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Synchronization by Disorder in Coupled Systems
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Effects of quenched disorder on a coupled map model of earthquakes are studied. In its original
version, this model is known to display a self-organized critical distribution of avalanches. However,
when some finite amount of quenched disorder is introduced, the bulk sites synchronize fully and a
single stable system-wide avalanche appears. This synchronization is found for a wide band of disorder
and goes against some recent predictions about integrate-and-fire models. [S0031-9007(96)00780-6]
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Effects of disorder on dynamical systems remain onlythe coupled map becomes SOC again before showing an
partially understood. In some cases, introduction ofexponential decay in the distributions.
disorder is known to destroy the correlations already The discovery of self-organized criticality in nonconser-
built up [1]. In others, when present at small doses, itvative coupled-map models of earthquakes has attracted a
does not play any significant role [2,3]. More interestinglot of attention to models like the one used here since it
are effects like stochastic resonance which go againstas first shown to exist [8]. Similar non-mean-field cou-
common expectation: Some chaotic systems can fingled maps have also been applied to biological problems
their signal-to-noise ratio increased with increasing noisesuch as firing neurons [9]. In this latter case, the inter-
[4]. This has also been seen, for example, in couple@st does not lie in the SOC distribution but rather in the
Ginzburg-Landau equations [5] and in totalistic cellularphase locking and the speed of convergence between lo-
automata [6], where noise diminishes slightly the chaoticcal events. Coupled maps are mathematical objects where
situation and in Lorenz systems where noise createsach site can take a value from a continuum and evolve
a stabilization of the flip-flop process [7]. Recently, following an often complex function of the site itself and
Tsodyks, Mitkov, and Sompolinsky [1] proposed that theits local neighbors. These objects are therefore ideal to
effects of noise or disorder on coupled dynamical systemdescribe coupled macroscopic systems like fireflies, hearth
should be strongly determined by the generic type of ruleells, or neurons where each individual evolves in time fol-
defining the evolution in these models. From a mean-fieldowing a nontrivial function of its own state and environ-
solution, they speculated that for integrate-and-fire (IAF)ment. In the earthquake model, proposed by Olami, Feder,
neuron models, which are characterized by discontinuouand Christensen [8] and studied in details by Grassberger
rules, disorder should always destroy immediately al[10] and Middleton and Tang [11], each site or map repre-
synchronization contrary to what is seen in coupled mapsents a block moving along some direction under the push
with continuous dependence [2]. However, Bottani [3]of a field but connected, via nonlinear forces, to its first
showed that for some mean-field IAF modgdhase neighbors. In neural terminology, a single site represents
locking synchronization, where all sites maintain theira neuron, affected by both global loading and the signals
phase with respect to the others, could survive smaltegularly received by and sent to its firing neighbors [9].
amounts of frozen disorder. In this Letter, | present a Recent studies of these models have focused on homo-
specific example of an IAF coupled-map rule where thegeneous lattices with or without periodic boundary con-
introduction of disorder causes an uncorrelated systerditions. But it is clear that the real systems modeled by
to fully synchronize in the sense that all bulk sites firethese objects are not homogeneous. In a geological fault,
at the same timean effect stronger than phase locking for example, the local friction between the moving plates,
and much more dramatic than what is customarily foundvhich influences both the rate of motion and the redis-
with stochastic resonance. The rule retained was firdribution on the neighbors in the OFC model, cannot be
proposed by Olami, Feder, and Christensen (OFC) asxpected to be a constant value but should fluctuate ac-
a model for earthquakes and is known to display, incording to local variations. Similarly, the local elasticity
the absence of frozen disorder, a self-organized-criticabf the sheets, which determines how the energy is trans-
(SOC) distribution of avalanches. For some region of thderred from one point to another, is also expected to be
parameters, the SOC phase survives the introduction of aariable. A first step is therefore to simply see how the in-
small albeit finite amount of quenched disorder. Past @roduction of quenched disorder in the simple coupled-map
finite threshold, the system becomes fully synchronizedrepresentation for these systems will affect their dynamical
This phase exists for the full range of parameters testellehavior. Some work has already been done along these
and a finite range of disorder. As the disorder increaseknes. Janosi and Kertész [12] studied the influence of
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randomness in the threshold for the OFC rule and found 0.03
that this type of disorder destroys criticality and changes

the distribution of avalanche size from power law to ex-

ponential. Ceva [13], for his part, looked at uncorrelated 0.02 t
and correlated disorder in the redistribution parameter
He was interested, however, in the effects of concentration
of defects and not their amplitude. He found, in this case, 001t
that SOC is stable under small concentration of defects.

