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V. L. Eletsky1,2 and B. L. Ioffe1,3

1Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259, R
2Institut für Theoretische Physik III, Universität Erlangen-Nürnberg, D-91058, Erlangen, German

3Institut für Kernphysik, Forschungszentrum Jülich, D-52425, Jülich, Germany
(Received 3 September 1996)

Mass shiftsDm of particles in nuclear matter relative to their vacuum values are considered
general formula relatingDmsEd (E is the particle energy) to the real part of the forward particle-nucle
scattering amplitude RefsEd is presented and its applicability domain is formulated. Ther-meson mass
shift in nuclear matter is calculated at2 & Er & 7 GeV for transversally and longitudinally polarized
r mesons. [S0031-9007(97)02366-1]
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The problem of how the properties of mesons a
baryons change in nuclear matter in comparison to th
free values has attracted a lot of attention recen
Among these properties the first of interest are mass sh
of particles in nuclear matter. The values of partic
masses can be measured experimentally, and some
started to appear. In this aspect experiments on heavy
collisions, in which the dependence of particle masses
nuclear density can be found, are very promising.

In early theoretical investigations of this problem [1,2
one or another model of strong interaction of particl
in nuclear matter was used. In the pioneering work
Drukarev and Levin [3] the use of QCD sum rules f
the calculation of nucleon mass shift in nuclear mat
was suggested. Later this method was applied also
the calculation of meson masses (for recent reviews
[4]). Among the latter the most interesting is the case
light vector mesons. Theoretically clean measureme
of vector meson masses in nuclei would be possible
electroproduction experiments, where mesons are cre
uniformly inside the nucleous, and not predominan
at its surface as in hadroproduction or photoproducti
The masses, energies, and widths of vector mesons
be obtained by measuring momenta ofe1 and e2 in
V ! e1e2 decay.

The masses of vector mesons in nuclear matter w
calculated in [2,5–15]. (In Ref. [7] a universal ratio o
particle masses in nuclear matter to their vacuum val
was suggested.) However, the results do not coinc
and are rather model dependent as emphasized, e.g
Ref. [11]. Since the interaction ofr meson with nucleons
in medium is energy dependent, one may also exp
that the mass shift is energy dependent. This prob
was considered only for a rather narrow energy inter
in the Walecka model [12,13]. In model independe
QCD sum rule calculations [8,14,15] only mass shi
of vector mesons at rest were studied. Here we pres
a calculation of meson mass shifts in nuclear mat
for a wide range of meson energies not conside
before. In the case of pions the results are comple
0031-9007y97y78(6)y1010(4)$10.00
d
ir

y.
ifts
e
ata

ion
on

,
s
y
r
r
to
ee
f
ts
in
ted
y
n.
can

re

es
de
, in

ct
m
al
t
s
nt

er
d
ly

model independent and general. In the case of vec
mesons the only hypothesis used is the vector domina
model (VMD), which for the energies we consider
confirmed by experiment with the accuracy quoted belo
Transverse and longitudinal vector mesons are trea
separately. We believe that the possibility to compa
data with the theory in a wide energy interval wi
essentially extend the field of experimental investigatio

We start with general considerations applicable to a
particle imbedded in nuclear matter. Assume that t
interaction of the particle with a nucleon in matter is n
affected by other nucleons, i.e., the nuclear matter can
considered as an inhomogeneous macroscopic med
This restricts the particle wavelength:l ­ k21 ø d,
whered is the mean internucleon distance. This mea
that the particle momentumk must be larger than a
few hundred MeV. Since we assume that the parti
is created inside the nucleus, we must require that
formation lengthlform , sEymdymchar is less than the
nucleus radiusR, wheremchar , mr is the characteristic
strong interaction scale. This implies an upper limit o
the particle energy,Eym , 15, for middle weight nuclei.
An additional restriction on the upper value of the partic
momentumk arises from the requirement that for th
mass shift to be observable the particle must decay ma
inside the nucleous,kyGm , R. This giveskr , 6 GeV
for the vacuum value ofGr . For v andf the restrictions
are less certain, since their in-medium widths may be v
different from the vacuum ones.

