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Size Dependence in the Disordered Kondo Problem
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We study here the role randomly placed nonmagnetic scatterers play on the Kondo effect. We show
that spin-relaxation effects (with timet0

s ) in the vertex corrections to the Kondo self-energy lead to an
exact cancellation of the singular temperature dependence arising from the diffusion poles. For a thin
film of thicknessL and a mean-free path,, disorder provides a correction to the Kondo resistivity of
the formt0

s yskFL,2d ln T that explains the disorder-induced depression of the Kondo effect observed by
Blachly and Giordano [Phys. Rev. B51, 12 537 (1995)]. [S0031-9007(96)02064-9]

PACS numbers: 72.10.Fk, 72.15.Nj, 75.20.Hr
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At low temperatures, the resistivity of a metal allo
acquires a logarithmic temperature dependence [1] in
sponse to spin-flip scattering between local magnetic im
rities and the conduction electrons. This behavior pers
down to a temperature (the Kondo temperatureTK ) where
the magnetic impurities and conduction electrons begin
condense into singlet states. The presence of the lnT term
in the resistivity signifies that spin-flip scattering betwe
conduction electrons and localized magnetic centers
a singular frequency (v) dependence. Magnetic impur
ties are not alone in this respect. It is well known th
even nonmagnetic impurities can generate a singular (lv

in d ­ 2) frequency dependence in the conductivity [2,3
In a sample containing both magnetic and nonmagnetic
purities, the question arises: Which singularity ultimate
wins, or can the interplay between the singularities lead
a suppression of either localization or the Kondo effe
In this Letter, we resolve these questions.

The motivation for this study is twofold. First, while
there have been numerous treatments of this problem
7], a clear consensus has not been reached. Most rece
Ohkawa, Fukuyama, and Yosida [6] showed that disor
results in a singularity of the formTdy222 in the conduc-
tivity. As a result, they conclude that static disorder c
mask the Kondo resistivity asT ! 0. On the experimen-
tal side, Blachly and Giordano [8] recently measured
conductivity in a series of thin films containing magnet
as well as nonmagnetic impurities. They found no e
dence for theT dy222 singularity but observed instead
suppression of the Kondo resistivity as the strength of
disorder increased and as the sample thickness decre
Earlier experiments by Korn [9] also failed to observe t
T dy222 singularity but observed instead an enhancem
in the Kondo resistivity. The point of agreement betwe
these experiments is that disorder couples nontrivially
the Kondo effect and ultimately modifies the coefficie
of the lnT dependence. Given the strong dimensional
pendence of weak localization, disorder could eventua
lead to a sample size dependence of the Kondo resistiv

At the outset, we set aside the still controversial
sue [Ref. [8(c)]] of the sample size dependence and
cus on the seemingly straightforward problem of the ro
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weak localization plays in the Kondo effect. The ne
wrinkle we introduce in this problem is the feedback e
fect spin scattering has on weak localization. While it
standard to consider the direct influence of weak locali
tion on the Kondo effect, the reverse effect has not be
included [10]. Nonetheless, it is well known that to seco
order in the exchange interactionJ, electron scattering by
disordered Heisenberg spins introduces a cutoff of
diffusion pole in both the particle-hole (diffuson) an
particle-particle (Cooperon) channels except for theS ­ 0
particle-hole channel [11]. Within this approximation fo
the diffusion propagators, the fate of theTdy222 singularity
rests on whether theS ­ 0 particle-hole propagator con
tributes to the Kondo self-energy. We show explicitly
does not. With the singularity removed, we calculate th
conductivity to lowest order inJ and1yskF,d.

The starting point for our analysis is a model Ham
tonianH ­ H0 1 Hsd that contains both normal impuritie

H0 ­
X
ks

s´k 2 ´Fday
ksaks 1

y

V

X
k,k0,i

eisk2k0d?Ri a
y
ksak0s

as well as magnetic scatterers

Hsd ­ 2
J
V

X
Rn ,k,k0,s,s0

eisk2k0d?Rn ss,s0?Sna
y
ksak0s0 ,

where y measures the strength of the scattering w
the nonmagnetic disorder,Rn denotes the position of the
impurities, magnetic or otherwise,Sn is the spin operator
for the magnetic impurity at siten, andV is the volume.
The two natural time scales in this problem aret0

s and
t0, the magnetic and nonmagnetic scattering times.
terms of the density of states of the host metal,r0, and the
concentrations of magnetic and nonmagnetic scatterersns

andn0, respectively, we have thath̄y2t0
s ­ 3pnsr0jJj2y4

andh̄y2t0 ­ pn0r0jyj2. The total scattering rate is1yt ­
1yt0

s 1 1yt0. To measure the strength of the nonmagne
disorder, we definel ­ h̄ys2p´Ft0d. We assume tha
the concentration of localized spins is dilute so that lon
range spin glass effects are irrelevant. Also, we work
the regime in which normal impurity scattering dominate
1yt0 ¿ 1yt0

