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Direct Transition to Spatiotemporal Chaos in Low Prandtl Number Fluids
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We present a large scale numerical simulation of three-dimensional Rayleigh-Bénard convectio
onset, under free-free boundary conditions for a fluid of Prandtl numbers ­ 0.5. We find that a
spatiotemporally chaotic state emerges immediately above onset, which we investigate as a func
the reduced control parameter. We conclude that the transition from conduction to spatiotempora
is second order and of “mean field” character. We also present a simple theory for the time-ave
convective current. Finally, we show that the time-averaged structure factor satisfies a scaling be
with respect to the correlation length near onset. [S0031-9007(97)02314-4]
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Pattern formation in nonequilibrium systems has b
come a major frontier area in science [1,2]. The richn
of this field has been significantly enhanced by the ex
tence of spatiotemporal chaos (STC) in various syste
[1–7]. STC is characterized by its extensive, irregu
dynamics in both space and time. It has been recogn
in experiments [2–4] and numerical studies [1,5,6] tha
large aspect ratio is essential for the occurrence of S
Owing to the generic complication of its dynamics, the
retical understanding of STC relies heavily on some mu
simplified, mathematical models of the real systems
Although much progress has been made, some fundam
tal concepts remain to be developed.

A paradigm of patter formation is Rayleigh-Bénard co
vection (RBC) [2], which occurs when a thin horizont
fluid layer is heated from below. In general, the dyna
ics of RBC depends on the Rayleigh numberR, the Prandtl
numbers of the fluid, and the aspect ratio (sizeythickness)
G of the system. Busse and his collaborators [8] ha
studied extensively the stability domain of parallel ro
as a function of wave numberk and Rayleigh numberR,
for various s. (It is well known that in a laterally in-
finite system with rigid-rigid boundaries, there exists
stable, time independent parallel roll state near the o
of convection for alls). In the case offree-freebound-
aries at sufficiently low Prandtl numbersss , 0.543d, Sig-
gia and Zippelius [9] and Busse and Bolton [10] fou
surprisingly that parallel rolls are unstable with respec
the skewed-varicose instabilityimmediatelyabove onset.
Busseet at. [11] further studied the possibility of a direc
tion transition from conduction to STC, but their aspe
ratio sG ­ 8d is not large enough for a conclusive resu
Although the free-free boundaries are very difficult to co
trol for detailed experimental studies, one experiment w
such boundary conditions has been reported [12].

In this Letter, we present the results of a large sc
sG ­ 60d numerical simulation of the three-dimension
hydrodynamic equations, using the Boussinesq appr
mation, for a low Prandtl number fluidss ­ 0.5d with
free-free boundary conditions. The same problem
0031-9007y97y78(6)y1046(4)$10.00
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been investigated before [11,13], but the aspect ratio u
by previous studies is too small for the occurrence
STC. We find from our extensive numerical simulatio
that the convective state just above onset is spatiotem
rally chaotic (which is evident from the snapshot imag
of the vertical velocity field and from the dynamical be
havior of three important global quantities: the visco
dissipation energy, the thermal dissipation energy, and
work done by the buoyancy force). This thus provid
another example of a direct transition to STC, in add
tion to the Küppers-Lortz transition [4,14], ac driven ele
troconvection, and a few others [7]. Our method su
gests that by studying the dynamical behavior of so
global quantities of systems which exhibit STC, one m
obtain valuable information about the temporal chaos
these systems. We also measure the fractal dimens
of the global quantities and find a value of about 1.4.
addition, we investigate the nature of the conduction
STC transition, as well as certain properties of the sp
tiotemporally chaotic state. Our results for the corre
tion length suggest that the transition is second ord
with a mean field power law behavior. We present b
low a simple but rather accurate theory for the behav
of the time-averaged convective current as a function
the reduced control parameter. Finally, we show that
time-averaged structure factor (power spectrum) exhib
a scaling behavior with respect to the correlation leng
similar to that found in critical phenomena.

