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We study the thermal conductivity and Lorenz number of charge carriers for one-dimensional ballistic
transport within the correlation function formalism. The carrier transit time between two ideal contacts
is found to substitute for the collision time in the definition of a ballistic thermal conductivity.
A universal thermal conductanceK  2p2k2

BTy3h is naturally obtained for the degenerate case.
Dispersion curves for the thermal conductivity and the Lorenz number associated with different time
scales belonging to the microscopic system are given for the first time. [S0031-9007(97)02335-1]
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One-dimensional structures offer a fascinating scen
to look for fundamental physics as well as to deve
innovative devices. As important achievements in
field we recall the fundamental unity of electrical co
ductance, the quantum and fractional Hall effect, the
versal conductance fluctuations, etc. [1]. In this resp
thermal conductivity of charge carriers has been rece
studied for a variety of systems in an attempt to inve
gate its properties and analogies with the electrical c
ductivity [2–5]. In particular, in a seminal experiment
the Philips group [6], the thermoelectrical properties
a quantum point contact have been interpreted as ex
mental evidence for the Wiedemann-Franz law to hold

The aim of this Letter is to present a first princip
calculation of thermal conductivity and Lorenz numb
for one-dimensional ballistic transport thus providing
fundamental properties of this physical quantity. T
generality of the theoretical approach enables us to in
tigate continuously the transition from nondegenerat
completely degenerate conditions and recover well kn
results under the diffusive regime, when transport is c
trolled by scattering of carriers with lattice imperfection

In the linear response regime, the fluxes are conne
to the externally applied fields by the kinetic (or Kelv
Onsager) coefficientsLmn according to

jm 
X
n

LmnXn , (1)

wherem, n  1, 2, while j1 and j2 denote the electrica
current and the heat-flux densities, respectively, andX1

andX2 the electric field and temperature gradient, resp
tively. As a consequence of the fluctuation-dissipa
theorem [7] the linear responses to a weak external
turbance can be derived from the spectral propertie
fluctuations. Those are given in the following by the sy
114 0031-9007y97y78(6)y1114(4)$10.00
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metrized correlation function in thermal equilibrium

Cmnstd  1
2 kJms0dJnstd 1 Jns0dJmstdl , (2)

where Jn and Jm denote the operators of the respectiv
observed quantities, andk· · ·l indicate their expectation (or
quantum mechanically averaged) value. In the ballis
regime the theory may be extended to the nonequilibriu
case according to [8], while with collisions it depends o
the details of the scattering processes as shown for
nondegenerate regime in [5].

We apply the above relations to a one-dimensional co
ductor of active lengthL limited in the z direction by
ideal contacts (i.e., completely absorbing and thermal
ing). Following a Wigner function formalism [9] the gen
eral correlation functions (2) are found to be

Cmnstd 
1
p

µ
eh̄
mL

∂2 µ
h̄2

2me

∂sm1n22d
e2tytc

3
Z Ly2

2Ly2
dz

Z k1

k2

k2sm1n21df0s1 2 f0d dk , (3)

where e is the electron charge,̄h the reduced Planck
constant,m the carrier effective mass,tc the average
scattering time describing the diffusive regime,k the wave
vector, andf0 the Fermi distribution. The integration
limits for thek integration are

k6 
m
h̄t

µ
6

L
2

2 z

∂
. (4)

Equation (3) describes the continuous transition from
ballistic [i.e., exps2tytcd  1] to a diffusive regime
[i.e., Cmnstd , exps2tytcd]. The normalized correlation
functions for the ballistic case calculated numerical
according to Eq. (3) are reported in Fig. 1. In th
degenerate case, the decay of the correlations is foun
© 1997 The American Physical Society
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FIG. 1. Correlation functions for the nondegenerate and
generate ballistic cases.

be linear for allm andn. This is because, due to the Pau
principle, only carriers at the Fermi energy and thus w
the same transit time contribute to (3). On the contra
in the nondegenerate case the correlation functions exh
different time decays because of the different weighti
with the exponentsm and n. As can be easily verified
in the long time limit the correlation functions decay a
t22sm1nd11, which is in accordance with the results give
in [10].

