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Size Dependence in the Disordered Kondo Problem
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We study here the role randomly placed nonmagnetic scatterers play on the Kondo effect. We show
that spin-relaxation effects (with time?) in the vertex corrections to the Kondo self-energy lead to an
exact cancellation of the singular temperature dependence arising from the diffusion poles. For a thin
film of thicknessL and a mean-free patf disorder provides a correction to the Kondo resistivity of
the form7%/(k»L€*)In T that explains the disorder-induced depression of the Kondo effect observed by
Blachly and Giordano [Phys. Rev. Bl, 12537 (1995)]. [S0031-9007(96)02064-9]

PACS numbers: 72.10.Fk, 72.15.Nj, 75.20.Hr

At low temperatures, the resistivity of a metal alloy weak localization plays in the Kondo effect. The new
acquires a logarithmic temperature dependence [1] in rearinkle we introduce in this problem is the feedback ef-
sponse to spin-flip scattering between local magnetic impufect spin scattering has on weak localization. While it is
rities and the conduction electrons. This behavior persiststandard to consider the direct influence of weak localiza-
down to a temperature (the Kondo temperatlig¢ where  tion on the Kondo effect, the reverse effect has not been
the magnetic impurities and conduction electrons begin tincluded [10]. Nonetheless, itis well known that to second
condense into singlet states. The presence of thidémm  order in the exchange interactidn electron scattering by
in the resistivity signifies that spin-flip scattering betweendisordered Heisenberg spins introduces a cutoff of the
conduction electrons and localized magnetic centers hafiffusion pole in both the particle-hole (diffuson) and
a singular frequency«) dependence. Magnetic impuri- particle-particle (Cooperon) channels except forShe 0
ties are not alone in this respect. It is well known thatparticle-hole channel [11]. Within this approximation for
even nonmagnetic impurities can generate a singulas (In the diffusion propagators, the fate of thié’2=2 singularity
in d = 2) frequency dependence in the conductivity [2,3].rests on whether th& = 0 particle-hole propagator con-
In a sample containing both magnetic and nonmagnetic imiibutes to the Kondo self-energy. We show explicitly it
purities, the question arises: Which singularity ultimatelydoes not With the singularity removed, we calculate the
wins, or can the interplay between the singularities lead te@onductivity to lowest order id and1/(kg{).

a suppression of either localization or the Kondo effect? The starting point for our analysis is a model Hamil-
In this Letter, we resolve these questions. tonianH = Hy + H,, that contains both normal impurities

The motivation for this study is twofold. First, while

there have been numerous treatments of this problem [4—f, = Z(Sk - SF)al-(rg-aka' + v Z ei(k_k')'R‘a,;r(,akr(,

7], a clear consensus has not been reached. Most recently, ko Q kK

Ohkawa, Fukuyama, and Yosida [6] showed that disorder .
results in a singularity of the for?/2=2 in the conduc- as well as magnetic scatterers

tivity. As a result, they conclude that static disorder can J i(k—Kk')-R
= - e

1.
" 0'0',0'"Snaka-ak’(r’ 5

mask the Kondo resistivity @ — 0. On the experimen- Hyq )
tal side, Blachly and Giordano [8] recently measured the
conductivity in a series of thin films containing magneticwhere v measures the strength of the scattering with
as well as nonmagnetic impurities. They found no evi-the nonmagnetic disordeR, denotes the position of the
dence for ther?/2=2 singularity but observed instead a impurities, magnetic or otherwis8,, is the spin operator
suppression of the Kondo resistivity as the strength of théor the magnetic impurity at site, and() is the volume.
disorder increased and as the sample thickness decreas&tie two natural time scales in this problem aie and
Earlier experiments by Korn [9] also failed to observe thery, the magnetic and nonmagnetic scattering times. In
T4/272 singularity but observed instead an enhancemerterms of the density of states of the host meggl,and the
in the Kondo resistivity. The point of agreement betweenconcentrations of magnetic and nonmagnetic scatterers,
these experiments is that disorder couples nontrivially t@ndng, respectively, we have thay/270 = 37n,polJ|*/4
the Kondo effect and ultimately modifies the coefficientand/i/2ry = mnopo|v|>. The total scattering rate iy r =
of the InT dependence. Given the strong dimensional ded/7? + 1/7,. To measure the strength of the nonmagnetic
pendence of weak localization, disorder could eventualldisorder, we defineA = i/(2mer7y). We assume that
lead to a sample size dependence of the Kondo resistivitghe concentration of localized spins is dilute so that long-
At the outset, we set aside the still controversial is-range spin glass effects are irrelevant. Also, we work in
sue [Ref. [8(c)]] of the sample size dependence and fothe regime in which normal impurity scattering dominates,
cus on the seemingly straightforward problem of the rolel /7> 1/7°.
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To evaluate the conductivity abov&, we must first QO and e are the net momentum and energy transfer and

