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Universal Shapes of Small Fermion Clusters
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Small atomic nuclei and clusters of alkali-metal atoms have similar shapes. We show that this
similarity is a universal result of the density-functional theory. The shapes and the odd-even stagger-
ing of the total energy are nearly independent of the interactions between the fermions.
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Physical models and quantum-chemical computationMinimization of the energy functional (1) leads to the
have shown that small clusters of alkali-metal atoms hav&chrodinger equation
shapes which are, in general, far from the most symmetric 2
or nearly spherical geometry [1-7]. o Vi (r) + Ve (0)ihi(r) = epi(r),  (3)
This is understood in terms of the Jahn-Teller effect [8]: n
a fermion system with a degenerate, partially occupiedwhere
highest molecular orbital (HOMO) spontaneously deforms 8V[n]
in such a way that the degeneracy is lifted and a gap is Vegr (r) = 5 . 4)
opened at the HOMO level. Only clusters with electron n(r)
numbers corresponding to shell closures (so-called magi® striking consequence of this formulation is that the full
numbers) can resist the Jahn-Teller effect. They then recomplexity of the nonlinear many-particle problem is now
main spherical and gain extra stability relative to clusters ofontained in the effectiveingle-particlepotential Vesy .
neighboring electron numbers. The current theoretical un- Since the exact energy functional is not known for any
derstanding of cluster shapes is supported by experimenttgrmion system, the self-consistent set of equations can
evidence provided by the photoabsorption spectra [9,10].pe solved only by using a suitable approximation for the
Similar shape deformations are present in small atomigotential-energy functional[n]. However, itis important
nuclei. Nuclear shapes, however, have so far been mainkp realize that therexistsan effective potentiaVer which
understood in terms of the internucleon forces [11]. Ingives theexactground-state density.
this Letter we wish to revise this view and propose that the The formal similarity of the treatment of all fermion sys-
deformation of small nuclei, too, is predominantly due totems can be emphasized by introducing a length parameter
the Jahn-Teller mechanism [12]. According to our resultsyo and writing Egs. (3) and (4) in a dimensionless form:
the shapes of small fermi.on' cIusters are universal and do _%V%(ﬁi(f) + Vi (F)i(F) = & bi(F), (5)
not depend on the specific interparticle force. Insofar as
shape is ascribed to shell structure [13,14], this means th¥¢here
shell structure is independent of the interparticle force. . mrg _ ~ mrg
Consider a system of identical fermions. Relevantreal-f = r/ro.  Verr(F) = =5~ Verr(roF), & = =5~ €.
izations are the valence electrons in a cluster of alkali- 6)
metal atoms, the nucleons of a nucleus, or the atorfidef
liquid as an extreme example. Our purpose now is to showOr the density we now have
that the shapes of small clusters of these fermions in their
ground state are universal. We use the density-functional i) = > 1¢:iE)I* (7)
Kohn-Sham theory (DFT) [15], where the total energy of i
the fermion system is written as a functional of the particlelt is natural to choose, such that the equilibrium bulk
densityn(r): density is the same for each fermion system. We chagpse
E[n] = To[n] + V[n], (1)  so that the dimensionless density parameter (radius of the
whereV[n] is the potential-energy functional of the true SPhere containing one fermion)its = 4.18, which is the

(interacting) system andy[x] is the kinetic energy of value in atomic units for the_electr_on gas [1_6]. _This sets a
independent fermions having the same densitg the true  COMmMon length scale and dimensionless kinetic energy for

system. The density is calculated by means of auxiliar)?aCh fermion system in the bulk. It turns out that then also

single-particle wave functions; as the dimensionless potential energy per particle is nearly the
same in all the systems studied.
n(r) = Z i (r)]2. (2) We now show that cluster shape is insensitive to the
i

details of the effective potential. We use the local-density
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approximation (LDA) and write by a factor of 4 when going from the electron gas ke.
The same insensitivity of shape is true for small clusters of
Vii] = ] LPraE)o[AFE)], (8) anyN. Consequently, the intrinsic quadrupole moments

of nuclei, which are proportional t@,y, can be calculated

where ¥ is the potential energy per particle of the cor- accurately with the density of nuclear matter as the only
responding homogeneous system. We adopt the simpigput parameter [19,20].
formula [17] & = bt + cii?, where b, ¢, and p are Comparison of shapes with those from the simple de-
parameters determined by the cohesive energy, bulfermed shell models[13,14]canbe made only qualitatively
modulus, and density of the infinite system. With suit-because our model allovesl a;,, while the simple models
able parameters, this equation describes well the electraiie restricted tai,, as the only nonvanishing shape pa-
gas, nuclear matter, or liquitHe. The total (dimension- rameter. Nevertheless, our spheroidal shapes [16] are in
less) energy per particle in the homogeneous system Ribstantial agreement with Clemenger [14].
thenz = ai?/> + (f), where the numerical value of the ~ Figure 3 (left) shows our calculated shapes for= 6
coefficient of the kinetic energy term is = (3/10) x  andN = 14 clusters [21]. They are in perfect agreement
(3723, Figure 1 shows(ii) for the electron gas, nu- With the shapes obtained with the Hartree-Fock method
clear matter, andHe.