s .
© 1996 The American Physical Society
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To evaluate the conductivity aboveTK , we must first
calculate the Kondo self-energy. To include the dyna
cal effects of the localized spins, it is sufficient to calcul
the self-energy to third order in the exchange interactioJ.
At this order, static disorder can be included by deco
ing the single and double spin-flip vertices with Coope
and diffuson propagators [6,7]. In previous work [6,
spin-independent Cooperons and diffusons of the fo
CsQ, vd ­ DsQ, vd ~ sDQ2 2 ivd21 were used where
n
o

a
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Q andv are the net momentum and energy transfer a
D ­ 2h̄´Ftydm is the diffusion constant. It is the dif-
fusion pole that leads to theTdy222 divergence. How-
ever, this is inconsistent becauseCsQ, vd and DsQ, vd
couple to electron lines of different spin. Such propag
tors are well known [11] to depend on spin, and hence
include explicitly the spin dependence here. If all scatt
ing processes are treated in the first Born approximati
the Cooperon propagator [11] is transformed to
Cabgd­
h̄2

8pr0t2sDQ2 2 iv 1 2yt0
s d

°
dabdgd 2 sab?sgd

¢
1

h̄2

8pr0t2sDQ2 2 iv 1 2y3t0
s d

°
3dabdgd 1 sab?sgd

¢
(1)

and the diffuson becomes

Dabgd ­
h̄2

8pr0t2sDQ2 2 ivd
°
dabdgd 1 sab?sgd

¢
1

h̄2

8pr0t2sDQ2 2 iv 1 4y3t0
s d

°
3dabdgd 2 sab?sgd

¢
,

(2)
d to

nt
ird
ch
where ab and gd are spin indices. These expressio
were obtained by summing ladder diagrams with both n
mal and spin scattering treated in the first Born approxim
tion. Two-particle self-energy corrections which may le
to OsJ3d corrections to the propagator lifetimes were n
included [12]. We also neglected all other inelastic p
cesses such as electron-electron and electron-phono
s
r-
a-
d
t
-
in-

teractions, because in our regime of interesth̄yt0
s domi-

nates. The two terms in each propagator correspon
singlet and triplet scattering, respectively.

The diagrams shown in Fig. 1 contain the domina
quantum corrections [6] to the Kondo self-energy at th
order in the presence of disorder. The sum of all su
diagrams is
S3qsk, iend ­
2

b2

X
V 6

abnhsiv,, ivmdGsiznm, qd

"
Gsizn,, k 1 Qd 1 n0jyj2

X
k0

G2sien, k0dGsizn,, k0 1 Qd

#
3

£
Dsabgsiv,, QdDgnhssiv,, Qd 1 CsagnCbghs

§
, (3)
o
the

art
pin
where repeated indices,6, and q are summed over
the arguments of the Cooperons are the same
those of the diffusons,znm ­ en 1 vm, Gsie, qd ­
fie 1 eF 2 h̄2q2y2m 1 ish̄y2tdsgnsedg21, the electron
energies are the Matsubara frequenciesen ­ s2n 1 1dpT ,
v, ­ 2lpT , DQ2 , h̄yt0, and sen 1 v,dv, , 0. We
as
have setkB ­ 1. The factor of 2 arises from the tw
possible couplings of the diffusion propagators to
internal electron lines and the6 from the two orientations
of the psuedofermion loops. The psuedofermion p
involves a trace over the components of the impurity s
operators and hence simplifies to
V 6
abnhsivl , ivmd ­

1
4

J3nsb

∑
1

iv,
sdm0 2 d,md s1 2 d,0d 1

1
ivm

d,0s1 2 dm0d 6
b

2
dm0d,0

∏
ssa

absa
nhd . (4)
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From the psuedofermion contribution, we see that
sum over the spin indices separates into two identical s
of the form Dsabgs

a
ab with repeated indices summe

over. If we use the identityssna ? sbg dsa
ab ­ 2sa

ng ,
we find immediately that the cancellation of theS ­ 0 dif-
fusonDS­0

nabgs
a
ab ~ sdnadbg 1 sna ? sbgdsa

ab ­ 0 from
the third order Kondo self-energy is exact. To a
order in J, in the most divergent approximation, th
cancellation of theS ­ 0 diffuson can be seen as follow
Within this scheme, each diffuson encircles a vertex t
is exactly equal to the Abrikosov [13] vertex functio
G ~ s ? S. When this function is now multiplied byDS­0

and summed over the spin indices, the cancellation
all orders follows immediately from the spin identi
e
s

