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Phase Locking in Nonlinear Optical Patterns
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(Received 30 May 1996)

We report a new type of optical patterns induced by phase locking of several wave vectors
different lengths and orientations. Wave vector selection is due to the optical nonlinearity pro
by a Kerr-like medium. The system displays pattern multistability. We characterize the diffe
configurations by the distribution of wave vector families in Fourier space. Even close to threshol
strong coupling among families yields a collective behavior without critical slowing down, at varia
with the isolated behavior of each separate family. [S0031-9007(97)02327-2]

PACS numbers: 42.65.Sf, 42.65.Pc, 42.79.Kr
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Optical pattern formation emerges from the interacti
of nonlinearities and symmetry constraints in spatially e
tended systems [1]. It shows strong analogies with ot
areas such as fluid dynamics, chemistry, and biology
In particular, optics provides easily two-dimensional p
terns which arise from phase modulation of the transve
profile of an optical beam as it passes through a n
linear medium [3]. Roll-hexagon transition [4], crysta
and quasicrystals [5], and domain coexistence of patte
with different wavelengths [6] have been reported for
system based on a liquid-crystal-light-valve (LCLV) wit
a nonlocal feedback [7]. The LCLV Kerr-like nonlinearit
converts an amplitude into a phase modulation, wher
diffraction due to free propagation converts a phase i
an amplitude modulation, so that a positive feedback
realized for all those spatial frequencies satisfying the re
nance conditionsq2Ly2k  py2, 3py2, ..., q being the
field transverse wave number,k  2pyl the optical wave
number, andL the free propagation length. The feedba
loop includes a fiber bundle by which the image on t
back of the LCLV is rotated by an angleD  2pyN with
respect to the front image. This rotation maps a transve
wave vector$q 0 into the next one$q 00 with j q0 j  j q00 j

and their directions rotated by an angleD. This way, an
N-gonal symmetry is imposed upon the pattern.

The marginal stability curves yielding the thresho
input intensity Ith vs q2 consist of a series of conve
curves whose minima are aligned along a straight l
corresponding to the diffusion loss within the optic
medium. This line has a slope proportional tos21 
l2
DylL wherelD is the diffusion length of the nonlinea

medium [3]. The minima are located atqj 
p

2j 1 1q0,
q0  s2p2ylLd1y2 being the basic wave number, andj 
0, 1, 2, 3, ... being the ring order [5]. Within an allowedj
ring, the rotation lowers the cylindrical symmetry so th
a discrete family ofN wave vectors equispaced in ang
get excited on that ring. This family yields in real spa
a 2D tiling consisting ofN-gons.

Excitation of a single family is obtained either b
adjusting the input intensity close to threshold or
inserting a suitable filter [5]. For higher intensities an
0031-9007y97y78(6)y1042(4)$10.00
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N odd, excitation of two bands yields complex pattern
with many families of wave vectors unrelated in phase,
that the real space tiling consists of many domains [6].

In this Letter we report evidence of a new type
pattern consisting of a single domain, even though
Fourier spectrum contains many families of wave vecto
We show that this can be realized only by mutua
phase locking all the different wave vectors. In particula
choosingN  6 and switching on the input intensity from
zero, only three combinations of wave vectors provi
stable patterns, after a transient in which all famili
compatible with the symmetry requirements compete.

Experimentally, besides usingN  6, we expand and
filter the input He-Ne laser beam in such a way that t
LCLV is uniformly illuminated over a central region o
1 cm diameter. The free propagation length is fixed
20 cm; thuss . 2.5 3 102 and many wave vectors asso
ciated with successive minima are simultaneously exci
even close to the threshold valueIth  45.3 mWycm2. We
call ´  sI0 2 IthdyIth the normalized control paramete
For ´ , 0.05, the sensitivity of the detection apparatus
too poor to detect a meaningful image. At´  0.05 al-
ready several rings (j  0 to 5) are above threshold. Th
actual excitation depends upon the phase relations as
cussed below.

The set of three stable patterns is recorded in Fig
for ´  0.2. By inspection of the Fourier space we se
that the power spectrum of the three patterns consists
4, 4, and 6 families, respectively. We name the famili
by their ring number, adding an apex whenever the
is a degeneracy, as follows: P1:1, 2, 20, 3; P2: 1, 10, 3, 5;
P3: 2, 20, 3, 30, 4, 40. Notice that the nonlinearities shif
the Fourier spots away from the band minima predict
by the linear stability analysis. For example, in the ca
of P1, q1yq2 . 0.76 instead of

p
3y5 and q3yq2 . 1.24

instead of
p

7y5. Furthermore, the nonlinear couplin
partly suppresses thej  0 vector which is rather dim
and shifted fromq0yq2 

p
1y3 to q0yq2 . 0.25.