The Boussinesq equations, which describe the evolut
of the velocity field$usx, y, z, td ­ su, y, wd and the devia-
tion of the temperature fieldusx, y, z, td from the conduc-
tive profile, can be written in dimensionless form as

= ? $u ­ 0 ,

≠ $uy≠t 1 s $u ? =d $u ­ 2=p 1 su $ez 1 s=2 $u , (1)

≠uy≠t 1 $u ? =u ­ =2u 1 wR ,

where $ez is the unit vector in the verticalz direction.
In the idealized limit of a laterally infinite system, th
critical Rayleigh numberRc ­ 27p4y4 and the onset
wave numberkc ­ py

p
2. The efficient marker-and-cel
© 1997 The American Physical Society
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(MAC) [15,16] numerical technique is employed. (
developing our algorithm, we have carried out two tes
One is against the theoretical results of Schlüteret al. [17];
the other is against the numerical results of Kircha
and Oertel [18]. In both cases agreements within
have been found.) The boundary conditions for t
velocities $u are free slip at the upper and lower surfac
and no slip at the sidewalls. The temperature deviat
u is zero on the top and bottom surfaces, while t
temperature gradient=u normal to the sidewall is set to
zero. For the initial conditions of$u andu, we have tried
both random values and values of Gaussian distribut
inside a possible range. Since no difference has b
found, the actual calculation is carried out with initi
conditions of Gaussian distribution. Our parameters
s ­ 0.5 and 0.03 # e # 0.5, wheree ­ sR 2 RcdyRc

is the reduced Rayleigh number. We use mesh po
Nx 3 Ny 3 Nz ­ 256 3 256 3 18 and a grid sizeDx ­
Dy ­ 60y256, Dz ­ 1y18 for an aspect ratioG ­ 60 in
the simulation. We have run for 360 vertical diffusio
times before collecting data. Considering that the norm
relaxation time to approach a steady state is about
vertical diffusion timesftrelax ­ 2s1 1 sdy3p2seg, we
believe that we are well beyond any transient regime.

For the low Prandtl number fluid studied here, t
convective pattern near onset has an irregular space-
dependence. In Fig. 1 we show a snapshot image of
vertical velocity fieldwsx, y, z ­

1
2 d from the numerical

simulation at e ­ 0.1. In this image, the apparentl
disorganized spatial pattern consists of superimposed
with many different orientations. The time evolution
these rolls is through an interface motion, which mainta
the type of spatial disorder shown in Fig. 1. Simil
images are found for other values ofe. It is obvious
from such images that the convection pattern near o
is random in space.

To illustrate the temporal chaos of the system, we n
investigate the dynamics of the global quantities wh
characterize the underlying physics of Rayleigh-Bén
convection. Usingkfl to denote the average off over
the whole system and taking into account the bou
ary conditions as well as the incompressibility conditio
we obtain1

2 dk $u ? $ulydt ­ F2std 2 F1std, and1
2 dku2lydt ­

F4std 2 F3std, where (a)F1 ­
1
2 sks≠uiy≠xj 1 ≠ujy≠xid2l

is the kinetic energy dissipated by the viscosity, (b)F2 ­
skwul is the work done by the buoyancy force, (c)F3 ­
k=u ? =ul is the dissipative thermal energy (generation
entropy) owing to temperature fluctuations, and (d)F4 ­
Rkwul ­ RF2ys is the flow of the entropy fluctuations ca
ried by the vertical velocity. It is clear that in the spec
case of steady states≠y≠t ­ 0d, one recovers the condi
tion F1 ­ F2 andF4 ­ F3. These global quantities provid
us with a complete description of “energy balance” in t
Rayleigh-Bénard system.