t

o

given above. Note this cancellation relies on the s
algebra and hence is not tied to the approximations u
to obtainDS­0. The cancellation of theS ­ 0 component
of the diffuson is fundamentally tied to the fact th
the Kondo interaction does not conserve the electro
spin. Summing over the spin indices in the remain
propagators in the self-energy reduces the problem
one in which the diffuson and Cooperon are spin
dependent: D̃ ­ h̄2ys2pr0t2d sDQ2 2 iv 1 4y3t0

s d21

and C̃ ­ h̄2ys4pr0t2d fsDQ2 2 iv 1 2yt0
s d21 1 sDQ2 2

iv 1 2y3t0
s d21g.

To calculate the resistivity, we evaluate the stand
self-energy as well as the Cooperon weak-localiza
diagrams [6]. We do not include the diffuson sing
115
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FIG. 1. Feynman diagrams contributing to the Kondo se
energy. The dashed lines correspond to Abrikosov psu
ofermions and the double solid lines to diffusons and doub
dashed lines to the Cooperons. The Greek letters indicate
spin. TheX indicates a single nonmagnetic impurity scatterin
event.

contribution because it is of higher order in1yskF,d than
the Cooperon term. Because the results are rather leng
we present only the asymptotic behavior. Ford ­ 2 in
the limit T ¿ h̄yt0

s , we recover the inverse temperatur
dependence [6,7]

h̄
2tC

­
h̄

2tD
ø

2p h̄r0lJ
3t0

h̄
t0

s T
ø 2r0lJ

h̄
t0

, (5)

where1y2tC,D ­
R

des2 ≠f
≠e d f2ImS

C,D
3q se 1 i0dg. The

superscript refers to self-energy diagrams with Coopero
or diffusons. Without the cancellation theorem, the low
bound in temperature for the1yT behavior is set by
maxfh̄ytf, TKg, wheretf is the inelastic scattering time
We find here that by explicitly including spin scatterin
in the diffusion propagators, the algebraic behavior occu
when h̄yst0

s Td ø 1. We will see later that as a resul
of this restriction, the contribution of the1yT term to
the conductivity is negligible. In the opposite regime
T ø h̄yt0

s , the relaxation times
h̄

2tD
1

h̄
2tC

­ 2

µ
5
2

1
3 ln 3

4

∂
r0lJ

h̄
t0

ln
h̄

Tt0
s

(6)

are both logarithmic functions of temperature.
The final contribution to the relaxation time comes fro

the Cooperon weak-localization diagram. In two dime
sions in the presence of isotropic spin-flip scattering, t
weak-localization contribution isDsloc ­ 2e2ys2p2h̄d 3

lns
p

3tesyt0d, where h̄y2tes ­ 8h̄ys3t0
s d f1 2 r0J lnseFy

T dg, where we have explicitly included theOsJ3d con-
tribution to the spin-scattering lifetime. Inclusion o
the third order correction to the spin-scattering tim
enhances the spin-flip scattering rate, thereby weaken
the effects of localization. To see this more clearly, w
expand the argument of the logarithm for temperatur
well above the Kondo temperature:Dsloc ­ 2e2y
2p2h̄ ln

°
3
p

3t0
s y8t0

¢
2 e2y2p2h̄r0J lnseFyT d. We see

clearly that the Kondo interaction reduces the we
localization correction becauseJ , 0.
116
-
d-
le
he

hy,

ns
r

rs

,

-
e

e
ng
e
s

k

We collect all the contributions discussed above to d
termine the conductivity. In the temperature rangeTK ø

T , h̄yt0
s , Cooperon, diffuson, and weak-localizatio

corrections are logarithmic in temperature. Combini
the results from Eq. (5) with the weak-localization co
rection, we find that the magnitude of the logarithmic pa
of the conductivity

DsT ­ s0
4t0r0J

t0
s

√
1 1 1.4l

t0
s

t0

!
ln

eF

T
(7)

is enhanced by disorder. The first term in this express
arises from the unperturbed Kondo effect and the lat
from the interplay with disorder. Inclusion of disorder i
the self-energy always enhances the Kondo resistivity
increasing repetitive scattering at magnetic impurities.

