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Phase Locking in Nonlinear Optical Patterns
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We report a new type of optical patterns induced by phase locking of several wave vectors with
different lengths and orientations. Wave vector selection is due to the optical nonlinearity provided
by a Kerr-like medium. The system displays pattern multistability. We characterize the different
configurations by the distribution of wave vector families in Fourier space. Even close to threshold, the
strong coupling among families yields a collective behavior without critical slowing down, at variance
with the isolated behavior of each separate family. [S0031-9007(97)02327-2]

PACS numbers: 42.65.Sf, 42.65.Pc, 42.79.Kr

Optical pattern formation emerges from the interactionN odd, excitation of two bands yields complex patterns,
of nonlinearities and symmetry constraints in spatially ex-with many families of wave vectors unrelated in phase, so
tended systems [1]. It shows strong analogies with othethat the real space tiling consists of many domains [6].
areas such as fluid dynamics, chemistry, and biology [2]. In this Letter we report evidence of a new type of
In particular, optics provides easily two-dimensional pat-pattern consisting of a single domain, even though its
terns which arise from phase modulation of the transversBourier spectrum contains many families of wave vectors.
profile of an optical beam as it passes through a nonWe show that this can be realized only by mutually
linear medium [3]. Roll-hexagon transition [4], crystals phase locking all the different wave vectors. In particular,
and quasicrystals [5], and domain coexistence of patternshoosingV = 6 and switching on the input intensity from
with different wavelengths [6] have been reported for azero, only three combinations of wave vectors provide
system based on a liquid-crystal-light-valve (LCLV) with stable patterns, after a transient in which all families
a nonlocal feedback [7]. The LCLV Kerr-like nonlinearity compatible with the symmetry requirements compete.
converts an amplitude into a phase modulation, whereas Experimentally, besides usin§ =6, we expand and
diffraction due to free propagation converts a phase intdilter the input He-Ne laser beam in such a way that the
an amplitude modulation, so that a positive feedback i€ CLV is uniformly illuminated over a central region of
realized for all those spatial frequencies satisfying the resat cm diameter. The free propagation length is fixed to
nance conditionsg’L/2k = /2,37/2,..., ¢ being the 20 cm; thuse = 2.5 X 10> and many wave vectors asso-
field transverse wave numbér= 27 /A the optical wave ciated with successive minima are simultaneously excited
number, and. the free propagation length. The feedbackeven close to the threshold valljp= 45.3 wW/cn?. We
loop includes a fiber bundle by which the image on thecall ¢ = (Iy — I,)/I;», the normalized control parameter.
back of the LCLV is rotated by an angle=27/N with  For e < 0.05, the sensitivity of the detection apparatus is
respect to the front image. This rotation maps a transvers®o poor to detect a meaningful image. At= 0.05 al-

wave vectorg’ into the next one;” with | ¢’ |=| ¢"” |  ready several ringsi(= 0 to 5) are above threshold. The
and their directions rotated by an angle This way, an actual excitation depends upon the phase relations as dis-
N-gonal symmetry is imposed upon the pattern. cussed below.

The marginal stability curves yielding the threshold The set of three stable patterns is recorded in Fig. 1
input intensity I, vs ¢* consist of a series of convex for ¢ = 0.2. By inspection of the Fourier space we see
curves whose minima are aligned along a straight linghat the power spectrum of the three patterns consists of
corresponding to the diffusion loss within the optical 4, 4, and 6 families, respectively. We name the families
medium. This line has a slope proportional 40! = by their ring number, adding an apex whenever there
13 /AL wherelp, is the diffusion length of the nonlinear is a degeneracy, as follows: P1:2,2,3; P2:1,1,3,5;
medium [3]. The minima are located@t = /2 + 1qo, P3:2,2/,3,3',4,4/. Notice that the nonlinearities shift
go = (27%/AL)'/? being the basic wave number, ang=  the Fourier spots away from the band minima predicted
0,1,2,3,... being the ring order [5]. Within an allowetd by the linear stability analysis. For example, in the case
ring, the rotation lowers the cylindrical symmetry so thatof P1, g;/q, = 0.76 instead of,/3/5 and q3/q, = 1.24
a discrete family ofV wave vectors equispaced in angle instead of./7/5. Furthermore, the nonlinear coupling
get excited on that ring. This family yields in real spacepartly suppresses thg= 0 vector which is rather dim
a 2D tiling consisting ofV-gons. and shifted fromyo/g> = +/1/3 t0 qo/q2 = 0.25.

