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Direct Transition to Spatiotemporal Chaos in Low Prandtl Number Fluids
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We present a large scale numerical simulation of three-dimensional Rayleigh-Bénard convection near
onset, under free-free boundary conditions for a fluid of Prandtl number 0.5. We find that a
spatiotemporally chaotic state emerges immediately above onset, which we investigate as a function of
the reduced control parameter. We conclude that the transition from conduction to spatiotemporal chaos
is second order and of “mean field” character. We also present a simple theory for the time-averaged
convective current. Finally, we show that the time-averaged structure factor satisfies a scaling behavior
with respect to the correlation length near onset.  [S0031-9007(97)02314-4]

PACS numbers: 47.52.+j, 47.20.Bp, 47.20.Lz, 47.54.+r

Pattern formation in nonequilibrium systems has be-been investigated before [11,13], but the aspect ratio used
come a major frontier area in science [1,2]. The richnesb®y previous studies is too small for the occurrence of
of this field has been significantly enhanced by the exisSTC. We find from our extensive numerical simulation
tence of spatiotemporal chaos (STC) in various systemthat the convective state just above onset is spatiotempo-
[L-7]. STC is characterized by its extensive, irregularrally chaotic (which is evident from the snapshot images
dynamics in both space and time. It has been recognizeaf the vertical velocity field and from the dynamical be-
in experiments [2—4] and numerical studies [1,5,6] that éhavior of three important global quantities: the viscous
large aspect ratio is essential for the occurrence of STissipation energy, the thermal dissipation energy, and the
Owing to the generic complication of its dynamics, theo-work done by the buoyancy force). This thus provides
retical understanding of STC relies heavily on some muclanother example of a direct transition to STC, in addi-
simplified, mathematical models of the real systems [1]tion to the Klppers-Lortz transition [4,14], ac driven elec-
Although much progress has been made, some fundametreconvection, and a few others [7]. Our method sug-
tal concepts remain to be developed. gests that by studying the dynamical behavior of some

A paradigm of patter formation is Rayleigh-Bénard con-global quantities of systems which exhibit STC, one may
vection (RBC) [2], which occurs when a thin horizontal obtain valuable information about the temporal chaos of
fluid layer is heated from below. In general, the dynam-these systems. We also measure the fractal dimensions
ics of RBC depends on the Rayleigh numBethe Prandtl  of the global quantities and find a value of about 1.4. In
numbero of the fluid, and the aspect ratio (sfzbickness) addition, we investigate the nature of the conduction to
I' of the system. Busse and his collaborators [8] haveSTC transition, as well as certain properties of the spa-
studied extensively the stability domain of parallel rollstiotemporally chaotic state. Our results for the correla-
as a function of wave numbérand Rayleigh numbeR,  tion length suggest that the transition is second order,
for variouso. (It is well known that in a laterally in- with a mean field power law behavior. We present be-
finite system with rigid-rigid boundaries, there exists alow a simple but rather accurate theory for the behavior
stable, time independent parallel roll state near the onself the time-averaged convective current as a function of
of convection for allo). In the case ofree-freebound- the reduced control parameter. Finally, we show that the
aries at sufficiently low Prandtl numbeis < 0.543), Sig-  time-averaged structure factor (power spectrum) exhibits
gia and Zippelius [9] and Busse and Bolton [10] founda scaling behavior with respect to the correlation length
surprisingly that parallel rolls are unstable with respect tosimilar to that found in critical phenomena.
the skewed-varicose instabilifynmediatelyabove onset. The Boussinesq equations, which describe the evolution
Busseet at. [11] further studied the possibility of a direc- of the velocity fieldi(x, y, z, ) = (u, v, w) and the devia-
tion transition from conduction to STC, but their aspecttion of the temperature field(x, y, z, r) from the conduc-
ratio (I' = 8) is not large enough for a conclusive result. tive profile, can be written in dimensionless form as

Although the free-free boundaries are very difficult to con- V-i=0,
trol for detailed experimental studies, one experiment with . . . R )
such boundary conditions has been reported [12]. du/ot + (- Vyu = —=Vp + ofe. + oV-u, (1)

In this Letter, we present the results of a large scale  5¢9/5; + 7 - Vo = V20 + wR,
(T = 60) numerical simulation of the three-dimensional
hydrodynamic equations, using the Boussinesq approx
mation, for a low Prandtl number flui = 0.5) with
free-free boundary conditions. The same problem h

where ¢, is the unit vector in the verticak direction.

