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A self-consistent approximation for the structure factor of three-dimensional lattice gases yi
remarkably accurate predictions (less than 3% error over most of the temperature range) fo
correlation length, isothermal compressibility, specific heat, and the coexistence curve. Cr
temperatures agree to within 0.2%, and other critical properties to within (1–2)%, of the best nume
estimates. Until temperature and density are within 1% of their critical values, the approximateeffective
critical exponents do not differ appreciably from their estimated exact form; they attain their limit
spherical-model values only much closer to critical. The method should prove useful for a variet
three-dimensional lattice-gas and fluid problems; it is inappropriate to two dimensions, where it pre
criticality at zero temperature. [S0031-9007(96)00786-7]
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Finding a quantitatively accurate method for phase tra
sitions and criticality in three-dimensional fluids and lattic
gases has been a central objective of statistical mecha
throughout the last half century. Following series anal
sis of criticality in lattice models [1], major steps towar
understanding the mechanism underlying critical beha
ior were taken by Widom [2] and by Kadanoff [3], who
proposed that the free energy is dominated by a term
mogeneous in a densitylike and a temperaturelike variab
Wilson [4] then illuminated the microscopic basis of homo
geneity using renormalization group methods, after whi
Wilson and Fisher [5] showed how expansions in4 2 d (d
is the dimension) yield quantitative predictions of critica
exponents. By the mid-1970s one might have suppos
that a theory of the structure factor (or equivalently, th
pair distribution function), providing thermodynamic an
structural results for lattice gases and simple fluids ov
the whole temperature-density plane, including the critic
region, was immanent.

Two decades later, however, the development of glo
ally accurate treatments of such systems remains only p
tially realized, both on the purely thermodynamic lev
and on the deeper structural level embodied in the p
correlation function. For one of the nearest-neighbor la
tice gases considered here (the bcc case), there is no
the literature a satisfactory set of approximants for the
modynamic functions [6], but there is nothing of com
parable quality for lattice gases with extended cores
a longer range of interaction. For continuum-fluid mod
els one has nothing approaching the precision afford
by series-based approximants, although some promis
approaches are under development [7] and signific
progress has been made toward expressions that fit
perimental data over a reasonably wide range of therm
dynamic states, including the critical point [8].

While lattice models and field theories have served
the key arenas in the theory of criticality, the complex in
0031-9007y96y77(6)y996(4)$10.00
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terplay between short- and long-range structure typica
continuum fluids has been addressed primarily within
framework of integral equations, derived via closure
the Ornstein-Zernike relation. Because of the thermo
namic inconsistencies commonly attending such closu
this leads to the still more formidable challenge of treat
the pair correlation function in a globally accurate w
to yield self-consistent predictions, so that, for examp
one obtains the same pressure whether one uses the
correlation function to find the isothermal compressibil
via fluctuation theory, or to weigh the pair potential in
direct assessment of the internal energy. The surpri
result we report in this Letter is that by constructing
intrinsically self-consistent theory (rather than by impo
ing consistency with thermodynamic functions obtain
in a separate calculation), we obtain thermodynamic
structural predictions of remarkable accuracy. Thus
approach promises to be a route by which a globally
curate theory for continuum fluids may be attained. W
know of no competing approach with the same goals
has yielded comparable results. The only other theor
the pair correlation function capable of global accura
from which thermodynamic results have been obtained
that of Parola and Reatto [9,10], but that is not a s
consistent approach in our sense.

Our results are obtained from a self-consist
Ornstein-Zernike approach (SCOZA) developed by Hø
and Stell for application to three-dimensional lattice ga
and continuum-fluid systems [11]. Here we apply t
approach to the nearest-neighbor lattice gas, and
the solution of the partial differential equation whic
Høye and Stell derived (but did not solve) to describe
thermodynamic behavior of the parameters appearin
the structure factor. To avoid terminological confusio
we distinguish between the SCOZA considered h
and related generalized mean-spherical approximat
(GMSA’s) also developed and studied by Høye, St
© 1996 The American Physical Society
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and their coauthors [12]. Although these GMSA’s c
also be described as self-consistent Ornstein-Zer
approximations, they differ in a crucial way from the o
we consider in that their thermodynamic predictions a
by construction, precisely those of the mean-spher
approximation (MSA). The present method yields th
modynamic functions distinct from, and far superior
those of the MSA.