With our adopted in Eqg. (8), Egs. (4) and (6) yield for
the effective potential

0.05

Verr = 0(AiD)/ai = 2bit + (p + 1)ci?. 9)

Equations (5), (7), and (9) now provide a well-defined
problem for the densitji(¥). Itis solved iteratively by us-
ing a plane-wave basis and the fast Fourier transform [16].

We have calculated the densiiyF) for various sets of
the parameter$, ¢, p, and for the number of particles
(effective fermion numberN = 2-22 [18]. The resul-
tant cluster shape is suitably characterized by multipole-
expansion coefficients [16]
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In our scheme the cluster is free to assume any shape; no 1
symmetry restrictions are imposed.

Figure 2 shows representative results for thg for Tz
clusters withN = 6 and 14. Surprisingly, the shape is 1
seen to be nearly independent of the parameters of the
energy functiono, even though the (dimensionless) bulk
modulus changes by a factor of 12 and the surface energy
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FIG. 2(color). Dependence of the shape parametgfson

the bulk modulus and cohesive energy for 6- and 14-particle

clusters. Our cohesive energy and bulk modulus are defined

as a and B in the expressioré(ii) = —a + B(i/fiy — 1)?

for the energy per particle near equilibrium densiy The

0 0.005 0.010 surface-energy parameter is also given (thick solid line); it
density ’ is defined by the mass formula = a,N + a,N*? (a, is the

volume-energy parameter). The regimes for the electron gas

FIG. 1. Total energy per particle(ii) for electron gas (solid (“jellium”), nuclei, and*He are shown as colored areas. In the

line), nuclear matter (dashed line), aritie liquid (dotted upper panel the cohesive energy and in the lower panel the bulk

line). modulus are fixed to the value 0.05, respectively.
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FIG. 4. Second derivative of the total energy as a function
of the number of particles in the cluster. Black squares:

I | unrestricted electron-gas model; open circles connected with

FIG. 3(color). Universal shapes of 6-particle (upper left) andsolid line: experimental results for nuclei (with equal numbers
14-particle (lower left) clusters compared to geometries of Na NV gf neutrons and protons); triangles: experimental results for
(upper right) and Na (lower right) calculated with DFT-LDA  Nay clusters.
molecular-dynamics methods. In all cases the outer surface
shown corresponds to the same particle density. Blue spheres
represent the ions. nuclei cannot be due to pairing of fermions to Cooper pairs.
Rather the odd-even staggering in small nuclei appears to
be a mere deformation effect as it is in Na clusters.
for nuclei [22] and with a restricted electron-gas model The insensitivity of the shape to the parameters of the
[7]. For comparison we show (right) the ground-state ge{ocal functional V7] and the agreement with the experi-
ometries of the Naand Nay clusters we have calculated mental results are strong indications that our results would
by DFT-LDA-based molecular-dynamics methods [23,24].not change even if nonlocal functionals, resulting from a
where the interaction between valence electrons and dl%—roper treatment of the Coulomb field or gradient correc-
crete ions is described via pseudopotentials. The shapegns, were used. FdHe clusters, the gradient corrections
to those in Fhe continuum model. The same geometry i¥he high surface energy in fact makes the smafies
in fact obtained regardless of the approximation used fog|ysters unstable [30]. However, our calculations predict
the electron-ion many-body system (Hartree-Fock [3], conthat once bound®He clusters should exhibit shape defor-
figuration interaction [3], LDA [4], Hiickel [25]). mations similar to those in other small fermion systems.
The shape deformation reduces the wave-function sympyhile the surface energy would drive the cluster towards
metry to the twofold spin degeneracy, which leads to aly more spherical shape [31], the resulting symmetric com-
odd-even staggering of the total energy versus particlgression of nonspherical single-particle orbitals>(0)
number [26]. While the present local approximation failsyguld simply cost too much energy due to the high bulk
to give correctly the total energy for any real system, it demodulus off He (see Figs. 1 and 2).
scribes surprisingly well the odd-even staggering around |n conclusion, the density-functional Kohn-Sham the-
the mean energy. Figure 4 shows the experimental daigy provides a scheme which predicts a remarkably simi-
for nuclei [27] and Na clusters [28], scaled to the dimen-jar density profile and shape for any small clusterhof
sionless form. They are compared with the results of thgermions, irrespective of the enormous differences in the
present model [16]. The near agreement suggests that, brmion-fermion force. Our predictions agree with the
sides the shape deformation, also the odd-even staggeriggailable experimental evidence. The odd-even staggering
is a universal property of fermion systems. Especiallyof the total energy is intimately related to deformation and
it is important to note that in the limit of smaW theex- s similar in all fermion systems.
perimentalodd-even staggering of Na clusters agrees with e acknowledge useful discussions with B. Mottelson,

that measured for nuclei. o N U. Landman, and C. Yannouleas. This work has been
In nuclei the odd-even staggering is traditionally relatedsypported by the Academy of Finland.
to pairing of nucleons to Cooper pairs [29]. This cannot

explain the similarity of Na clusters and nuclei. The
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