes are sheared in an oscilla- F' = g[<u(Rj)> - —j} ()
tory as opposed to a steady manner. Kiefral. [1] have dt
demonstrated that dramatic normal force increases can highereR; is the position of theith bead (cf. Fig. 1), and
induced under the application of oscillatory flow. There(u(R;)) is the ensemble averaged solvent velocity at posi-
are now a host of explanations given in the literaturetion R;. Although no explicit hydrodynamic interactions
for these normal forces and these include hydrodynamipetween beads are included, the chains interact through
instabilities [9] and shear flow-induced brush thickeningthe mean flow since it is calculated in a self-consistent
[10,11]. Recent simulations of brushes [3,12] demon-manner as described below.
strate normal forces under steady slow shearing which Figure 1 specifies our problem geometry, namely two
are qualitatively similar to those witnessed by Kleinal.  bounding parallel plates shearing a single solvent-filled
[2], however, no substantial velocity dependence of these
normal forces was witnessed nor any brush thickening.
There have been no studies which definitely demonstrate —U or «— U cos(m*t)
a mechanism that can explain the shear dependence of -
brush shear and normal forces under flow. In this Letter
we present self-consistent Brownian dynamics simula-
tions, which are capable of accurately simulatimnequi-
librium brush dynamics. Our findings provide a simple
physical interpretation of the experimental measurements
of Klein et al. [1,2].

Our Brownian dynamics simulation method for single
chains is described in a previous publication [13]. In FIG. 1. Schematic of the problem geometry.
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brush and gap (via motion of the top plate). The brushvelocity field is then employed in the simulations and
is composed of periodically extended rectangular areathe iterative process continues until the flow field and the
containing 20 chains of 20 beads each. The first beatbrce density(f) are consistent. This procedure usually
in each chain is randomly placed on the tethering sureonverges within four iterations. For all runs the Lennard-
face (y = 0), and the remaining beads perform a self-Jones length scale and the interbead separation was set
avoiding random walk. For a given simulation there areequal toa, { = 37 na, R;'O = 11.5a, 7 = 5.7{a*/kT,

four dimensionless parameters which govern the dynamandér = 5 X 107°7.

ics and flow field: ca>—the areal fraction of chains  From these calculations we find that the average
where o is the numbefarea anda is a bead diame- values of dR;/dr in any y plane are very small. It
ter; Wi = Ur/b—the Weissenberg number—wherdés  follows that( f,) is negligible and the solvent pressure
the relaxation time of a single isolated chamfree so- is unaffected by the brush. It also follows that the
lution, U is the upper plate velocity, andl is the gap x momentum equation fou(y) becomes a nonlinear
thickness;A = b/Rgo—the dimensionless gap thickness Brinkman equation [8,17]. The force density,) is now
where Ry, is the y component of the radius of gyration proportional top(y)u(y). Results for the bead density
of the layer; and, for oscillatory flowy —the frequency profiles, the resulting hydrodynamic thickndss and the
made dimensionless with. All results presented in this flow profiles are shown in Fig. 2. These density profiles
Letter are for an areal fractioma®? = 0.125 (where the are calculated for a dimensionless gap thicknéss 1
simulation box dimensions in the and z directions are and for a range of Weissenberg numbers. In summary, the
12.65a X 12.65a), and thus well above the overlap areal hydrodynamic thickness remains at its equilibrium plateau
fraction of oa®> = 0.025 for this system. Furthermore, value until values of Wi in excess of 0.1, after which the
we will show below that the brushes at this areal frac-layer thins. The flow makes the brushes more compact
tion are very dense and therefore our assumption thdhough tails in the density profiles are still evident.
hydrodynamic interactions are screened is a reasonableIn Fig. 3(a) we present our calculations for the normal
approximation. and shear stress on the walls of the gap as a function of

In Eq. (1) the averaged solvent velocity was introducedhe gap widthA for various Weissenberg numbers. As
and needs to be calculated. Under incompresgible  the gap decreases and we strongly compress the brush
u = 0) Stokes’ flow conditions we can write the generalthe normal forces dramatically increase. Note that at
equation for the averaged solvent velocity in the brush agonstant Weissenberg number (or alternatively constant

2 oy shear rate across the gap) the shear forces actually plateau

nVHw) — VIP) + (f) (x.1:u) = 0. 2) and begin to decrease for small This is also withessed
In Eq. (2) n is the solvent viscosityP) is the averaged in the interpretation of these forces as an effective
solvent pressure, an¢f) is the averaged force density viscosity in Fig. 3(b). For highly compressed brushes
exerted by the brush on the solverithe averaged force the normal forces are larger than the shear forces by
density(f ) is equal to—(F" p(x)) wherep(x) is the bead two or three orders of magnitude, which is consistent
density at positiorx. We calculatef ) using Eqg. (1) and with the measurements of Kleirt al.[2]. The shear
the previous relation. Of coursé) is a functional of the forces are controlled by the length scale over which
solvent velocity since the dynamics are governed by the
solvent flow. This self-consistent mean-field approach for
related Brinkman problems has been shown to be a very
good approximation [16].