We plot a representative time series of these quanti
F1std, F2std, and F3std, in Fig. 2 for e ­ 0.2. We have
rescaledF1, F2 by sRc, andF3 by RRc so that we have
ts:
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FIG. 1. A typical image of the spatially disorganized patte
in the cell. Dark regions correspond to hot rising fluid an
white regions correspond to cold descending fluid. The verti
velocity field wsx, y, z ­ 1

2 d for e ­ 0.1 is shown here.

F1 ­ F2 ­ F3 in a steady state. (Note thatF4 is simply
related toF2 by the factorRys.) The most important
implication of Fig. 2 is the apparent chaotic behavior
these quantities over the time interval that is accessible
us. To be more concrete, we apply the Grassberger
Procaccia method [19] to compute the fractal dimensio
Df for these quantities and findDf ­ 1.42 6 0.02. This
of course is different from the fractal dimension that

FIG. 2. A plot of global quantitiesF1std, F2std, and F3std as
functions of time fore ­ 0.2. Note that they lie on top of
each other with differences, though substantial, too small to
seen. The time is in units of vertical thermal diffusion tim
ty ­ d2yk and the origin corresponds tot ­ 330ty in real
calculation.
1047
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normally used to characterize STC, which diverges w
the system size. We believe that such global quanti
might provide a relatively simple way to characteri
the temporally chaotic nature of spatiotemporally chao
states such as studied here, although data over a lo
time interval will be necessary for such an analys
It is also interesting to observe that the dynamics
these three quantities arealmost exactly the same, i.e.
F1std . F2std . F3std, as shown in Fig. 2. Although
the differences among them are substantial and bey
numerical uncertainties, they are too small to be s
under the scale of Fig. 2. In fact, this is the case for ae

studied in the range0.03 # e # 0.5. This is certainly a
surprising result considering the irregular spatiotempo
state we observed. However, a theoretical understan
of this has been obtained, as will be outlined later. T
result also implies that the quantityR ­ sF3ys2F2 2

F1d, which is often used as a variational formulation
determine the critical Rayleigh number, behaves as if
system is almost in a steady state.

In order to gain more insight into the nature of th
transition to STC near onset, we have studied the tw
dimensional structure factor (Fourier power spectrum
Since the snapshot images of the patterns appear t
isotropic azimuthally, we calculate the azimuthally av
aged structure factor, and then average the images
time, to obtain the time-averaged structure factorSskd.
The functionkSskd is shown for several different values o
e in the inset of Fig. 3. We also show in Fig. 3 thatkSskd
satisfies a scaling behavior somewhat similar to that fo
in critical phenomena, namely,kSskdyj ­ Ffsk 2 kmaxjg,
where j is the correlation length (defined below) an
where we have normalized the integral ofSskd overk space
to be unity. Herekmax is the wave number which maxi
mizeskSskd, which we choose to give the best fit to sca
ing. Another interesting feature of the structure factor
associated with the power-law behavior ofSskd , k23 for

FIG. 3. A plot of kSskdyj vs x ­ sk 2 kmaxdj (in units of
kc), showing scaling and the scaling functionFsxd defined in
the text. Inset: the time-averaged functionkSskd vs kykc for
e ­ 0.03, 0.05, and 0.1.
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a large wave number. This feature is observed over
range ofe studied here. It is interesting to note that this
the same power-law behavior observed in phase separ
systems, in two dimensions, where it is known as Poro
law. In both cases it results from the linear behavior of
real space correlation function,Csrd, for smallr, where this
correlation function is the azimuthal average of the inve
Fourier transform of the structure factor.