calculate the Kondo self-energy. To include the dynami-D = 2/iier7/dm is the diffusion constant. It is the dif-
cal effects of the localized spins, it is sufficient to calculatefusion pole that leads to th&4/2-2 divergence. How-
the self-energy to third order in the exchange interaction ever, this is inconsistent becaué€Q, w) and D(Q, w)
At this order, static disorder can be included by decorateouple to electron lines of different spin. Such propaga-
ing the single and double spin-flip vertices with Cooperortors are well known [11] to depend on spin, and hence we
and diffuson propagators [6,7]. In previous work [6,7], include explicitly the spin dependence here. If all scatter-
spin-independent Cooperons and diffusons of the forning processes are treated in the first Born approximation,
C(Q,w) = D(Q,w) x (DO* — iw)~ ! were used Where| the Cooperon propagator [11] is transformed to

h? h?
8apdys — Oap +
8mpom2(DQ? — iw +2/70) (8apdys = Taprys) 87por2(DQ? — iw +2/379)

(36aﬁ575 + O'QB'O',ya)

(1)

Capys=

and the diffuson becomes
ﬁz h2
0480ys T Oup* +
Smpor(DOT — iw) CeBOre T Tam i) t o o+ 4370)

(36a35y5 - O'al;'ﬂ'yg),
(2)

Dapys =

where a8 and yé are spin indices. These expressiohsteractions, because in our regime of interggt? domi-
were obtained by summing ladder diagrams with both norpates. The two terms in each propagator correspond to
mal and spin scattering treated in the first Born approximasinglet and triplet scattering, respectively.

tion. Two-particle self-energy corrections which may lead The diagrams shown in Fig. 1 contain the dominant
to 0(J?) corrections to the propagator lifetimes were notquantum corrections [6] to the Kondo self-energy at third
included [12]. We also neglected all other inelastic pro-order in the presence of disorder. The sum of all such
cesses such as electron-electron and electron-phonon idiagrams is

|
2 - . . . . .
ESq(k,ien) = Ezva_ﬁyn(lw&lwm)G(lznm, CI) |:G(lzn€,k + Q) + nOlvlngz(lEns k/)G(lZn{f, K+ Q):|

X [Daaﬁy(iwé/’ Q)Dyvna(iw% Q) + Co‘ayvcﬁyno‘] s (3)

where repeated indices:, and ¢ are summed over,| have setkz = 1. The factor of 2 arises from the two
the arguments of the Cooperons are the same gmssible couplings of the diffusion propagators to the
those of the diffusons,z,, =€, + w,, Glie, q)= internal electron lines and the from the two orientations
[ie + er — h*q*/2m + i(h/27)sgn(e)]”!, the electron of the psuedofermion loops. The psuedofermion part
energies are the Matsubara frequeneigs- (2n + 1)#T,  involves a trace over the components of the impurity spin
we=2luwT, DO*<Hh/7y and (e, + we)we<0. We | operators and hence simplifies to

