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Thermal Conductivity and Lorenz Number for One-Dimensional Ballistic Transport
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We study the thermal conductivity and Lorenz number of charge carriers for one-dimensional ballistic
transport within the correlation function formalism. The carrier transit time between two ideal contacts
is found to substitute for the collision time in the definition of a ballistic thermal conductivity.
A universal thermal conductanck = 272k3T/3h is naturally obtained for the degenerate case.
Dispersion curves for the thermal conductivity and the Lorenz number associated with different time
scales belonging to the microscopic system are given for the first time. [S0031-9007(97)02335-1]
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One-dimensional structures offer a fascinating scenarimetrized correlation function in thermal equilibrium
to look for fundamental physics as well as to develo 1
innovative devices. As iFr)nr)Jlortant achievements in thig Cur(t) = 3O, (1)) + 1, (0),,(1)). (2)
field we recall the fundamental unity of electrical con-whereJ, andJ, denote the operators of the respective
ductance, the quantum and fractional Hall effect, the uniobserved quantities, afd -) indicate their expectation (or
versal conductance fluctuations, etc. [1]. In this respectguantum mechanically averaged) value. In the ballistic
thermal conductivity of charge carriers has been recentlyegime the theory may be extended to the nonequilibrium
studied for a variety of systems in an attempt to investicase according to [8], while with collisions it depends on
gate its properties and analogies with the electrical conthe details of the scattering processes as shown for the
ductivity [2—-5]. In particular, in a seminal experiment of nondegenerate regime in [5].
the Philips group [6], the thermoelectrical properties of We apply the above relations to a one-dimensional con-
a quantum point contact have been interpreted as expeructor of active lengthl limited in the z direction by
mental evidence for the Wiedemann-Franz law to hold. ideal contacts (i.e., completely absorbing and thermaliz-

The aim of this Letter is to present a first principle ing). Following a Wigner function formalism [9] the gen-
calculation of thermal conductivity and Lorenz numbereral correlation functions (2) are found to be
for one-dimensional ballistic transport thus providing the | 2/ 52 \(utv—2)

. : . . eh h _

fundamental properties of this physical quantity. ThecC,,(r) = —<—> <—> et/
generality of the theoretical approach enables us to inves- 77 ”262 Z”tﬁ
tigate continuously the transition from nondegenerate to Nt v—1
completely degenerate conditions and recover well known X L) az j;( KU fo(1 = fo) dk, (3)
results under the diffusive regime, when transport is con- .
trolled by scattering of carriers with lattice imperfections. where e is the electron chargej the reduced Planck

In the linear response regime, the fluxes are connecte%onStant’m. the carrier effect|v_e masss, _the average
to the externally applied fields by the kinetic (or Kelvin- scattering gme dhescFrlblng tdh_e d_|t1:fu§|ve reTgf:mqhe wave
Onsager) coefficients ., according to ;_/egtor, andfo the Fermi distribution. e integration