For temperaturesT ¿ h̄yt0
s , the self-energy contribu-

tion to the relaxation time scales as1yT , whereas the
weak-localization correction is proportional to lnT . How-
ever, comparison of the magnitude of Eq. (5) andDsloc
reveals that the temperature-dependent weak-localiza
term dominates and the magnitude of the resultant lo
rithmic correction

DsT ­ s0
4t0r0J

t0
s

√
1 2

lt0
s

4t0

!
ln

eF

T
(8)

is suppressed by the disorder. The ratiolyt0 scales as
1y,2, where, is the mean-free path. We see then that,
the dilute impurity regime, disorder suppresses the Kon
effect. The crossover from enhancement to suppress
of the Kondo effect occurs because the magnitude a
functional dependence of the quantum corrections to
self-energy are determined by the shortest of two len
scales: the phase-breaking length,Lf ­

p
Dt0

s yh̄ and the
diffusion length,LT ­

p
DyT . The latter arises becaus

coupling of diffusion propagators to internal electron lin
in the self-energy leads to an effective electron-electr
interaction.

Let us now apply our results to thin films with a thick
nessL. We will assume that, , L ø Lf. Then we can
treat the films as quasi-2D with respect to localization, b
because, , L the electron gas is characterized by a thre
dimensional density of statesr0 ­ 1ys2pd2s2myh̄2d3y2e

1y2
F

with a diffusion constant given byD ­ 2h̄eFt0y3m. The
summation onQ in the Cooperon and diffuson is restricte
to small momentum transfers such thatDQ2 , 1yt0.
However, for thicknesses of the sample on the order o,,
the smallest wave vector in the transverse direction d
not satisfy this constraint. To rectify this problem, Volko
[14] showed that surface boundary conditions must
treated consistently. For thin films, his treatment sho
that the boundaries always give rise to a strictly tw
dimensional weak-localization correction and an expli
finite size dependence. To account for the former,
momentum integration in the Cooperon and diffuson m
be restricted to the plane. The density of states that ar
from converting the sum to an integral will be the two
dimensional density of statesr2D

0 ­ pr0yskFLd. Hence,
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FIG. 2. Comparison of the theoretical prediction for th
Kondo resistivity predicted from the second of Eq. (9) with
the experimental data of Blachly and Giordano [8] Fig. 7. Th
horizontal axis measures the strength of the static disord
through the mean-free path.

the self-energy diagrams will generate a size dependen
to the conductivity. The explicit finite-size weak-
localization correction is [14]Dsloc ­ 2e2ys2p2h̄Ld 3

lnh
p

3tesyt0fsinhsLy,ds,yLdgj. The size dependence in
the logarithm yields an effective size dependence in t
spin-relaxation time. However, this will not affect the
temperature dependence of the conductivity. The on
size dependence that is coupled to the temperature is
1yL prefactor of the weak-localization correction.

We now combine these results in the low– and high
temperature limits discussed earlier. In the two limits, w
obtain

DsT ­

8<: s̃

≥
1 1

2.3 h̄t0
s

pmkFL,2

¥
ln eF

T , TK ø T , h̄t0
s

s̃

≥
1 2

1.2 h̄t0
s

pmkFL,2

¥
lneF

T , TK , h̄yt0
s ø T

(9)

an explicit size and disorder correction that scales
1ys,2Ld with s̃ ­ 4s0t0r0Jyt0

s . The fact that only the
coefficient of lnT is modified is a direct consequence o
the cancellation theorem.

In the concentrated impurity limitT , h̄yt0
s , increas-

ing disorder enhances the resistivity. In Cu(Fe) alloys
impurity concentrations ranging from (0.3–2.1)%, Kor
observed an enhancement in the Kondo resistivity that
consistent with the first equation above. However, in th
dilute limit, T ¿ h̄yt0

s , we predict a suppression of the
Kondo effect as the disorder is increased and the size
the sample decreases. In the experiments of Blachly a
Giordano [8],h̄yt0

s ø 0.1 K, which is much less than the
Kondo temperature for Cu(Fe). The second of Eqs. (
should be valid. Figure 2 shows a comparison betwe
the experimental data and the theoretical predictions. T
best fit to the data was obtained witht0

s ­ 0.52 ns, which
is consistent with the experimental range of10210 s. As
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is evident, theory and experiment are in good agreeme
Although electron-electron interactions could also give ri
to lnT corrections to the conductivity, no lnT was ob-
served [8] in the absence of magnetic impurities. Rega
ing the size dependence, we note that Ujsaghyet al. [15]
have proposed a hindered spin-orbit [15] mechanism t
also generates a size dependence. By comparing the m
nitude of the corrections to the Kondo resistivity, we fin
that the disorder mechanism is expected to dominate w
yFt0

s yk2
F . ,2minsl0, ,d, wherel0 is the hindered spin-

orbit length [15]. For the Cu(Fe) samples [8], this corr
sponds to a mean-free path of, ø 500 Å, below which
the contribution from disorder is expected dominate t
size dependence of the Kondo resistivity. In the oth
regime, the spin-orbit mechanism of Ujsaghyet al. [15]
dominates. We conclude that disorder provides either
enhancement or a suppression correction to the Kondo
sistivity of the form1ys,2Ld.
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