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A self-consistent approximation for the structure factor of three-dimensional lattice gases yields
remarkably accurate predictions (less than 3% error over most of the temperature range) for the
correlation length, isothermal compressibility, specific heat, and the coexistence curve. Critical
temperatures agree to within 0.2%, and other critical properties to within (1—2)%, of the best numerical
estimates. Until temperature and density are within 1% of their critical values, the approgiifeate/e
critical exponents do not differ appreciably from their estimated exact form; they attain their limiting
spherical-model values only much closer to critical. The method should prove useful for a variety of
three-dimensional lattice-gas and fluid problems; it is inappropriate to two dimensions, where it predicts
criticality at zero temperature. [S0031-9007(96)00786-7]

PACS numbers: 05.50.+q, 05.70.Ce, 64.60.Cn

Finding a quantitatively accurate method for phase tranterplay between short- and long-range structure typical of
sitions and criticality in three-dimensional fluids and latticecontinuum fluids has been addressed primarily within the
gases has been a central objective of statistical mechanimmework of integral equations, derived via closure of
throughout the last half century. Following series analythe Ornstein-Zernike relation. Because of the thermody-
sis of criticality in lattice models [1], major steps toward namic inconsistencies commonly attending such closures,
understanding the mechanism underlying critical behavthis leads to the still more formidable challenge of treating
ior were taken by Widom [2] and by Kadanoff [3], who the pair correlation function in a globally accurate way
proposed that the free energy is dominated by a term hde yield self-consistent predictions, so that, for example,
mogeneous in a densitylike and a temperaturelike variablene obtains the same pressure whether one uses the pair
Wilson [4] then illuminated the microscopic basis of homo-correlation function to find the isothermal compressibility
geneity using renormalization group methods, after whictvia fluctuation theory, or to weigh the pair potential in a
Wilson and Fisher [5] showed how expansiongin d (d  direct assessment of the internal energy. The surprising
is the dimension) yield quantitative predictions of critical result we report in this Letter is that by constructing an
exponents. By the mid-1970s one might have supposeidtrinsically self-consistent theory (rather than by impos-
that a theory of the structure factor (or equivalently, theing consistency with thermodynamic functions obtained
pair distribution function), providing thermodynamic and in a separate calculation), we obtain thermodynamic and
structural results for lattice gases and simple fluids ovestructural predictions of remarkable accuracy. Thus our
the whole temperature-density plane, including the criticabpproach promises to be a route by which a globally ac-
region, was immanent. curate theory for continuum fluids may be attained. We

Two decades later, however, the development of globknow of no competing approach with the same goals that
ally accurate treatments of such systems remains only pahas yielded comparable results. The only other theory of
tially realized, both on the purely thermodynamic levelthe pair correlation function capable of global accuracy,
and on the deeper structural level embodied in the paifrom which thermodynamic results have been obtained, is
correlation function. For one of the nearest-neighbor latthat of Parola and Reatto [9,10], but that is not a self-
tice gases considered here (the bcc case), there is how éonsistent approach in our sense.
the literature a satisfactory set of approximants for ther- Our results are obtained from a self-consistent
modynamic functions [6], but there is nothing of com- Ornstein-Zernike approach (SCOZA) developed by Haye
parable quality for lattice gases with extended cores oand Stell for application to three-dimensional lattice gases
a longer range of interaction. For continuum-fluid mod-and continuum-fluid systems [11]. Here we apply the
els one has nothing approaching the precision affordedpproach to the nearest-neighbor lattice gas, and give
by series-based approximants, although some promisirtpe solution of the partial differential equation which
approaches are under development [7] and significartigye and Stell derived (but did not solve) to describe the
progress has been made toward expressions that fit ethiermodynamic behavior of the parameters appearing in
perimental data over a reasonably wide range of thermahe structure factor. To avoid terminological confusion,
dynamic states, including the critical point [8]. we distinguish between the SCOZA considered here