. I I I .y
V(;ﬁyn(lwl»lwm) = Zj3nsﬁ|:_(6m0 - 5€m) (1 - 660) + 1_5€0(1 - 6»10) * §67n06€0:|(0-a30-m7)~ (4)

iwyg Wy

From the psuedofermion contribution, we see that {h@iven above. Note this cancellation relies on the spin
sum over the spin indices separates into two identical sumalgebra and hence is not tied to the approximations used
of the form D(mﬂyagﬁ with repeated indices summed to obtainD5=°. The cancellation of th§ = 0 component
over. If we use the identityo,, - 0p,)0qs =—0,, of the diffuson is fundamentally tied to the fact that
we find immediately that the cancellation of the=0 dif-  the Kondo interaction does not conserve the electron’s
fusoanjgyo-f,B % (8,a0p8y + Ova * Opy)oas=0from  spin. Summing over the spin indices in the remaining
the third order Kondo self-energy is exact. To anypropagators in the self-energy reduces the problem to
order in J, in the most divergent approximation, the one in which the diffuson and Cooperon are spin in-
cancellation of theS = 0 diffuson can be seen as follows. dependent: D = h?/(2mpo7?) (DQ? —iw +4/37%)7!
Within this scheme, each diffuson encircles a vertex thaand C = /2 /(4w po7?) [(DQ? —iw +2/7%) 7! + (DQ? —
is exactly equal to the Abrikosov [13] vertex function iw +2/379)7!].

I' <o -S. When this function is now multiplied b§5=° To calculate the resistivity, we evaluate the standard
and summed over the spin indices, the cancellation tself-energy as well as the Cooperon weak-localization
all orders follows immediately from the spin identity diagrams [6]. We do not include the diffuson singlet
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RN NN We collect all the contributions discussed above to de-
6 «lipy V“." " ‘\. N o ! Y \ termine the conductivity. .In the temperature rafge<<
v ! APS [ T < Ii/7°, Cooperon, diffuson, and weak-localization
\ X7 TR=a=gf corrections are logarithmic in temperature. Combinin
~ ,’ N ,' . . .
S S the results from Eq. (5) with the weak-localization cor-
rection, we find that the magnitude of the logarithmic part
o g g p
/,/"‘x“'\-.\\ /«w%-\\ of the conductivity
rd -
/ \ / N Aot = gy ¥l (1 37 e 7
/ > e A e NN N g = 0o 0 AA— |lIn— ( )
y / ~ ! N \\ / '/ Y ; \‘ Y\ Ty 7o T
/ ! K '; v kY . . . . . .
\Q/ ; v : v : i is enhanced by disorder. The first term in this expression
d w Raget Naag o7 arises from the unperturbed Kondo effect and the latter
hN 4 N ’ . . . . . .
e’ N from the interplay with disorder. Inclusion of disorder in

_ o the self-energy always enhances the Kondo resistivity by
FIG. 1. Feynman diagrams contributing to the Kondo self-increasing repetitive scattering at magnetic impurities.

energy. The dashed lines correspond to Abrikosov psued- 0 3 .
ofermions and the double solid lines to diffusons and double. For temperature§ > 7i/7;, the self-energy contribu

dashed lines to the Cooperons. The Greek letters indicate PN to the relaxation time scales dg7, whereas the
spin. TheX indicates a single nonmagnetic impurity scatteringWeak-localization correction is proportional tofln How-
event. ever, comparison of the magnitude of Eq. (5) aka.

reveals that the temperature-dependent weak-localization

contribution because it is of higher order ifi(ks¢) than ~ term dominates and the magnitude of the resultant loga-
the Cooperon term. Because the results are rather length§ithmic correction

we present only the asymptotic behavior. Fbr= 2 in . 47opo] AN
the limit 7 > /i/7°, we recover the inverse temperature Ao’ =005 ~ o N (8)
dependence [6,7] _ s o/
I B —wlipoA] h i is suppressed by the disorder. The rakioro scales as .
3.C 2.0 3rg 0T < —poAJT—O, (5)  1/4?, where( is the mean-free path. We see then that, in

the dilute impurity regime, disorder suppresses the Kondo
where1/276¢P = fde(—%)[—lngcq’l)(e + i0)]. The effect. The crossover from enhancement to suppression
superscript refers to self-energy diagrams with Cooperonsf the Kondo effect occurs because the magnitude and
or diffusons. Without the cancellation theorem, the lowerfunctional dependence of the quantum corrections to the
bound in temperature for thé/7T behavior is set by self-energy are determined by the shortest of two length
max[/i/74,Tx], wherer, is the inelastic scattering time. scales: the phase-breaking length, = /D 70/ and the
We find here that by explicitly including spin scattering diffusion length,L; = «/D/T. The latter arises because
in the diffusion propagators, the algebraic behavior occurgoupling of diffusion propagators to internal electron lines
when 1/(r0T) < 1. We will see later that as a result jn the self-energy leads to an effective electron-electron
of this restriction, the contribution of th&/T term to jnteraction.