Excitation of a single family is obtained either by Of course, inspection of the power spectrum yields
adjusting the input intensity close to threshold or byonly the relative orientations, but provides no phase
inserting a suitable filter [5]. For higher intensities andinformation on the amplitude of each wave vector. As
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gj, Where g; is a vector forming an anglé = 27 /6
with respect tog;/ and g;’. These intraring couplings
correspond to the usual quadratic terms imposed by the
medium nonlinearity when only one wave number is
excited [4],[9].

More fundamental for the phase locking are the extra-
ring couplings, i.e., those ones providing a closure rela-
tionship over differentj rings. For example, for pattern
P1 contributions to rings 1 and 3 come from the sums of
two ¢, wave vectors. Moreover, ring 2 gives rise to an in-
ner ring 0 which participates to other extra-ring couplings
giving contributions tog;, ¢, andgs. In summary, de-
noting each parallelogram by the three component vec-
tors, P1 is made of the following extra-ring couplings:
(1,22), (223), (0,22), (0,2,3), (02',3), (0,1,2), and
(0,12"). Five of these seven parallelograms are shown in
Fig. 2 (upper). Similarly the other two patterns include the
following extra-ring couplings: (1/,3), (1,1',5), (1,3,5),
and (/,3,5) for P2; (2,3,4),%,3,4), (23',4), and (2,3)
for P3.

These geometric relations lead to stable patterns only
if the corresponding amplitudes are locked in phase.
Indeed in the lower part of Fig. 2 we report the near-
field patterns obtained by Fourier transformation of the
wave vectors shown in the upper part with the phases
indicated in the caption, which a@ for odd rings and
+4/2 for even rings. Indeed, it is known that with a
defocusing Kerr medium as is our system [4—6] and in
the absence of rotation only odd rings=€ 1,3,...) are

FIG. 1. Nearield (lefty and far-field (right) images of the 20Wed [9]; in the presence of a rotation (v = 2), the
frequency locked patterns: (a) P1, (b) P2, and (c) P3. Nea€Ven rings are also allowed but wave vectors pair with
field images are the intensity distribution on the back plane*/2 phases [4], [10]. Generalizing ¢ > 2 even, we
of the LCLV, whereas far-field images are the correspondinchave families ofN /2 pairs with =77 /2 phases. Besides
spatial power spectra. this dynamical argument, we verify by inspection that any
other choice of phases leads to unobserved patterns. The
above considerations, together with the fact that the near-
we switch on and off the input intensity leaving an off field patterns are fixed in time, prove phase locking.
interval sufficiently long (more thar0 sec) to cancel As for the relative occurrence of the three stable
memory of the previous pattern, the three patterns opatterns, a plausibility argument consists in noticing that
Fig. 1 appear with relative frequencies P1: 0.6, P2: 0.25the extra-ring couplings should make a pattern “more
and P3: 0.15. robust.” Thus, considering that the extra-ring couplings
For ¢ = 0.2 the three patterns are stable and robusfor the three patterns are 7, 4, and 4 and they are shared by
against external perturbations. However,sagicreases 4, 4, and 6 families respectively, we attribute to the three
to 0.4, P3 shows fluctuations, and it decays towarcpatterns frequencies of occurrence proportional ftd,7
P1 and P2 with a lifetime o0 sec. Eventually for 4/4, and 46. Once normalized to the total, they provide
e > 1.2 the patterns show space-time chaos [8]; indeegbrobabilities close to the experimental values reported
they appear as formed of many uncorrelated domainabove.
and correspondingly the spectrum is made of continuous It is crucial to note that the geometrical constructions
rings with no orientation selection. Besides the fixedof Fig. 2 match the ring positions insofar as the rings are
orientations displayed in Fig. 1, the phases of the wavéroadened. The relative broadenifig/q is around10%
vectors also bear fixed relations, and hence the observed ¢ = 0.2. As we scan different values, we modify
single domain patterns are a case of phase locking. the stabilities of the three patterns as well as the relative
We construct geometrically the mutual couplings ofcontributions of the various rings within each pattern.
the wave vectors involved in the three patterns (Fig. 2). In order to measure the energy distribution on the
Eachj ring is characterized by the summation rule thatvarious rings, we delimit on the far-field images six
gives rise to the hexagonal symmetry, i.¢/, + ¢/ =  concentric shells, the center of each being positioned at
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FIG. 2. Upper: wave vector diagrams for P1, P2, and P3. Intraring couplings are indicated by dashed lines and extra-ring
couplings by solid lines. Lower: reconstruction of the near field by using the above wave vector summations with the following
relative phases (for each excited ring, we indicate the phases in parentheses): P1:21((0} /2), 3 (0); P2: 11’ (0), 3(0), 5(0);