Of course, inspection of the power spectrum yiel
only the relative orientations, but provides no pha
information on the amplitude of each wave vector. A
© 1997 The American Physical Society
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FIG. 1. Near-field (left) and far-field (right) images of th
frequency locked patterns: (a) P1, (b) P2, and (c) P3. Ne
field images are the intensity distribution on the back pla
of the LCLV, whereas far-field images are the correspond
spatial power spectra.

we switch on and off the input intensity leaving an o
interval sufficiently long (more than20 sec) to cancel
memory of the previous pattern, the three patterns
Fig. 1 appear with relative frequencies P1: 0.6, P2: 0.
and P3: 0.15.

For ´  0.2 the three patterns are stable and rob
against external perturbations. However, as´ increases
to 0.4, P3 shows fluctuations, and it decays towa
P1 and P2 with a lifetime of50 sec. Eventually for
´ . 1.2 the patterns show space-time chaos [8]; inde
they appear as formed of many uncorrelated doma
and correspondingly the spectrum is made of continu
rings with no orientation selection. Besides the fix
orientations displayed in Fig. 1, the phases of the wa
vectors also bear fixed relations, and hence the obse
single domain patterns are a case of phase locking.

We construct geometrically the mutual couplings
the wave vectors involved in the three patterns (Fig.
Each j ring is characterized by the summation rule th
gives rise to the hexagonal symmetry, i.e.,$q 0

j 1 $q 00
j 
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$qj, where $qj is a vector forming an angleD  2py6
with respect to $q 0

j and $q 00
j . These intraring couplings

correspond to the usual quadratic terms imposed by
medium nonlinearity when only one wave number
excited [4],[9].

More fundamental for the phase locking are the ext
ring couplings, i.e., those ones providing a closure re
tionship over differentj rings. For example, for patter
P1 contributions to rings 1 and 3 come from the sums
two $q2 wave vectors. Moreover, ring 2 gives rise to an
ner ring 0 which participates to other extra-ring couplin
giving contributions toq1, q2, andq3. In summary, de-
noting each parallelogram by the three component v
tors, P1 is made of the following extra-ring coupling
(1,2,20), (2,20,3), (0,2,20), (0,2,3), (0,20,3), (0,1,2), and
(0,1,20). Five of these seven parallelograms are shown
Fig. 2 (upper). Similarly the other two patterns include t
following extra-ring couplings: (1,10,3), (1,10,5), (1,3,5),
and (10,3,5) for P2; (2,3,4), (20,3,4), (2,30,4), and (2,3,40)
for P3.

These geometric relations lead to stable patterns o
if the corresponding amplitudes are locked in pha
Indeed in the lower part of Fig. 2 we report the nea
field patterns obtained by Fourier transformation of t
wave vectors shown in the upper part with the pha
indicated in the caption, which are0 for odd rings and
6py2 for even rings. Indeed, it is known that with
defocusing Kerr medium as is our system [4–6] and
the absence of rotation only odd rings (j  1, 3, ...) are
allowed [9]; in the presence of ap rotation (N  2), the
even rings are also allowed but wave vectors pair w
6py2 phases [4], [10]. Generalizing toN . 2 even, we
have families ofNy2 pairs with 6py2 phases. Beside
this dynamical argument, we verify by inspection that a
other choice of phases leads to unobserved patterns.
above considerations, together with the fact that the n
field patterns are fixed in time, prove phase locking.

As for the relative occurrence of the three stab
patterns, a plausibility argument consists in noticing t
the extra-ring couplings should make a pattern “mo
robust.” Thus, considering that the extra-ring couplin
for the three patterns are 7, 4, and 4 and they are share
4, 4, and 6 families respectively, we attribute to the th
patterns frequencies of occurrence proportional to 7y4,
4y4, and 4y6. Once normalized to the total, they provid
probabilities close to the experimental values repor
above.

It is crucial to note that the geometrical constructio
of Fig. 2 match the ring positions insofar as the rings
broadened. The relative broadeningDqyq is around10%
at ´  0.2. As we scan different́ values, we modify
the stabilities of the three patterns as well as the rela
contributions of the various rings within each pattern.