A full description of the OFC model and its properties
can be found in many papers (see, for example, [8] and it e . :
[10]) and will be described only succinctly here. A con- T0.00 0.10 0,20
tinuous functionF;(¢) is assigned to every site of a square o
lattice. Each function evolves linearly in time following ri 1. Approximate phase diagram for the OFC model as
dF;(t)/dt = 1. When a site, say; reaches a threshold a function of the redistribution factorr and the quenched
valuerc (= 1 in this paper), time evolution is stopped and disorder 5. The points result from simulations on &0 X
an event is triggered: (1) The function is set back to zerol00 Iatticg. The phases argdiscussed in the text. The arrow at
Fi(t) — Fit = 0, and (2) a certain weight is redistributed |Cr¥1d|=c£te12 indicates the position ok, and the one a = 0.13
to the neighboring sitesj, F;(t) — FJ'-(t) = F;(t) + Ao
A;(t), whereA;(1) = «;F;(t). This process is repeated «. In an extensive study of the OFC model, Grassberger
until all functions fall below threshold. The number [10] showed that, although the transition at very small
of sites which have been triggered gives the size of thex’s reported by Olamet al. was only due to the limited
avalanche. Time evolution is then restarted until anothesize of the original simulations, something happened at
site hits the threshold. In the present work, disorder isx, = 0.18. Fora < a., large avalanches happen mainly
introduced in the redistribution fraction; which now nearthe surface. Deep in the bulk, there is complete phase
varies from site to site a8; = a + §;, whereé; isaran- locking, i.e., all sites fall one at a time but within the same
dom number taken from a linear distributibr 5, 8]. In  period; there is no global synchronization. Wher> a,
order to make sure that no site, once the disorder is addddrge avalanches appear everywhere, from the surface to
to a, becomes an effective source in the lattice or reachedeep inside the lattice. A SOC distribution holds, however,
the conservative regime, | have limited my investigationsfor all values ofa’s. The fact thata. # a, indicates
to cases wher@ < «; < 0.25. The disorder is quenched that the mechanism which controls synchronization is
in beforethe start of the simulation. At = 0, the state somewhat different from the one which allows propagation
of the system[F;], is also chosen randomly from a linear of large avalanches from the edges in the perfect SOC.
distribution[0, 1]. This ensures than two sites cannot act So, fora > ay, the transition from phase | (SOC dis-
simultaneously as seeds for an event. tribution) to Il (synchronized) happens only for a finite

The propagation of the avalanche is done radially froms. Moreover, this disorder-to-order transition is clear
the first toppled site. Physically, this presupposes that thand sharp, except for large’s (close t00.25) where the
triggering time is much faster than the propagation time.

The exact type of propagation plays an important role

in determining the dynamical behavior, especially in the N R R R
presence of open boundaries, as is the case for the model
studied. Results obtained with other types of propa-
gation will be discussed elsewhere [14]. The program -2
used here implements the Grassberger algorithm which
improves enormously the efficiency over a straightforward
application of the algorithm (see [10] for details).

As can be seen in Fig. 1, the introduction of quenched
disorder can affect qualitatively the dynamical behavior of
the OFC model. For = a, = 0.10, the lattice continues -8
to demonstrate a SOC distribution of avalanches (Fig. 2)
even for some finite presence of quenched disorder. Size T N T
effects are noticeable in this phase, and the exponent in 2 4 68 8 10
the power-law distribution has to be rescaled by a factor log(n)/(1-1/L¥)
of the form1 — 1/L”, where v has been found to be S
0.10. Beloway, the system synchronizes with any amountF!G- 2. Integrated probability distribution for avalanches as

of disorder although the transient period towards a fuIIy‘Z f:un(;:. tl'gna% tgel (‘:’.'ggf ' ff;ttli%té'cgszég g?gfezl 43f (Té%'gl'