the conductivity is negligible. In the opposite regime, | et us now apply our results to thin films with a thick-

T < Ii/7], the relaxation times nessL. We will assume thaf <L < L,. Then we can
I/ h 5  3In3 h h treat the films as quasi-2D with respect to localization, but
27D " 20 _<§ _>p°“7_0 In T70 6)  becausd < L the electron gas is characterized by a three-
are both logarithmic functions of temperature. dimensional density of stateg = 1/(277)2(2m/ﬁ2)3/2611:/2

The final contribution to the relaxation time comes fromwith a diffusion constant given b = 2#her7/3m. The
the Cooperon weak-localization diagram. In two dimen-summation orQ in the Cooperon and diffuson is restricted
sions in the presence of isotropic spin-flip scattering, théo small momentum transfers such thatQ? <1/r,.
weak-localization contribution i& oo = —e?/(272h) X However, for thicknesses of the sample on the ordef, of
IN(v/37¢;/70), Whereli/27., =8h/(37%)[1 — poJ In(er/  the smallest wave vector in the transverse direction does
T)], where we have explicitly included th@(J?) con-  not satisfy this constraint. To rectify this problem, Volkov
tribution to the spin-scattering lifetime. Inclusion of [14] showed that surface boundary conditions must be
the third order correction to the spin-scattering timetreated consistently. For thin films, his treatment shows
enhances the spin-flip scattering rate, thereby weakenirtfpat the boundaries always give rise to a strictly two-
the effects of localization. To see this more clearly, wedimensional weak-localization correction and an explicit
expand the argument of the logarithm for temperaturefinite size dependence. To account for the former, the
well above the Kondo temperatureAo,.=—e?/  momentum integration in the Cooperon and diffuson must
2721 IN(3/370/870) — €2 /272 FipoJ In(er/T). We see be restricted to the plane. The density of states that arises
clearly that the Kondo interaction reduces the weakrom converting the sum to an integral will be the two-
localization correction becaude< 0. dimensional density of statgs” = mpo/(krL). Hence,
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15 : ; is evident, theory and experiment are in good agreement.
Although electron-electron interactions could also give rise
to InT corrections to the conductivity, no T was ob-
served [8] in the absence of magnetic impurities. Regard-
ing the size dependence, we note that Ujsaghgl. [15]
have proposed a hindered spin-orbit [15] mechanism that
also generates a size dependence. By comparing the mag-
nitude of the corrections to the Kondo resistivity, we find
that the disorder mechanism is expected to dominate when
vrrd/ky > €*min(Ag, £), where A, is the hindered spin-
orbit length [15]. For the Cu(Fe) samples [8], this corre-
estimated  T5 =.52ns sponds to a mean-free path 6f= 500 A, below which
the contribution from disorder is expected dominate the
. . , size dependence of the Kondo resistivity. In the other
40 90 140 190 regime, the spin-orbit mechanism of Ujsagétyal. [15]
Mean Free Path, A dominates. We conclude that disorder provides either an
FIG. 2. Comparison of the theoretical prediction for the enhancement or a suppression correction to the Kondo re-
Kondo resistivity predicted from the second of Eq. (9) with sistivity of the form1/(¢>L).
the experimental data of Blachly and Giordano [8] Fig. 7. The \ne ‘thank Dan Ralph for making us aware of the
?hﬁgﬁ%?]t?rl]eaﬂzaw_(?%seugﬁhfhe strength of the static Ollsordeéiordano experiments and Nick Giordano, 'Yuri L'yanda-
Geller, and Eduardo Fradkin for useful discussions on
. : . in scattering. This work is supported in part by the NSF
the self-energy diagrams will generate a size dependen rants No. DMR94-96134. Y.W. would like to thank the

to the conductivity. The explicit finite-size weak- : . o S
localization correction is [14R oy = —e2/(22AL) X Aspen Ceqter for Physics for their hospitality in the initial
stage of this work.
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