In order to measure the energy distribution on t
various rings, we delimit on the far-field images s
concentric shells, the center of each being positioned
1043
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xtra-ring
llowing
FIG. 2. Upper: wave vector diagrams for P1, P2, and P3. Intraring couplings are indicated by dashed lines and e
couplings by solid lines. Lower: reconstruction of the near field by using the above wave vector summations with the fo
relative phases (for each excited ring, we indicate the phases in parentheses): P1: 1 (0), 2,20(6py2), 3 (0); P2: 1,10 (0), 3(0), 5(0);
P3: 2,20 (6py2),3,30(0),4,40(6py2).
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qj (j  0 to 5) and measure the powerSj integrated
over the jth shell. The measurement is done with
video recorder provided of digital pause. The record
is computer interfaced, and a frame grabber permits u
acquire sequentially each recorded image. Since for e
pattern the transient is of the order of some seconds,
set a time resolution of0.4 sec by selecting one fram
every ten. Then, we extract the intensitiesSj connected
with each ringj as well as the total intensityS 

P
j Sj.

With reference to 11 equally spaced input intens
values (́ from 0.05 to 0.6), we have recorded 30 transie
events for each́ and isolated those cases relative
pattern P1.

We average over all the recorded transients the stat
ary value reached by each ring and plotkSjl as a function
of ´ [Fig. 3(a)]. It can be seen that the ring intensiti
do not grow linearly with´, as it should be expected
there were no wave vector coupling. On the contrary,
stationary value of the averaged total intensitykSl over all
patterns grows linearly, as shown in Fig. 3(b).

As we switch on and off the intensity, the transie
buildup of each pattern takes a time which should dep
on ´. By averaging over many transients the growth r
of the total intensityS, we evaluate the characterist
1044
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time t for the buildup of a pattern. The resultingt is
nearly constant and around7.4 sec (Fig 4). No critical
slowing down is observed for small values of´. This
time is the same for P1, P2, and P3, even though
P3 the reached plateau does not last forever at high´.
Since we know already that the leading nonlineariti
in the amplitude equations are the quadratic ones
responsible for hexagons formation, we expect norm

FIG. 3. Stationary values of the intensities (arbitrary unit
as a function of the input intensityI0 (mWycm2) or of the
normalized control parameteŕ . (a) kS1l (triangles), kS2l
(circles), andkS3l (squares) averaged over P1 patterns; (b) to
intensity kSl averaged over all patterns. In (a) the lines a
guides for the eyes, whereas in (b) the solid line is a linear b
fit of the experimental data in order to localize the thresho
valueIth  45.3 mW/cm2 .
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FIG. 4. Buildup timet (circles) for a phase-locked pattern a
a function of the pump parameter´. The best fit with a power
law providest . 7.36´20.007; i.e., no critical slowing down is
observed in presence of ring-ring coupling. We report also
individual ring buildup timestj as a function of their respectiv
pump parameteŕ j for j  1 (squares) andj  2 (triangles).
The solid lines are best fits with a power lawt1 . 0.37´

20.98
1

andt2 . 0.69´
21.00
2 .

form equations which provide transcritical bifurcatio
[11]. This should be the case for a single ring decoup
from the other ones, in which case we have a unifo
texture of hexagons.

In order to verify such a fact, we insert in th
feedback loop a band-pass filter allowing only one rin
In this condition and for different values of the inp
intensity I0, we register 10 transients for ringj 
1 and 2 separately, and evaluate the buildup tim
t1 and t2 of the intensity S1 and S2, respectively.
From the linear fit ofkS1l and kS2l vs I0, we evaluate
the individual ring thresholdsIth1  47.1 mW/cm2 and
Ith2  50.7 mW/cm2, respectively. Then, we define th
individual pump parameterśj, in the same way aś, with
the replacement ofIth with the individual ring threshold
intensity Ithj . In this case we find thatSj grows with a
buildup timetj which scales aś21

j , as shown in Fig. 4.
Thus, suppressing extra-ring interactions we reco

critical slowing down. On the contrary, the presen
of extra-ring interactions, which leads to the collecti
phase-locked behavior, acts as an extra term wh
destroys the bifurcation, replacing it with a line of stab
fixed points [11].
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In conclusion, we have reported the formation of a ne
kind of two-dimensional patterns due to phase locking
the Fourier amplitudes. This process is quite slow a
characterized by a buildup timet that does not depend on
the distance from threshold.

After completion of this Letter, a recent paper wa
brought to our attention [12] dealing theoretically wit
patterns emerging from two different wavelengths. Ho
ever, Ref. [12] does not face the phase-locking problem
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