The dynamic coefficientsLmnsvd are now calculated
by means of the Fourier-Laplace transformsSmnsvd of
the respective correlation functionsCmnstd from [11]:

Lmnsvd 
LSmnsvd

kBT
, (5)

where kB is the Boltzmann constant andT the absolute
temperature. Performing first the integrations over sp
and time analytically, and then transforming the remain
integration ink to an integration over the energy variab
E, we getSmnsvd in the compact form:

Smnsvd 
23y2e42m2n

pLh̄m1y2

Z `

0
dE Em1n23y2f0s1 2 f0d

3 Gsvd
∑

1 2
Gsvd
tsEd

s1 2 e2tsEdyGsvdd
∏

. (6)

HeretsEd  L
p

my2E is the microscopic ballistic transi
time of a carrier with kinetic energyE, and Gsvd 
tcys1 1 ivtcd is the Lorentzian line-shape function
Equation (6) describes the continuous transition from
diffusive to a ballistic regime, the former and latte
corresponding to the limitstytc ! ` and tytc ! 0,
respectively, in the range of energies determined by
factorf0s1 2 f0d. In the static (i.e.,v  0) and ballistic
limit inserting the microscopictsEd Eq. (6) reads

Smns0d 
2e2

h

Z `

0
dE

µ
E
e

∂m1n22

f0s1 2 f0d . (7)

Equation (7), referring to theballistic limit, is indepen-
dent of the energy wave-vector dispersion and thus va
e-

i
h
y,
ibit
g

s

ce
g
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r

he

lid

also for nonparabolic bands. By introducingtT as an
average transit time, defined later, the static kinetic co
ficients in the ballistic regime are given by the followin
equations. In the nondegenerate case

L
ndg
11 

e2n
m

t
ndg
T , (8)

L
ndg
22 

2nskBTd2

m
t

ndg
T , (9)

L
ndg
12  L

ndg
21 

enkBT
m

t
ndg
T , (10)

and, neglecting exponentially small terms of the order
exps2EFykBT d, in the degenerate case

L
deg
11 

e2n
2m

t
deg
T  L

2e2

h
, (11)

L
deg
22 

n
2m

t
deg
T E2

F

µ
1 1

p2

3
skBT d2

E2
F

∂
,

 L
2
h

E2
F

µ
1 1

p2

3
skBT d2

E2
F

∂
, (12)

L
deg
12  L

deg
21 

en
2m

t
deg
T EF  L

2e
h

EF . (13)

In the above equationsn is the one-dimensional carrie
concentration,EF  sp h̄nd2y8m the Fermi energy, and
the average transit timetT is given by

t
ndg
T  L

µ
m

2pkBT

∂1y2


L

yndg
, (14)

t
deg
T  L

µ
m

2EF

∂1y2


L

ydeg
, (15)

whereyndg and ydeg are the average velocity of carrier
injected from the contacts pertaining to the nondegener
and degenerate cases, respectively. The two cases
specified byd  EFykBT ø 21 for the nondegenerate
case andd ¿ 1 for the degenerate case.

The dynamic thermal conductivityksvd calculated
from the standard relation

ksvd 
L11svdL22svd 2 L12svdL21svd

L11svdT
(16)

exhibits in general a frequency dispersion, and for t
static case is given by the following relations:

kball,ndg 
nk2

BT
m

t
ndg
T 

nLk
3y2
B T1y2

s2pmd1y2
, (17)

kball,deg 
p2

6
nk2

BT
m

t
deg
T 

2p2

3
Lk2

BT
h

(18)

for the nondegenerate and degenerate cases, respecti
where the right-hand side of (18) has accounted for t
relation4Lmynt

deg
T  h. For completeness we report als

the values of the diffusive regime which are given by

kdiff,ndg 
3
2

nk2
BT

m
tc , (19)
1115
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kdiff,deg 
p2

3
nk2

BT
m

tc , (20)

for the nondegenerate and degenerate cases, respect
Equations (17)–(20) evidence the similarity and diff

ences of the thermal conductivity formulas for differe
transport regimes and degeneracy conditions. Acc
ingly, we notice that transit time takes the place of collis
time in passing from diffusive to ballistic regimes whi
different numerical factors, of the order of unit, chara
terize different cases. Furthermore, one should note
the thermal conductance of the ballistic regimeKball 
kballyL is independent of the sample geometry and
the following interesting properties. In the nondegener
case, for a given carrier concentration and effective m
it is proportional to the square root of the absolute temp
ture. In the degenerate case, it takes the universal for