We consider three-dimensional lattices gases w
nearest-neighbor interactionwsrd  ` for r  0,
ws1d  21, andwsrd  0 for r . 1 (r ; jrj), wherer
is the separation of a pair of particles. In the MSA t
direct correlation function iscsrd  2bwsrd for r . 0
(b is inverse temperature), so thatc1 ; cs1d  b.
Following Høye and Stell [11], by contrast, we l
c1  c1sb, rd, and determine this function by deman
ing consistency between the energy and compressib
routes for the pressure.c0 ; cs0d is fixed by the core
condition on the total correlation function:h0  21.
Thermodynamic self-consistency is embodied in
relation r≠2srudy≠r2  ≠2sbpdy≠b≠r, whereu is the
internal energy per particle,p is the pressure, andr is
the density or fraction of occupied sites. The internal
ergy per particle on a lattice with coordination numbeq
is u  2qrs1 1 h1dy2, and the inverse compressibilit
is x21  ≠sbpdy≠r  1 2 rc̃s0d  1 2 rsc0 1 qc1d,
where c̃ denotes the Fourier transform and the l
equality reflects our truncation ofc. We obtain further
relations between the unknownsc0, c1, and h1 from
the Ornstein-Zernike equation (OZE), which in Four
space is

1 1 rh̃  s1 2 rc̃d21. (1)

The core condition together with the OZE impli
2h1  f1 1 s1 2 rdc0gyqrc1. A second expressio
for h1 comes from inverting Eq. (1) at nearest-neighb
distance

rh1 
Z p

2p

d3k
s2pd3

cosk ? e
1 2 rc̃skd

. (2)

Here e denotes a vector from the origin to on
of its nearest neighbors, e.g., (1,0,0), (1,1,1), a
(1,1,0), in the sc, bcc, and fcc lattices, respective
The Fourier-transformed direct correlation functi
may be written c̃skd  c0 1 sqygdc1Fskd, where
g  3 for the sc and fcc lattices andg  1 for
bcc (g is the number of subgroups invariant u
der inversions). The nearest-neighbor sumFskd is
coskx 1 cosky 1 coskz (sc), coskx cosky coskz (bcc),
and coskx cosky 1 coskx coskz 1 cosky coskz (fcc).

Equating expressions forrh1, and introducingcy 
s1 2 rd s1 2 rc0d, and z  fqrs1 2 rdc1gycy, we have
cy  Pszd  p23

R
p
0 d3kf1 2 szygdFg21. This is the

lattice Green’s function for the Helmholtz equation, whi
may be evaluated in terms of elliptic integrals [13,1
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The internal energy and inverse compressibility are giv
by ru  2sqr2dy2 2 scy 2 1dy2c1 and x21  cyys1 2

rd 2 qrc1, which are faithful to the hole-particle sym
metry of the lattice gas. Differentiating with respect
b, rearranging, and using the self-consistent relation,
obtain

≠c1

≠b


1
q

≠2s2rud
≠r2

∑
1 2

cyP0

cy2 1 qrs1 2 rdc1P0

∏21

,

(3)

where P0  dPydz. Given the boundary value
c1sr, b  0d  0 and cysr, b  0d  1, we evaluate
≠c1y≠b via Eq. (3), and integrate to findc1sr, Dbd.
Then we computecysr, Dbd, construct ≠c1y≠b, and
so on. In the course of this procedure, we also
quire c1 and cy at the boundariesr  0 and r  1.
Using Pszd . 1 1 z2yq 1 Osz4d, one finds that
≠c1y≠b  c1 1 1 for r  0 or 1. For the bcc
lattice, Pszd  Kskd2, where Kskd is 2yp times
the complete elliptic integral of the first kind, an
k2  f1 2

p
1 2 z2gy2 [13]. Similar, but more complex

expressions are known for the other lattices [14].
The inverse compressibility vanishes whenz  1.

This condition defines the spinodal line, and forr 
1y2, the critical point. Thuscy  qc1y4  Ps1d at the
critical point, which permits us to write the interna
energy: uc  2qfPs1d 2 1gy4Ps1d. [While the MSA
yields the same expression foruc, one hasbc,MSA 
4Ps1dyq, which is rather inaccurate; for the sc lattic
bc,MSA  1.0109, about 14% too large. It is worth
noting that away from the critical point, the SCOZ
spinodal lies well inside the coexistence curve.] Anoth
simple consequence ofzc  1 is that our theory predicts
Tc  0 in one and two dimensions, because the latt
Green’s function diverges atz  1 for d # 2. Although
SCOZA is exact for the one-dimensional lattice gas
is unsuited to the two-dimensional model, which prese
the unusual combination of a divergent Green’s funct
and a nonzeroTc.

Details on the numerical procedure are given
Ref. [15]; we now summarize our results. We pl
the isothermal compressibility as a function ofb, for
r  1y2, in Fig. 1. Extrapolating from the last few dat
points for b , bc [for which x21 is alreadyO s1026d],
we determinebc via x21sbc, 1y2d  0. The resulting
values, listed in Table I, are within 0.2% of the be
series estimates. For comparison we note that for th
lattice, simple mean-field theory yieldsbc  2y3, the
quasichemical approximation givesbc  0.8109, and
Kikuchi’s cluster variation method (using a cubic cluste
predictsbc  0.8739 [16,17]. Figure 1 shows that th
SCOZA prediction is in good agreement with the co
pressibility derived from Liu and Fisher’s whole-rang
approximants for the Ising model [6]. Forb # 0.9bc,
the discrepancy between SCOZA and the approxim
997
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FIG. 1. Compressibility versus inverse temperatureb for the
bcc lattice. 1: SCOZA; solid lines: Liu-Fisher approximan
[6]. The inset is a similar plot of the correlation length,j1.