Imposing a steady shear flow in the geometry of Fig. 1, %
it follows that the averaged solvent velocity reduces to a &
single scalarx-velocity component(y) and it is equal
to U aty = b (on the top plate) andi(0) = 0. The
averaged force densitf ) has two components,f,) and
(fy), both of which are only functions of. (f,) serves
to alter the solvent pressure and, ) serves to alter the
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these conditions our simulations reproduceiti@easing
shear stress (increasing with decreasing gap Aké’2
from the scaling arguments above) that are witnessed in
both these studies.

Although the previous normal and shear force results
are consistent with the experimental results presented by
Klein et al. [2], they do not explain the remarkable fea-
tures reported by Kleiret al. [1] during high frequency
oscillation. In the latter experiments, the normal forces in-
creased dramatically at a critical oscillatory Weissenberg
number. Such increases were not discovered in our steady
(b) simulations, and we turn to the dynamics of oscilla-
tory flow to describe these experiments. We impose
u = Ucodwt) aty = b and follow the same simulation
procedure with averages calculated at every time step.

4 A summary of our results for the normal forces and
bead density profiles is given in Figs.4 and 5 for
3r oscillatory flow. We have shown calculations for a gap
width A = 0.436 (i.e., a brush which is compressed by
e S o o 5% about 50%), but similar results have been collected for a
range of) [18]. First, we have found that the dynamics
FIG. 3. (a) Shear stress and normal pressure in Gaiiga?) of the brushes at large frequenpies is markedly different
and (b) effective viscosity in units; versus A for steady than for lower frequency dynamics. In the high frequency
shear flow. The shear stress is shown for 3D.057 (o) and  regime the beads move with the fluid, and thyfs) < 1,
Wi = 5.7 (O), and the normal pressure for Wi 0.057 (¢)  for almost the entire brush thickness. Moreover, because

and Wi= 5.7 (M). The insetin (a) shows the shear stré83  the total deformation of the brush in any cycle is small

and normal pressuréA) versusA for a constant upper plate compared to its thickness, the brush never “feels” its

VWeik):C't())/' 5157:(?)'1;',(1 I\r}w(i) ;h7e (e.fgéctlve viscosity is shown for tether, and the beads move affinely with the fluid. Thus

the brush behaves more like a free suspension of spheres.
Since the beads are acting as if in free solution,
the velocity drops to zero in the solvent/brush regionthe collisions of beads with their neighbors drives a
When the gap thickness is larger than the equilibriunnormal motion of the brush analogous to “shear-induced
thickness of the brush, the size of this region is controlledliffusion” in the theory of free suspensions [19]. The
by the thickness of solvent above the brush. Howevergollision process increases the fluctuating kinetic energy
when the brush is physically compressed by the uppen the brush and causes the brush to diffuse from regions
plate, then the shear forces are controlled by the effectivef high concentration to low [19]. In Fig. 5 we see
Brinkman pore size in the layer. Simple geometric scalinghe time-averaged brush density profiles at equilibrium
arguments show that this pore size decreasesiikefor ~ and under oscillation at Wi= 570 at w = 189. The
decreasing\. Thus the effective viscosity, at a constantgrowth in the peak near the upward plate results from the
gap shear ratd//b, increases as one first compressediffusion process driving beads upward, and is located at
the brush and drives flow through a small pore region
rather than through the outer solvent layer. As the gap
narrows the effective viscosity (at constant shear rate)g
begins to decrease again since the velocity of the uppe £390
plate (and hence the driving force for flow through the ,s|.
brush) decreases lika (and thus faster than the pore 2
size shrinks) at constant gap shear rate. It follows that'g 20
the effective shear viscosity should decrease liKé?
for small A. These scalings will fail when compression
comparable to the scale of the persistence length is
induced.
In the recent simulations by Grest [3] and in the
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in the right parameter regimes but only in the mean thick-

Z | & FreeSuspension ; t i :

L4 2 § — wi=0 : ness of the brush—very few collisions occur in the “tails”
2 .l g wop {7 Wi=570, =189 . of the brush and these are not thickened. We would ex-
g ol E osL i pect to see increased thickening for longer polymers, since
5 E - - i this would increase the rate of collisions that the chain ex-
£ 08¢ R ¥ T T R A} periences during the shearing process. Note that no brush
> 06 yla 7R thickening was ever witnessed in steady flow, and thus
g 04l Tethered Chains ™" we find no evidence of the mechanisms given for brush
SN — Wi=0 thickening in the literature [9—11]. This shear-induced

T4 Wi=570, ®=189 diffusion mechanism acts as an alternative, novel view of

O the shear-induced brush thickening.
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