P3: 22/ (=7/2),33'(0),44/ (= /2).

g;j (j =0 to 5) and measure the powe§; integrated time 7 for the buildup of a pattern. The resultingis
over the jth shell. The measurement is done with anearly constant and arourit4d sec (Fig 4). No critical
video recorder provided of digital pause. The recordeslowing down is observed for small values of This
is computer interfaced, and a frame grabber permits us ttme is the same for P1, P2, and P3, even though for
acquire sequentially each recorded image. Since for evey3 the reached plateau does not last forever at kigh
pattern the transient is of the order of some seconds, wBince we know already that the leading nonlinearities
set a time resolution 00.4 sec by selecting one frame in the amplitude equations are the quadratic ones [3]
every ten. Then, we extract the intensitigsconnected responsible for hexagons formation, we expect normal
with each ringj as well as the total intensity = >_; S;.

With reference to 11 equally spaced input intensity

values € from 0.05 to 0.6), we have recorded 30 transient 45 55 6s I, 4 55 65 I,
events for eache and isolated those cases relative to 8{a <0 b) s>
pattern P1. I

We average over all the recorded transients the station- 4
ary value reached by each ring and pl6f) as a function
of & [Fig. 3(a)]. It can be seen that the ring intensities | =¥ 0
do not grow linearly withe, as it should be expected if 00 o1 02 03 04 05 & 00 01 02 03 04 05 &
there were no wave vector coupling. On the contrary, thg-|G. 3. Stationary values of the intensities (arbitrary units)
stationary value of the averaged total intengiy over all as a function of the input intensitf, (uW/cn¥) or of the

patterns grows linearly, as shown in Fig. 3(b). normalized control parametes. (a) (Si) (triangles), (S>)

As we switch on and off the intensity, the transient(Circles), andiss) (squares) averaged over P1 patterns; (b) total
build f h pattern takes a time which should de en|ntenS|ty (S) averaged over all patterns. In (a) the lines are
ulidup of each p p guides for the eyes, whereas in (b) the solid line is a linear best

one. By averaging over many transients the growth rateit of the experimental data in order to localize the threshold
of the total intensityS, we evaluate the characteristic valuel;, = 45.3 uWicn? .
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T In conclusion, we have reported the formation of a new
J kind of two-dimensional patterns due to phase locking of
101 the Fourier amplitudes. This process is quite slow and
] © o5 oood® characterized by a buildup timethat does not depend on
the distance from threshold.
After completion of this Letter, a recent paper was
brought to our attention [12] dealing theoretically with
aoooo j=1 patterns emerging from two different wavelengths. How-
oooee -]’_73) ever, Ref. [12] does not face the phase-locking problem.
17 %= N This work has been partially supported by the EEC
Contract No. CI1*CT93-0331.
0.01 0.1 &< j 1

FIG. 4. Buildup timer (circles) for a phase-locked pattern as

a function of the pump parameter The best fit with a power . .
law providesr = 7.36e "% i.e., no critical slowing down is *ECM  Phys. Department, University of Barcelona,

observed in presence of ring-ring coupling. We report also the ~ Barcelona, Spain.

individual ring buildup timesr; as a function of their respective TAlso, Physics Department, University of Florence,
pump parameteg; for j = 1 (squares) ang = 2 (triangles). Florence, Italy.
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