While lattice models and field theories have served aand related generalized mean-spherical approximations
the key arenas in the theory of criticality, the complex in-(GMSA’s) also developed and studied by Hgye, Stell,
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and their coauthors [12]. Although these GMSA’s canThe internal energy and inverse compressibility are given
also be described as self-consistent Ornstein-Zernikby pu = —(gp?)/2 — ¢ — 1)/2¢; and y ' =¢/(1 —
approximations, they differ in a crucial way from the onep) — gpc;, which are faithful to the hole-particle sym-
we consider in that their thermodynamic predictions aremetry of the lattice gas. Differentiating with respect to
by construction, precisely those of the mean-sphericaB, rearranging, and using the self-consistent relation, we
approximation (MSA). The present method yields ther-obtain
modynamic functions distinct from, and far superior to

those of the MSA. der _

1
We consider three-dimensional lattices gases with 98 g dp?
nearest-neighbor interactionw(r) =« for r =0,

P(=pu) [, ¢P' !
[1 ¢ + qp(l — p)clP’} ’

w(l) = —1, andw(r) = 0 for » > 1 (r = |r|), wherer (3)
is the separation of a pair of particles. In the MSA thewhere P’ = dP/dz. Given the boundary values
direct correlation function is(r) = —Bw(r) for r >0  ¢;(p,B=0)=0 and ¢(p,B =0) = 1, we evaluate

(B is inverse temperature), so that = c(1) = 8. dc;/dB via Eq. (3), and integrate to find;(p,ApB).
Following Heye and Stell [11], by contrast, we let Then we compute/(p,AB), construct dc;/9B, and
c1 = c1(B, p), and determine this function by demand-so on. In the course of this procedure, we also re-
ing consistency between the energy and compressibilitguire ¢; and ¢ at the boundariep = 0 and p = 1.
routes for the pressurec, = ¢(0) is fixed by the core Using P(z) =1 + z?/q + O(z*), one finds that
condition on the total correlation functiom, = —1. dc1/aB =c +1 for p=0 or 1. For the bcc
Thermodynamic self-consistency is embodied in thdattice, P(z) = K(k)>, where K(k) is 2/m times
relation po%(pu)/dp? = 9%(Bp)/dBap, whereu is the the complete elliptic integral of the first kind, and
internal energy per particley is the pressure, and is k2 =[1 — +/1 — z2]/2 [13]. Similar, but more complex
the density or fraction of occupied sites. The internal enexpressions are known for the other lattices [14].
ergy per particle on a lattice with coordination numiger The inverse compressibility vanishes when= 1.
isu= —gp(l + hy)/2, and the inverse compressibility This condition defines the spinodal line, and for=
isxy ' =a(Bp)/op =1— pé(0) =1 — p(co + gc1), 1/2, the critical point. Thus/ = gc,/4 = P(1) at the
where ¢ denotes the Fourier transform and the lastcritical point, which permits us to write the internal
equality reflects our truncation af. We obtain further energy: u. = —g[P(1) — 1]/4P(1). [While the MSA
relations between the unknowns, c¢;, and #; from  yields the same expression fa, one hasB.msa =
the Ornstein-Zernike equation (OZE), which in Fourier4P(1)/q, which is rather inaccurate; for the sc lattice,
space is Bemsa = 1.0109, about 14% too large. It is worth
noting that away from the critical point, the SCOZA
1+ph=(01-pe) L (1) spinodal lies well inside the coexistence curve.] Another
simple consequence a@f = 1 is that our theory predicts
The core condition together with the OZE implies 7. = o in one and two dimensions, because the lattice
—hi =[1 + (1 = p)col/gpc1. A second expression Green’s function diverges at= 1 for d = 2. Although
for h; comes from inverting Eq. (1) at nearest-neighborscozA is exact for the one-dimensional lattice gas, it

distance is unsuited to the two-dimensional model, which presents
h [” d*k cosk - e ) the unusual combination of a divergent Green’s function
P —w @@ 1 = pek)’ (2)  and a nonzerd..

Details on the numerical procedure are given in
Here e denotes a vector from the origin to one Ref. [15]; we now summarize our results. We plot
of its nearest neighbors, e.g., (1,0,0), (1,1,1), andhe isothermal compressibility as a function gf for
(1,1,0), in the sc, bcc, and fcc lattices, respectivelyp = 1/2, in Fig. 1. Extrapolating from the last few data
The Fourier-transformed direct correlation function points for 8 < 8. [for which y ! is already® (1079)],
may be written &(k) = co + (¢/g)c;®(k), where we determine8. via y '(B.,1/2) = 0. The resulting
g =3 for the sc and fcc lattices ang =1 for values, listed in Table I, are within 0.2% of the best
bcc (¢ is the number of subgroups invariant un- series estimates. For comparison we note that for the sc
der inversions). The nearest-neighbor subik) is lattice, simple mean-field theory yield8. = 2/3, the
cosk, + cosk, + cosk, (sc), cos, cosk, cosk, (bcc), quasichemical approximation giveg. = 0.8109, and
and cos, cosk, + cosk, cosk, + cosk, cosk, (fcc). Kikuchi’s cluster variation method (using a cubic cluster),