imits for the k integration are
ju = 2 LunXo, (1) Coml L
R _ o n(sk ), @
where u, v = 1,2, while j; and j, denote the electrical hit 2
current and the heat-flux densities, respectively, Znd Equation (3) describes the continuous transition from a
andX, the electric field and temperature gradient, respecballistic [i.e., exg—:/7.) = 1] to a diffusive regime
tively. As a consequence of the fluctuation-dissipatiori.e., C,(t) ~ exp(—t/7.)]. The normalized correlation
theorem [7] the linear responses to a weak external didunctions for the ballistic case calculated numerically
turbance can be derived from the spectral properties adccording to Eq. (3) are reported in Fig. 1. In the
fluctuations. Those are given in the following by the sym-degenerate case, the decay of the correlations is found to
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10° T T T . also for nonparabolic bands. By introducing as an
average transit time, defined later, the static kinetic coef-
ficients in the ballistic regime are given by the following
10° | equations. In the nondegenerate case
—_ i 2
g — C,(C0) | Life = S0, (8)
o s CaVCL0) | N\ N "
€> 10-6 [ B B i \\ “‘\ 1 ndg 2n(kBT)2 ndg
o ——— C,(1)/C,(0) NN Ly = TTT ’ (9)
H \ \
---- degenerate ! NN X
. T
10° E Li® = Loy® = 2o, (10)
. i Y A
102 10" 10° 10’ and, neglecting exponentially small terms of the order of
tr, exp(—Er/kgT), in the degenerate case
FIG. 1. Correlation functions for the nondegenerate and de- deg _ 82_” deg _ 2_62
.. Lll TT L s (11)
generate ballistic cases. m h
2 2
d n o d % (kgT)
_ o , Ly = Z_TTegE12v<1 + 32 )
be linear for allw andv. This is because, due to the Pauli m EF
principle, only carriers at the Fermi energy and thus with 2, w2 (kgT)?
the same transit time contribute to (3). On the contrary, - LEEF I+ 3 E2 ) (12)
in the nondegenerate case the correlation functions exhibit 5
different time decays because of the different weighting LI =15 = %T;{egEF = LfEF- (13)

with the exponentg. andv. As can be easily verified, _ . _ . _
in the long time limit the correlation functions decay asIn the above equations is the one-dimensional carrier
=2+ +1 which is in accordance with the results given concentration £ = (7/n)*/8m the Fermi energy, and

in [10]. the average transit timer is given by
The dynamic coefficientd ,,(w) are now calculated ndg m 1/2 L
by means of the Fourier-Laplace transforfig, (w) of T = L(Zwk T) = (14)
the respective correlation functiods,, (r) from [11]: B 12 ndg
LS, () deg _ L<i> _ L 15
Ly,(w) = ISB—T, (5) TT 2EF Vdeg (13

where kp is the Boltzmann constant arid the absolute wherev,q, andvg, are the average velocity of carriers
temperature. Performing first the integrations over spacmmjected from the contacts pertaining to the nondegenerate
and time analytically, and then transforming the remainingand degenerate cases, respectively. The two cases are
integration ink to an integration over the energy variable specified by = Er/kgT < —1 for the nondegenerate

E, we getS,, (w) in the compact form: case and > 1 for the degenerate case.

23/2p4—n—v [® 32 The dynamic thermal conductivitk(w) calculated
Suv(w) = Wfo dE E* fo(l = fo) from the standard relation

INw) HE)T() } k() = Lij(w)Ln(w) — Lin(w)La(w) (16)

X ]"(w)[l (E) (1-e ) |- (6) Lij(w)T
Herer(E) = L\/m/2E is the microscopic ballistic transit €xhibits in general a frequency dispersion, and for the
time of a carrier with kinetic energy, and ['(w) = Static case is given by the following relations:
7./(1 + iwT:) is the Lorentzian Iine—shape_ _function. ballndg NI3T nag B nLkz/le/z .
Equation (6) describes the continuous transition from a K =0 T T Qam) 2 (17)
diffusive to a ballistic regime, the former and latter s 2 s o
corresponding to the limits-/r. — « and 7/7. — 0, (balldes — T ”kBTTgeg _ 2m” LkT (18)
respectively, in the range of energies determined by the 6 m 3 h
factor fo(1 — fo). In the static (i.e.w = 0) and ballistic  for the nondegenerate and degenerate cases, respectively,
limit inserting the microscopie(E) Eq. (6) reads where the right-hand side of (18) has accounted for the

20 [~ E \rtv—2 relationdLm/nre = h. For completeness we report also
Sur(0) = ), dE(j) Sot = fo). (7)  the values of the diffusive regime which are given by

Equation (7), referring to théallistic limit, is indepen- diffndg _ 3 nksT

dent of the energy wave-vector dispersion and thus valid Kk = DT e (19)
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2 2
s diff.deg - nkgT

(20)

m

for the nondegenerate and degenerate cases, respectively.