In the idealized limit of a laterally infinite system, the
agritical Rayleigh numberR. = 277*/4 and the onset
wave numbek, = 7/~+/2. The efficient marker-and-cell
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(MAC) [15,16] numerical technique is employed. (In
developing our algorithm, we have carried out two tests:
One is against the theoretical results of Schléteal. [17];

the other is against the numerical results of Kirchartz
and Oertel [18]. In both cases agreements within 1%
have been found.) The boundary conditions for the
velocitiesu are free slip at the upper and lower surfaces,
and no slip at the sidewalls. The temperature deviation
0 is zero on the top and bottom surfaces, while the
temperature gradier# normal to the sidewall is set to
zero. For the initial conditions aof and#, we have tried
both random values and values of Gaussian distribution,
inside a possible range. Since no difference has been
found, the actual calculation is carried out with initial
conditions of Gaussian distribution. Our parameters are
o =05 and0.03 = € = 0.5, wheree = (R — R.)/R.

is the reduced Rayleigh number. We use mesh points
Ny X Ny, X N, =256 X 256 X 18and agrid sizAx =

Ay = 60/256, Az = 1/18 for an aspect ratid' = 60 in

the simulation. We have run for 360 vertical diffusion FIG. 1. A typical image of the spatially disorganized pattern
times before collecting data. Considering that the normaln the cell. Dark regions correspond to hot rising fluid and
relaxation time to approach a steady state is about tewhlte_reg.lons correspon?l to cold descgndlng fluid. The vertical
vertical diffusion timeg e = 2(1 + )/3720 €], we velocity fieldw(x,y,z = 3) for e = 0.1 is shown here.

believe that we are well beyond any transient regime.

For the low Prandtl number fluid studied here, theF; = F, = F; in a steady state. (Note thay is simply
convective pattern near onset has an irregular space-timelated toF, by the factorR/o.) The most important
dependence. In Fig. 1 we show a snapshot image of thienplication of Fig. 2 is the apparent chaotic behavior of
vertical velocity fieldw(x,y,z = %) from the numerical these quantities over the time interval that is accessible to
simulation ate = 0.1. In this image, the apparently us. To be more concrete, we apply the Grassberger and
disorganized spatial pattern consists of superimposed rolBrocaccia method [19] to compute the fractal dimensions
with many different orientations. The time evolution of D, for these quantities and find, = 1.42 + 0.02. This
these rolls is through an interface motion, which maintain®f course is different from the fractal dimension that is
the type of spatial disorder shown in Fig. 1. Similar

images are found for other values ef It is obvious 02 —— T -

from such images that the convection pattern near onset Fi) E:

is random in space. 019} .
To illustrate the temporal chaos of the system, we now

investigate the dynamics of the global quantities which 018t

characterize the underlying physics of Rayleigh-Bénard

convection. Usingf) to denote the average dfover 017}

the whole system and taking into account the bound-

ary conditions as well as the incompressibility condition, 0161

we obtain%d@ cuy/dt = Fo(t) — Fi(1), and%d(&%/dt =

F4(1) — F3(1), where (Q)F; = 5o ((du; /dx; + du;/dx;)>) 015}

is the kinetic energy dissipated by the viscosity, fb)=

o{w@) is the work done by the buoyancy force, @ = 044}

(VO - Vo) is the dissipative thermal energy (generation of

entropy) owing to temperature fluctuations, and kd)= 043k

R{(w8) = RF,/o is the flow of the entropy fluctuations car-

ried by the vertical velocity. Itis clear that in the special 0.12 e

case of steady stai@/dr =0), one recovers the condi- 0 50 100 150 200 250 300 350 400 450

. . ) 1
tion F, = F, andF, = F3. These global quantities provide me

us with a complete description of “energy balance” in theFIG. 2. A plot of global quantities, (), F»(¢), and F5(r) as
Rayleigh-Bénard system. functions of time fore = 0.2. Note that they lie on top of

We plot tative fi . fth fiti each other with differences, though substantial, too small to be
€ plot a representative ume series of these quantii€yeen  The time is in units of vertical thermal diffusion time

F1(t), F2(1), and F5(2), in Fig. 2 fore = 0.2. We have ; — 42/« and the origin corresponds to= 330z, in real
rescaledF, F, by oR., andF3 by RR, so that we have calculation.
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normally used to characterize STC, which diverges witha large wave number. This feature is observed over the
the system size. We believe that such global quantitieeange ofe studied here. It is interesting to note that this is
might provide a relatively simple way to characterizethe same power-law behavior observed in phase separating
the temporally chaotic nature of spatiotemporally chaoticsystems, in two dimensions, where it is known as Porod’s
states such as studied here, although data over a longlewv. In both cases it results from the linear behavior of the
time interval will be necessary for such an analysis.real space correlation functio@(r), for smallr, where this

It is also interesting to observe that the dynamics ofcorrelation function is the azimuthal average of the inverse
these three quantities asmost exactly the same, i.e., Fourier transform of the structure factor.