Equating expressions foph;, and introducing/ =  predicts 8. = 0.8739 [16,17]. Figure 1 shows that the

(1-p)(A —pcy), and z = [gp(1 — p)c1]/¢, we have SCOZA prediction is in good agreement with the com-
¢ =P(z) =73 [7 &k[1 — (z/g)®] . This is the pressibility derived from Liu and Fisher's whole-range
lattice Green’s function for the Helmholtz equation, whichapproximants for the Ising model [6]. F@ = 0.98.,
may be evaluated in terms of elliptic integrals [13,14].the discrepancy between SCOZA and the approximant
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B FIG. 2. Derivative of internal energy with respectgoversus

FIG. 1. Compressibility versus inverse temperatgréor the B (sc lattice). +: SCOZA; dotted line: Padé approximant to
bee lattice. +: SCOZA; solid lines: Liu-Fisher approximants high-T" series; solid line: scaling form (see text).
[6]. The inset is a similar plot of the correlation leng#h,

(which represents the best available numerical estimate);, against Liu and Fisher's approximant [6]. Writ-
is <2%; for B = 0.958, this grows to about 6%. Above ing h(k) = h(0) + hyk* + ---, our theory vyields
B the error is larger (about 14% f@ = 1.18,.). £ = —hy/3[h(0) +1/p], which becomes 4p yc/3
Table | includes critical values of the internal energyfor the bcc lattice. We obtairt; to within 3% for
per particle,u. [evaluated using exact results fé¥(1) B = 0.958,, and to within 5% forB8 = 1.058. (see in-
[18,19]], the entropy per particle. and the pressure. set of Fig. 1).
Remarkably, the difference between SCOZA predictions As we shall show elsewhere, the true critical exponents
and the best series estimates is at most 0.7% for theorrespond to those of the spherical model [15], but
critical internal energy, 1.1% or less for the critical the spherical-model valuesy(=2, 6 =5, B8 =1/2,
entropy, and at most about 1.4% for the pressure. Il = 0) are discernable only fde| < 1073 and/or |p —
Fig. 2 we plot —ou/apB at p = 1/2. In our theory, p.| < 1073. [Here r = (B. — B)/B. is the reduced
this derivative does not diverge at the critical point, buttemperature.] The effective critical exponents, i.e., the
rather attains the limiting values 9.34 (sc), 15.98 (bcc)slopes of log-log plots of various properties versusr
and 42.96 (fcc). Notwithstanding the finiteness of the|p — p.|, agree surprisingly well with the exact behavior
specific heat at the critical point, Fig. 2 shows that theof the 3D Ising effective exponents over a considerable
SCOZA is otherwise in close agreement with the seriesange [11]. The inverse-compressibility plot of Fig. 4, for
prediction. The latter is derived, fo8 = 0.8, from a  example, yieldSy.;s = 1.26 for —4 < Inr = 0. Similar
Padé approximant to a 9-term series [20]; for> 0.8 we  plots yield 8 = 1/3, a = 0, and § = 4.5-4.7 over a
use the asymptotic form = 1.135(1 — B8/B.)"'/®* —  considerable range of the data. (The true 3D Ising model
1.242. Figure 3 compares the SCOZA prediction for theexponents are estimated to he= 1.239, 8 = 0.326,
coexistence curve in the bcc lattice against that of ther = 0.119, andé = 4.80 [23]. The effective exponents
whole-range approximant of Liu and Fisher [6]. Outsideof the SCOZA are quite different from those of the MSA.
the immediate vicinity of the critical point, the SCOZA In the latter theory, for exampley.¢s varies from about
coexistence density differs from that of the approximantl.6, far from the critical point, to the spherical model
by less than 3%. value of 2. There is no range oB for which the
As a further test of the SCOZA, we compare its MSA gives y.i near the 3D Ising value.) The recent
prediction for the second-moment correlation lengthapplication of the theory of Parola and Reatto [9] by

TABLE I. Comparison of SCOZA (sc) and best-estimate (BE) critical parameters.

I—attice ,Bc,sc ﬁc,BE Uese Uc BE Se.sc S¢,BE (ﬁp)c,sc (,Bp)c,BE

sC 0.88497  0.88662 —2.010806 —1.9961° 1.1037 1.1158  0.1140 0.1124
bcc 0.62848  0.62947 —2.564460 —2.5464> 1.1542 11641  0.1256 0.1244
fcc 0.40772  0.40825 —3.768955 —3.7423> 1.1703  1.1808  0.1302 0.1292

aReference [21]. PReference [22]. “Reference [6].
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