We have also calculated the correlation lengthj as a
function of the control parametere, where we define the
correlation length through the variance of the wave nu
ber, i.e.,j ­ sk2 2 k

2d21y2. The momentkn is defined
as kn ­

R
j $kjnSs $kdd2 $ky

R
Ss $kdd2 $k and Ss $kd is the time-

averaged structure factor. We find that the correlat
lengthj appears to diverge ase approaches the transitio
point, with a power-law behavior ofj ­ j0se 2 ecd2n

with n ­ 0.472 6 0.016, j0 ­ 0.82 6 0.04, and ec ­
0.005. (The fact thatec is finite instead of zero is due
to finite size effects.) The behavior of the correlati
length is also consistent with a mean field power-law
ponent ofn ­ 0.5 and j0 ­ 0.78. This is illustrated in
Fig. 4. The amplitude valuej0 is a factor of3

2 larger than
the valuej0 ­

p
8y3p2 ­ 0.52 calculated from the cur-

vature of the marginal stability curve.
In order to investigate the heat transport in ST

near onset, we calculate the Nusselt numberNstd ­
1 1 kwulyR, which describes the ratio between th
heat transport with and without convection, as a fu
tion of e. The quantity N 2 1 can be fit with a
power-law behavior of the formN 2 1 ­ se 2 ecdmyg
with m ­ 1.034 6 0.025, ec ­ 0.012, and g ­ 1.27 6

0.03. Figure 5 shows that the time-averagedN 2 1 is
also consistent with a linear relationse 2 ecdyg, where

FIG. 4. A plot of j22 vs e. The vertical bars indicate the
standard deviation, and the solid line corresponds toj22 ­
j

22
0 e with j0 ­ 0.78. These data can also be fitted with

nonconventional exponent; see the text for more detail.
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FIG. 5. Time-averagedN 2 1 vs e near onset. The vertica
bars indicate the standard deviation, and the solid line is
fit of se 2 ecdyg to the data withec ­ 0.01 andg ­ 1.23. A
slightly different fitting form is given in the text.

ec ­ 0.01 and g ­ 1.23. (Again, owing to finite size
effects, the value ofec is nonzero.) We have also
determined the time-averaged vertical “vortex energ
V ­ kv2

z l, wherevz is the vertical vorticity, as a func-
tion of e from our simulations and observed a power-la
behavior ofV , el with l ­ 5y2.

For theoretical understanding of some our results,
notice that the velocity$u and the temperature derivatio
u near onset can be approximated by an order para
ter cs$rd in two-dimensional space$r multiplied by known
prefactors withz dependence [20]. It is then straigh
forward to rewrite the global quantitiesF1, F2, and F3,
and the Nusselt numberN in terms ofcs$rd. We further
assume that only those modes inside the vicinity ofkc

are excited and equally excited. From these approxim
tions, we confirm (after rescaling mentioned earlier) th
F1std . F2std . F3std. We also obtain that

g ­ gs21d 1 s2ypd
Z p

0
gscosad da

­ 0.855951 1 0.0458145s21 1 0.0709325s22, (2)

where a is the angle between$k and some reference
direction, and we have used the explicit form ofgscosad
given by Schlüteret al. [17] for free-free boundary
conditions [20]. Fors ­ 0.5, we findg ­ 1.2313, which
is in surprisingly good agreement with the numeric
results. The theory of the vortex energyV , e5y2 is
more complicated than the above. All this theoretic
analysis will be presented elsewhere.

In summary, we have presented a large scale num
cal simulation of pattern formation in three-dimension
Rayleigh-Bénard convection. We have calculated the s
tial correlation length and the Nusselt number as a funct
of the reduced control parameter, as well as the dyna
he

”

e

e-

a-
t

l

l

ri-
l
a-
n

m-

ics of the viscous energy, the dissipative thermal ene
and the work done by the buoyancy force. Our num
cal studies suggest that the transition from the conduc
state to spatiotemporal chaotic state near onset is a co
uous (second order) transition, with mean field expone
for the correlation length and the time-averaged convec
current. We have also demonstrated that the time-aver
structure factor satisfies a scaling behavior with respec
the correlation length. We believe that more studies
scaling in STC by systematic experiments for smallere,
larger aspect ratio, and with both free-free and rigid-ri
boundary conditions will be challenging and valuable.
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