synchronized state can be extremely long. The dynamic@ashes),100 (dots), 169 (short dashes), an#25 (solid line).
behavior of the perfect OFC model also depends upoffhe exponent = 0.10.
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exact position of the transition between SOC and synchro- As mentioned in [10], in the absence of noise, the OFC
nized phases becomes slightly blurred. As mentioned beule on a lattice with periodic boundary conditions (PBC)
fore, from the initial random configuration, the transientdoes not display any collective mode: Sites are phase
in phase Il from the initial random configuration to full locked and triggered one at a time in a given order fixed
synchronization of phase Il can be relatively long. Infrom the first instant of simulation. When very small
Fig. 3, we see that all avalanches are slowly absorbedmounts of disorder are introduced, a distribution in the
into a single one which ends up dominating almost thesize of avalanche forms. But the decay of this distribution
whole lattice. For the chosen parameters in Fig. 3, thevith size remains extremely fast, essentially exponential,
main avalanche involves almost 90% of all the sites andand accelerates with increasing levels of disorder, so that
although slightly fluctuating, remains remarkably stablethe introduction of disorder does not change the qualitative
Looking at snapshots of this realization (Fig. 4), beforebehavior of the OFC rule when placed on a lattice with
and after a large avalanche has been triggered, we see thariodic boundary conditions. With or without disorder,
the 10% of sites not participating in it are situated at theopen boundaries are needed to achieve collective modes.
edges of the lattice, the bulk region being perfectly synAll results presented here were obtained on lattices with
chronized. The boundaries between the bulk and edgepen boundaries on the four sides of a square lattice.
regions, however, are not frozen and contribute to the The unit of time retained in Figs. 2 and 3 is the
fluctuations seen in Fig. 3. Edge sites themselves do nggeriod of return for avalanches on a lattice with periodic
synchronize at all, and avalanches in this region are esseheundary conditionP? = 1 — 4« [9]. The synchronized
tially of size one. When disorder becomes large enouglphase displays a characteristic time closely related to this
the system loses synchronization and falls back into a SO6ne and independent of the period associated with the
distribution [phase Il and Fig. 5(a)]. Here again, the tran-edge sites. This is somewhat surprising and contrary
sition is quite sharp and well defined. Because the largesb what would be expected based on the behavior of
avalanches do not reach a significant fraction of the systhe closely related earthquake model of Feder and Feder
tem size, size effect seems to be much less important thgfF) [15]. The FF model is known to rapidly evolve

in phase I. Finally, as quenched disorder is increased tmto a state with many well defined avalanches which
a higher level, this SOC distribution makes a place for arall recur with the same periodicity. This period of
exponential-like one [phase IV and Fig. 5(b)]. The tran-return is completely determined by the sites at the
sition from phase Ill to phase IV is relatively smooth and
difficult to find precisely. As seen in Fig. 5(b), the distri-
bution is not exactly exponential, except for the tail, but e
it decays much faster than a power law. In both these E3%
two phases, large avalanches become rare and never reacff s
much more than a few tenths of the total size of the system, 2.
a proportion decreasing with increasing quenched disorder. £ 48
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0.0 5.0 10.0 15.0 FIG. 4. Snapshots in the time evoluton of a
t (103T) 100 X 100 lattice with the same parameters as in the
previous figure. The four figures are in chronological order
FIG. 3. Size of avalanches;, as a function of time for and the avalanche happens between (a) and (b), while config-
100 X 100 lattice in phase Il witha = 0.12 and § = 0.007. uration (d) is back to the state shown in (a), after a peffod
10000 periodsT have been rejected. The vertical scale isdefined in the text. The darker the points, the lower the value
normalized by the total number of sites on the lattige, of the local functionF;(z).
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introduction of disorder in an IAF coupled map not only

does not destroy the correlations present in the perfect
model [1] or simply preserves those already present [3]
but increases them in a dramatic fashion. When a finite
amount of quenched disorder is applied to the OFC model,
the system goes from a self-organized-critical distribution
to a single system-wide synchronized and periodic event.
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On a more general level, the question of the role of
500 . . . X
disorder in dynamical systems is fundamental because
most biological, neurological, or geological dynamical
FIG. 5. Integrated probability distribution of avalanches as asystems evolve in the presence of one or another type of
function of their size for lattices. (a) Lattice in phase Ill of the disorder. From the example presented here, it becomes
phase diagram (Fig. 1y = 0.18 andé = 0.023. Lattice sizés  ¢legr that in some cases noise can play a significant part in

o

are L = 100 (dotted line), 169 (dashed line), an@25 (solid - e
line). (b) Lattice in phase IV of the phase diagram= 0.18 the synchronization and, therefore, stabilization of cycles

and 8 = 0.029. Lattice sizes ard. = 49 (dashed line),J00  iN complex systems.

(dotted line), and 69 (continuous line). On this model specifically, the exact periodicity of the
dominating avalanche as well as the ambiguous role of

edges, which lack a fourth neighbor, givilg= 1 — 3a.  the boundary sites, isolated but required, remain to be

Nevertheless, for the modified OFC studied here, theinderstood. Analytical work on the effects of disorder

factor 3& does not appear in the periodicity of global on coupled systems will also be needed. Above all this,

avalanches. The choice of the dominating avalanchet is important to try to tie these results to experiment on

described previously, is totally controlled by its period of real systems, where disorder and noise are usually found

return: Itis always the one present with the longest periocs a matter of fact.

which wins. If one neglects the presence of the boundary | acknowledge helpful discussions with A.V. M. Herz
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8, but decreases witkx. From observation, the period

seems to go a$ — 4(a — AS), whereAd is the width

of the disorder distribution from which is taken. Many

distributions have been tested for the frozen disorder, and

all results are consistent with this relation although there *Present address.
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