To calculate particle mass shifts in nuclear matter
use the general method suggested long ago for treatm
of propagation of fast neutrons in nuclei [16] (see al
[17]). The main idea is that forl ø d ø R the effect
of medium on the particle propagation can be described
attenuation and refraction indices. Attenuation of partic
moving in the direction ofz axis at a distancez is equal to
exps2rszd, wherer ­ AyV is the nuclear density,A is
the atomic number,V is the nucleus volume, ands is the
total cross section of the interaction of the particle wi
nucleons. [Strictly speaking,rs ­ sZsp 1 NsndyV .]
© 1997 The American Physical Society
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Using the optical theorem

ks ­ 4p Im fsEd , (1)

wherefsEd is the forward scattering amplitude, we hav
for the modulus of the particle wave function in matter

jcj , exp

∑
2r

2pz
k

Im fsEd
∏

. (2)

This formula is evidently generalized to the wave functio
itself

c , exp

∑
ir

2pz
k

fsEd
∏

. (3)

Equation (3) is correct ifjRefj , d ­ sVyAd1y3: only in
this case the scattering on each nucleon can be consid
as independent and interference effects can be negle
[17]. RefsEd is related to the refraction index of matter fo
particle propagation [16]. We want to describe the prop
gation of a particle through nuclear matter introducing
effective massmeff ­ m 1 Dm. This means that (leaving
absorption aside)c , eikeffz , with keff ­

p
E2 2 m2

eff ø
k 2 smykdDm. Then from Eq. (3) we get

DmsEd ­ 22p
r

m
RefsEd . (4)

The expression in Eq. (4) forDm has the meaning of an
effective potential acting on the particle in medium [16,17
For the correction to the particle width we have in a simil
way

DGsEd ­
r

m
kssEd . (5)

All of the above statements are general and can be app
to any particle in nuclear matter.

Let us now turn to the case of vector mesons. Intera
tions of r and v with isospin symmetric nuclear matte
are identical. Then, according to Eq. (4),dmr ­ dmv.

In order to findrN forward scattering amplitude we
use the VDM and the relation which follows from VDM
(see, e.g., [18])

fgN ­ 4pa

µ
1

g2
r

frN 1
1

g2
v

fvN 1
1

g2
f

ffN

∂
. (6)

The last term on the right hand side (rhs) of Eq. (6) c
be safely neglected: as follows fromf-photoproduction
data, it is small. Basing on the quark model, assum
fvN ø frN . (This assumption is supported byr andv

photoproduction data, particularly on deuterium [18,19
Since g2

vyg2
r ø 8, the contribution ofv to the rhs of

Eq. (6) is also small. Therefore, according to Eq. (6
RefrN sEd is expressed through RefgN sEd. The latter
can be found from the photoproduction data using t
n

red
ted

-
n

.
r

ied

c-

n

e

.)

,

e

dispersion relation with one subtraction,

RefgN sEd ­ fgN s0d 1
E2

s2pd2
P

Z `

Eth

dE0
sgN sE0d

E02 2 E2
,

(7)

where P denotes principle value,sgN sEd is the total
photoproduction cross section,Eth ­ m 1 m2y2mN , m

and mN are the pion and nucleon masses, andfgN s0d
is given by the Thompson formula,fgps0d ­ 2aymp ,
fgn ­ 0.

The VDM relation Eq. (6) holds only for the amplitud
of a transverse vector mesonfT

rN , since fgN is the
scattering amplitude of a real transverse photon.
Eq. (6) ther-meson energyEr is related to the photon
energy by the requirement that the masses of hadro
states produced inrN andgN scattering should be equa
Er ­ Eg 2 m2

ry2mN .
It is known that VDM works well starting fromg

energies about 2 GeV, where one may expect the VD
accuracy of about 30% and better at higher energ
(see, e.g., [18]). At these energies the nucleon Fe
motion can be neglected. In calculation of RefgN sEd,
according to Eq. (7), we used the PDG data [20]
photoproduction on deutron. For the high-energy tail t
Donnachie-Landshoff fitting formula [21] forsgp was
used, and it was assumed thatsgDysgp ­ const starting
from Eg ­ 20 GeV. The results forRe fT

rN andDmT
r at

normal nuclear densityr ­ s4pr3
0y3d21, r0 ­ 1.25 fm,

are shown in Fig. 1 as functions ofEr . The mass shift
in the energy region, where our consideration is val
2 GeV & Er & 7 GeV, is positive (r mass increases in
nuclear matter) and is of order of 50 MeV. Howeve
the condition jRefj , d , 2 fm is not well fulfilled.
Probably the main effect of interference of differe
nucleons is screening and the true values ofDmr are a
bit smaller than our results.