Kball,deg 
2p2

3
k2

BT
h

, (21)

the presence of the Planck constant being assoc
with full quantum conditions. In analogy with th
quantized electrical conductanceG  2e2yh, we expect
that Eq. (20) represents a fundamental unit of ther
conductance at temperatureT , associated with a singl
subband. This latter case confirms experimental findi
on the observation of universal thermopower fluctuati
[3] and thermoelectric power of point contacts [12],
well as recent studies in thermal transport properties
a Luttinger liquid [4]. We further point out that in th
nondegenerate diffusive regime the numerical coeffic
3y2 is the result of a scaling behavior ass1 1 Dy2d
with D  1, 2, 3 the dimensionality of the system. I
the degenerate case we find the standardp2y3 numerical
coefficient independently from the dimensionality. No
that this result is obtained for the single relaxation ti
approach used for the diffusive regime. In general
expect that, when the energy relaxation time scale is c
parable with momentum relaxation, significant deviatio
should occur. The frequency dispersion of the therm
conductivity in the ballistic regime exhibits interestin
spectra which deviate considerably from the Lorentz
line shape of the corresponding diffusive regime. Th
are reported in Figs. 2 and 3 for the nondegenerate
degenerate cases, respectively. In the nondegenerate
the structure atvtT . 10 in the real part of the therma
conductivity Refksvdg originates from the long time tail
of the associated correlation functions (see Fig. 1).
corresponding structure, even if strongly smoothed
is also detectable in the imaginary part Imfksvdg. In
the degenerate case we recover the oscillatory beha
of Refksvdg already found for the case of current noi
spectral density in [13] and associated with the geom
rical resonances coming from the triangular shape
the current correlation function. Again, a correspond
structure is detectable in the imaginary part Imfksvdg.

By recalling that the electrical conductivityssvd is
given byssvd  L11svd, for the Lorenz numberL0svd,
1116
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FIG. 2. Spectrally resolved thermal conductivity for the bal
listic regime in the nondegenerate case. Continuous and dash
curves refer to the real and imaginary parts, respectively.

here generalized to account for frequency dispersion as

L0svd 
ksvd

ssvdT
, (22)

we get, in the static case

L
ball,ndg
0 

2
3

L
diff,ndg
0 

k2
B

e2
, (23)

L
ball,deg
0  L

diff,deg
0 

p2

3
k2

B

e2 . (24)

Equation (24) is rigorous at all frequencies for the ba
listic regime, deriving from a unique decay of the de
generate correlation functions (see Fig. 1). Converse
for the diffusive regime (24) is an approximation due to
the assumption of an average scattering time. Thus, t
robust property of the universal Lorenz number, pointe
out in [2], actually does not seem to be fulfilled in gen
eral. Note that in the ballistic nondegenerate case t

FIG. 3. Spectrally resolved thermal conductivity for the bal
listic regime in the degenerate case. Continuous and dash
curves refer to the real and imaginary parts, respectively.
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FIG. 4. Spectrally resolved Lorenz number for the ballist
regime in the nondegenerate case. Continuous and das
curves refer to the real and imaginary parts, respectively.

Lorenz number exhibits a frequency dispersion becau
of the different long time tails exhibited by different cor
relation functions. This effect, whose behavior is show
in Fig. 4, is expected to be present whenever moment
and energy relaxation have comparable time scales.

In conclusion, a rigorous calculation of the thermal co
ductivity of charge carriers for one-dimensional ballisti
transport has proven several fundamental properties
this quantity. Its formal definition looks similar to the dif-
fusive regime provided the average transit time replac
the average collision time. For the degenerate ballis
regime, a single time scale for all correlation functions
found to be its universal property. This property leads to
fundamental unit of thermal conductance at the given te
perature in agreement with experiments and to a Lore
number without dispersion. For the nondegenerate b
ed
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of
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listic regime long time tails of the correlation functions
decaying with increasing odd integer exponent, are foun
As a consequence the Lorenz number exhibits a disp
sion behavior which is recognized as a general prope
of this physical quantity.
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Laboratory for Electronic Noise and supported by th
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