F1(t) = F5(t) = F3(t), as shown in Fig. 2. Although We have also calculated the correlation lengtlas a

the differences among them are substantial and beyorfdnction of the control parameter, where we define the
numerical uncertainties, they are too small to be seenorrelation length through the variance of the wave num-
under the scale of Fig. 2. In fact, this is the case foeall per, i.e.,& = (ﬁ — Ez)—l/Z_ The momeni” is defined
studied in the rang8.03 = € = 0.5. Thisis certainly a ask" = [|k|"S(k)d?k/ [ S(k)d*k and S(k) is the time-
surprising result considering the irregular spatiotemporajveraged structure factor. We find that the correlation
state we observed. However, a theoretical understandingngth ¢ appears to diverge asapproaches the transition
of this has been obtained, as will be outlined later. Thisyoint, with a power-law behavior of = &y(e — €.)7*
result also implies that the quantit = oF3/(2F> —  with » = 0.472 + 0.016, & = 0.82 = 0.04, and e, =

F1), which is often used as a variational formulation t0(.005. (The fact thate, is finite instead of zero is due
determine the critical Rayleigh number, behaves as if thgy finite size effects.) The behavior of the correlation
system is almost in a steady state. length is also consistent with a mean field power-law ex-

In order to gain more insight into the nature of theponent ofy = 0.5 and & = 0.78. This is illustrated in
transition to STC near onset, we have studied the tWOFig. 4. The amplitude valug, is a factor of% larger than

dimensional structure factor (Fourier power spectrum)na valueé, = /87372 — 0.52 calculated from the cur-
Since the snapshot images of the patterns appear to bg e of fﬁe marg/ingl stabi.lity curve

isotropic azimuthally, we calculate the azimuthally aver- |, o qer to investigate the heat transport in STC
aged structure factor, and then average the images OVRL.: gnset we calculate the Nusselt nuMb&r) =

time, to obtain the time-averaged structure facsék). | + (w6‘>/R1, which describes the ratio between the
The functionkS (k) is shown for several different values of heat transport with and without convection, as a func-

e inthe inset of Fig. 3. We also show in Fig. 3that(k) 4o of ¢, The quantity N — 1 can be fit with a
satisfies a scaling behavior somewhat similar to that founéower-law behavior of the forV — 1 = (e — €, )*/g
in critical phenomena, namelys(k)/& = FI(k — kmaxé],  \ith 1 = 1.034 + 0.025, €, = 0.012, andg = 1.27 +
where ¢ is the correlation length (defined below) and 0.03. Figure 5 shows that the time-averaghd— 1 is

where we have normalized the integraliék) overkspace 55 consistent with a linear relatida — e.)/z, where
to be unity. Herek,.x is the wave number which maxi-

mizeskS(k), which we choose to give the best fit to scal- i

ing. Another interesting feature of the structure factor is
associated with the power-law behaviorStk) ~ k3 for g
07 08}
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FIG. 3. A plot of kS(k)/& vs x = (k — kmax)€ (in units of  FIG. 4. A plot of £ vs €. The vertical bars indicate the
k.), showing scaling and the scaling functiéiix) defined in  standard deviation, and the solid line correspond<ttd =
the text. Inset: the time-averaged functibfi(k) vs k/k. for & e with & = 0.78. These data can also be fitted with a
e = 0.03, 0.05, and 0.1. nonconventional exponent; see the text for more detail.
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06 . . . . . ics of the viscous energy, the dissipative thermal energy,

N-1 and the work done by the buoyancy force. Our numeri-
cal studies suggest that the transition from the conduction
state to spatiotemporal chaotic state near onset is a contin-
uous (second order) transition, with mean field exponents
for the correlation length and the time-averaged convective
current. We have also demonstrated that the time-averaged
structure factor satisfies a scaling behavior with respect to
the correlation length. We believe that more studies of
scaling in STC by systematic experiments for smader
larger aspect ratio, and with both free-free and rigid-rigid
boundary conditions will be challenging and valuable.
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