FIG. 1. Energy dependence of2RefT
rN and2RefL

rN (upper
and lower solid curves, left scale) and ofDmT

r andDmL
r (upper

and lower dashed curves, right scale) at normal nuclear den
1011
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In the case of longitudinalr mesons it is impossible
to relate the forward scattering amplitude of ther to
that of the real photon, but it is still possible to hav
such a relation for the virtual photon. We assume t
VDM holds for virtual photons with virtualities less or o
order ofm2

r. For the transverse scattering amplitude t
generalization of Eq. (6) to the virtual photon is

fT
gN sEg , q2d ­ 4pa

X
V­r,v,f

m4
V

sq2 2 m2
V d2

1

g2
V

fT
VN sEV d .

(8)

For the longitudinal scattering amplitude the generaliz
tion of VDM has the form

fL
gN sEg , q2d ­ 4pa

X
V­r,v,f

jq2jm4
V

sq2 2 m2
V d2

1

g2
V

fL
VN sEV d .

(9)

Equations (8) and (9) can be proved in models incorpo
ing directgN interaction. These equations correspond
the assumption that atQ2 ­ 2q2 & m2

V the dominant in-
termediate states in theg channel are vector mesons an
the contributions of higher states can be neglected.
factor q2 in the numerator of Eq. (9) is a kinematical fa
tor that evidently follows from the requirement of vanis
ing fL

gN at q2 ­ 0. The absolute valuejq2j arises, since
Im fL

gN is positive atq2 , 0 as well as atq2 . 0. This
corresponds to the fact that while for a transverse pho
the polarization vector squared ise2 ­ 21, for a longitu-
dinal virtual photon we pute2 ­ 1 in order to get a posi-
tive cross section (see [18]). The relation betweenEr and
Eg is nowEr ­ Eg 2 sm2

r 1 Q2dy2mN .

Ref
T ,L
gN sE, Q2d can be found from the data on dee

inelastic scattering in the same way as was done for
real photon. The dispersion relation takes the form

Ref
T ,L
gN sE, Q2d ­ f

T ,L
gN s0, Q2d 2

a

mN
P

3
Z 1

0
dx0 1 1 4m2

Nx02yQ2

x02 2 x2

3 F2sx0, Q2d
s1, Rd
1 1 R

, (10)

where x ­ Q2y2n, n ­ mNE, F2sx, Q2d is the nucleon
structure function, andR ­ sLysT is the ratio of longi-
tudinal to transverse photon cross sections.

Consider first the case of transverse photons and ch
whether starting from the deep inelastic scattering d
we can get the values of RefT

rN sEd close to those we
have already found from photoproduction. We choo
Q2 ­ 0.5 GeV2 and takeF

p
2 sx, 0.5 GeV2d from the data

compilation done by Ji and Unrau [22]. The ratioFn
2 yF

p
2

was taken from [23] forx , 0.2. For x . 0.2, where the
data at smallQ2 are absent, we assumeFn

2 yF
p
2 ­ 0.75.

The information aboutR at smallQ2 is scarce. Based on
the data from Refs. [23,24] we assumeRp ­ Rn ­ 0.3.
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We also assume that atQ2 ­ 0.5 GeV2 the subtraction
term in Eq. (10) is given by the one-nucleon intermedia
state, as it takes place in the Thompson formula. The o
nucleon intermediate state contributes also to the inte
in Eq. (10). Its total contribution to Eq. (10) is

RefT
gN sn, Q2done-nucl ­ 2

a

mN

∑
F2

EsQ2d 1
1
4

Q4G2
MsQ2d

3
1

n2 2 Q4y4

∏
, (11)

whereFE andGM are the nucleon electric Pauli and ma
netic Sachs form factors. The results of our calculat
show that the shape of the curve for RefT

rN sErd obtained
from the data atQ2 ­ 0.5 GeV2 is similar to the curve
RefT

rN sErd in Fig. 1, but the absolute values are (30
40)% smaller. Since the factorsQ2 1 m2

rd2ym4
r ø 3.4

connecting the values offT
gN sEg , Q2d and fT

rN sErd is
rather large, this fact can be considered as an indica
that the accuracy of VDM for the problem considered
of order (30–40)%.