Equations (17)—(20) evidence the similarity and differ-
ences of the thermal conductivity formulas for different
transport regimes and degeneracy conditions. Accord-
ingly, we notice that transit time takes the place of collision
time in passing from diffusive to ballistic regimes while
different numerical factors, of the order of unit, charac-
terize different cases. Furthermore, one should note that
the thermal conductance of the ballistic regiki&!! =
«" /L is independent of the sample geometry and has
the following interesting properties. In the nondegenerate
case, for a given carrier concentration and effective mass,

T(,‘s

0

10
— 10"
e .
X
B a2 :
= 10
—— Re[x(w)/x(0)]
108 L - Im[x(w)/x(0)] J
10? 10" 10° 10’ 10°
T,

itis proportional to the square rQOt of the abso,lUte temperaﬁG_ 2. Spectrally resolved thermal conductivity for the bal-
ture. In the degenerate case, it takes the universal form jistic regime in the nondegenerate case. Continuous and dashed

2
Kball,deg — 2_772 kB_T , (21)

the presence of the Planck constant being associated
with full quantum conditions. In analogy with the
quantized electrical conductance = 2¢2/h, we expect
that Eq. (20) represents a fundamental unit of thermal
conductance at temperatufe associated with a single

subband. This latter case confirms experimental findingge get, in the static case

on the observation of universal thermopower fluctuations
[3] and thermoelectric power of point contacts [12], as
well as recent studies in thermal transport properties of
a Luttinger liquid [4]. We further point out that in the
nondegenerate diffusive regime the numerical coefficient
3/2 is the result of a scaling behavior 4% + D/2)
with D = 1,2,3 the dimensionality of the system. In
the degenerate case we find the standat@3 numerical
coefficient independently from the dimensionality. Note
that this result is obtained for the single relaxation time
approach used for the diffusive regime. In general w
expect that, when the energy relaxation time scale is com-
parable with momentum relaxation, significant deviations
should occur. The frequency dispersion of the therma
conductivity in the ballistic regime exhibits interesting
spectra which deviate considerably from the Lorentzian
line shape of the corresponding diffusive regime. These
are reported in Figs. 2 and 3 for the nondegenerate and
degenerate cases, respectively. In the nondegenerate case
the structure ator7 = 10 in the real part of the thermal
conductivity Réx(w)] originates from the long time tails
of the associated correlation functions (see Fig. 1). A
corresponding structure, even if strongly smoothed out,
is also detectable in the imaginary part[k(w)]. In
the degenerate case we recover the oscillatory behavior
of R k(w)] already found for the case of current noise
spectral density in [13] and associated with the geomet-
rical resonances coming from the triangular shape of
the current correlation function. Again, a corresponding
structure is detectable in the imaginary parf Atw)].

By recalling that the electrical conductivity(w) is
given by o(w) = Li1(w), for the Lorenz numbet.y(w),
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curves refer to the real and imaginary parts, respectively.

here generalized to account for frequency dispersion as

Kk(w)
L = , 22
2 di k3
Lgall,ndg _ _Lglff,ndg . _B’ (23)
3 e?
ball,deg diffdes w2 ki
L() ' = L() ' = ; . (24)

Equation (24) is rigorous at all frequencies for the bal-
listic regime, deriving from a unique decay of the de-
generate correlation functions (see Fig. 1). Conversely,
for the diffusive regime (24) is an approximation due to
the assumption of an average scattering time. Thus, the
Gobust property of the universal Lorenz number, pointed
out in [2], actually does not seem to be fulfilled in gen-
Fral. Note that in the ballistic nondegenerate case the

FIG. 3. Spectrally resolved thermal conductivity for the bal-
listic regime in the degenerate case. Continuous and dashed
curves refer to the real and imaginary parts, respectively.
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' y ' listic regime long time tails of the correlation functions,

decaying with increasing odd integer exponent, are found.
As a consequence the Lorenz number exhibits a disper-
sion behavior which is recognized as a general property

S 1.0 ] of this physical quantity.
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