(which represents the best available numerical estim
is &2%; for b  0.95bc this grows to about 6%. Abov
bc the error is larger (about 14% forb  1.1bc).

Table I includes critical values of the internal ener
per particle,uc [evaluated using exact results forPs1d
[18,19]], the entropy per particlesc and the pressure
Remarkably, the difference between SCOZA predicti
and the best series estimates is at most 0.7% for
critical internal energy, 1.1% or less for the critic
entropy, and at most about 1.4% for the pressure.
Fig. 2 we plot 2≠uy≠b at r  1y2. In our theory,
this derivative does not diverge at the critical point,
rather attains the limiting values 9.34 (sc), 15.98 (bc
and 42.96 (fcc). Notwithstanding the finiteness of
specific heat at the critical point, Fig. 2 shows that
SCOZA is otherwise in close agreement with the se
prediction. The latter is derived, forb # 0.8, from a
Padé approximant to a 9-term series [20]; forb . 0.8 we
use the asymptotic formc . 1.135s1 2 bybcd21y8 2

1.242. Figure 3 compares the SCOZA prediction for t
coexistence curve in the bcc lattice against that of
whole-range approximant of Liu and Fisher [6]. Outs
the immediate vicinity of the critical point, the SCOZ
coexistence density differs from that of the approxim
by less than 3%.

As a further test of the SCOZA, we compare
prediction for the second-moment correlation len
998
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FIG. 2. Derivative of internal energy with respect tob versus
b (sc lattice). 1: SCOZA; dotted line: Padé approximant
high-T series; solid line: scaling form (see text).

j1, against Liu and Fisher’s approximant [6]. Wri
ing h̃skd  h̃s0d 1 h2k2 1 · · · , our theory yields
j

2
1  2h2y3fh̃s0d 1 1yrg, which becomes 4rxc1y3

for the bcc lattice. We obtainj1 to within 3% for
b # 0.95bc, and to within 5% forb $ 1.05bc (see in-
set of Fig. 1).

As we shall show elsewhere, the true critical expone
correspond to those of the spherical model [15],
the spherical-model values (g  2, d  5, b  1y2,
a  0) are discernable only forjtj , 1023 andyor jr 2

rcj , 1023. [Here t ; sbc 2 bdybc is the reduced
temperature.] The effective critical exponents, i.e.,
slopes of log-log plots of various properties versust or
jr 2 rcj, agree surprisingly well with the exact behavi
of the 3D Ising effective exponents over a considera
range [11]. The inverse-compressibility plot of Fig. 4, f
example, yieldsgeff . 1.26 for 24 # ln t # 0. Similar
plots yield b . 1y3, a ø 0, and d . 4.5 4.7 over a
considerable range of the data. (The true 3D Ising mo
exponents are estimated to beg  1.239, b  0.326,
a  0.119, andd  4.80 [23]. The effective exponents
of the SCOZA are quite different from those of the MS
In the latter theory, for example,geff varies from about
1.6, far from the critical point, to the spherical mod
value of 2. There is no range ofb for which the
MSA gives geff near the 3D Ising value.) The rece
application of the theory of Parola and Reatto [9]
TABLE I. Comparison of SCOZA (sc) and best-estimate (BE) critical parameters.

Lattice bc,sc bc,BE uc,sc uc,BE sc,sc sc,BE sbpdc,sc sbpdc,BE

sc 0.88497 0.88662a 22.010806 21.9961b 1.1037 1.1158b 0.1140 0.1124
bcc 0.62848 0.62947c 22.564460 22.5464b 1.1542 1.1641b 0.1256 0.1244
fcc 0.40772 0.40825c 23.768955 23.7423b 1.1703 1.1804b 0.1302 0.1292

aReference [21]. bReference [22]. cReference [6].
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FIG. 3. The bcc lattice coexistence curve according
SCOZA (1), and Liu and Fisher’s whole-range approximan
[6].

Pini et al. [10] to the simple cubic lattice gas facilitate
a direct comparison with our results. Our error in critic
temperature is 0.18% while theirs is 0.4%; a comparis
of our Fig. 3 with their Fig. 1 shows that our coexistenc
curve also has considerably higher overall accuracy.
further comparison of the two approaches will be given
part of a more detailed report [15].

For d $ 3, the sole approximation in SCOZA theory—
the identification of the range ofcsrd with that of wsrd—
distorts hsrd [øfsryjdyrd221h for r ¿ 1], only very
slightly (h  0 instead ofh ø 0.06 for d  3), and this
distortion is apparent only in the vicinity of the critica
point, wherefsryjd is constant, rather than exponentiall
damped. The basis of the SCOZA is to make this t
only approximation in the theory, so that ford $ 3 the
attendant error in the thermodynamics is very small exc
at or close to critical.

FIG. 4. Inverse compressibility versus reduced temperatu
The curves (indistinguishable over most of this scale) repres
predictions of SCOZA for the sc, bcc, and fcc lattices. Th
slope of the straight line is 1.26.
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