The calculation of RefL
gN sE, Q2d is similar. The only

difference appears in the subtraction term in Eq. (10).
[25] it was proved thatfL

gN s0, Q2d at smallQ2 is given
by the one-nucleon intermediate state, and it was arg
that its contribution dominates up toQ2 ­ 0.5 GeV2.
The contribution of one-nucleon intermediate state
fL

gN sn, Q2d is

RefL
gN sn, Q2done-nucl

­ 2amN Q2

∑
1

4m4
N

F2
MsQ2d 1

1
n2 2 Q4y4

G2
EsQ2d

∏
,

(12)

where FM and GE are the nucleon magnetic Pauli an
electric Sachs form factors.

The results of calculation of RefL
rN sErd andDmL

rsErd
are plotted in Fig. 1. It is seen that in the energy ran
Er ­ 2 7 GeV DmL

r is essentially smaller thanDmT
r .

Although the uncertainty in the determination ofDmL
r is

rather large, we believe that this qualitative conclusi
will be intact in a true theory. Since at restDmT

r ­
DmL

r , one should expect a strong energy dependenc
DmT

r and/or DmL
r in the domainmr , Er , 2 GeV.

This is not surprising in the framework of our approac
since there are resonances in this domain and str
variations of RefrN sErd and DmrsErd are very likely.
The main sources of uncertainty in our approach
the assumption of independent scattering on nucleon
the nucleus (Fermi gas approximation) and the use
VDM, especially for the virtual photon. We estimat
the uncertainty as,30% 50% for DmT

r and as a factor
of ,2 for DmL

r . DGr calculated according to Eq. (5
is large: DGT

r ø 300 MeV, DGL
r ø 100 MeV at Er ­

3 GeV and normal nuclear density. However, theseDG’s
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s.
so not characterize the broadening of ther peak observed
experimentally. For example, they get contributions fr
elastic and diffraction scattering which do not result
broadening of the peak. One may expect experiment
observable broadening to be about 2 times smaller
these numbers.

We would like to note that a similar treatment of i
medium pions using the data onpN forward scattering
amplitudes extracted from the phase analysis in Ref.
shows a strong energy dependence of the pion m
shift for 400 , Ep , 1500 MeV: Dmp ­ 30 70 MeV
for normal nuclear density.

No direct comparison of our results with the previo
ones can be made, since all earlier calculations r
to the mass shift ofr-meson with the energyEr &

1 GeV, while the applicability domain of our results
Er . 2 GeV. As was mentioned above, one may exp
a strong energy dependence ofDmrsEd in the interval
mr , Er , 2 GeV. [Even the sign difference inDmr

obtained here and in Refs. [7,8,15] cannot be conside
as a contradiction, since RefrN sEd may change sign
going through resonances, as it indeed happens
RefgN sEd.] The basic physical content of our approa
is the statement that the meson mass shift in nuc
matter is determined by the meson-nucleon interac
and scattering proceeding at rather large distances,1 fm.
As follows from our basic formula Eq. (4), one ma
expect strong variation ofdmr at low Er , since this is
the resonance region in therN system. This would also
indicate that large distances are important in this probl
The main point of Refs. [3,4,8,14,15] was the assump
that the mass shifts are determined by small distan
and that the QCD sum rule method developed for
calculation of small distance contributions can be app
to this problem. In the calculations of Refs. [8,14,1
the operator product expansion (OPE) for the virt
photon-nucleon forward scattering amplitude was u
and a few terms in OPE were kept. As is well know
the OPE in this case is a light-cone expansion,
the expansion parameter along the light-cone is1yx ­
2nyQ2. For the r meson at restn , mNmr, Q2 ,
m2

r, and1yx , 2mN ymr ø 2.5. Therefore there are n
reasons to keep only a few terms in this expans
as was done in [8,14,15]. This fact, of course, is
manifestation of importance of large distances in
problem discussed. It should also be noted that
approach is phenomenological and thus takes into acc
all possible intermediate states used in model calculat
of vector meson mass shifts.

Let us summarize our main results. The mass s
DmsEd of a particle in nuclear matter is given by the ge
eral Eq. (4). For the case ofr meson with energies2 &

E & 7 GeV the mass shift is positive,Dm , 50 MeV for
transverser mesons and 3 times smaller for longitudin
n
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ones. At lower energies the mass shift is strongly ener
dependent due to competition of variousrN resonances
in Eq. (4).
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