
VOLUME 77, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 1996

Minces,

ginal
er,
d a

order
80-6]

968
Synchronization by Disorder in Coupled Systems

Normand Mousseau
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom

and Département de Physique and Groupe de Recherche en Physique et Technologie des Couches
Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal (Québec), Canada H3C 3J7*

(Received 31 January 1996)

Effects of quenched disorder on a coupled map model of earthquakes are studied. In its ori
version, this model is known to display a self-organized critical distribution of avalanches. Howev
when some finite amount of quenched disorder is introduced, the bulk sites synchronize fully an
single stable system-wide avalanche appears. This synchronization is found for a wide band of dis
and goes against some recent predictions about integrate-and-fire models. [S0031-9007(96)007
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Effects of disorder on dynamical systems remain o
partially understood. In some cases, introduction
disorder is known to destroy the correlations alrea
built up [1]. In others, when present at small doses
does not play any significant role [2,3]. More interesti
are effects like stochastic resonance which go aga
common expectation: Some chaotic systems can
their signal-to-noise ratio increased with increasing no
[4]. This has also been seen, for example, in coup
Ginzburg-Landau equations [5] and in totalistic cellu
automata [6], where noise diminishes slightly the chao
situation and in Lorenz systems where noise crea
a stabilization of the flip-flop process [7]. Recentl
Tsodyks, Mitkov, and Sompolinsky [1] proposed that t
effects of noise or disorder on coupled dynamical syste
should be strongly determined by the generic type of r
defining the evolution in these models. From a mean-fi
solution, they speculated that for integrate-and-fire (IA
neuron models, which are characterized by discontinu
rules, disorder should always destroy immediately
synchronization contrary to what is seen in coupled m
with continuous dependence [2]. However, Bottani
showed that for some mean-field IAF modelsphase
locking synchronization, where all sites maintain the
phase with respect to the others, could survive sm
amounts of frozen disorder. In this Letter, I presen
specific example of an IAF coupled-map rule where
introduction of disorder causes an uncorrelated sys
to fully synchronize in the sense that all bulk sites fi
at the same time, an effect stronger than phase lockin
and much more dramatic than what is customarily fou
with stochastic resonance. The rule retained was
proposed by Olami, Feder, and Christensen (OFC)
a model for earthquakes and is known to display,
the absence of frozen disorder, a self-organized-crit
(SOC) distribution of avalanches. For some region of
parameters, the SOC phase survives the introduction
small albeit finite amount of quenched disorder. Pas
finite threshold, the system becomes fully synchroniz
This phase exists for the full range of parameters tes
and a finite range of disorder. As the disorder increa
0031-9007y96y77(5)y968(4)$10.00
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the coupled map becomes SOC again before showing
exponential decay in the distributions.

The discovery of self-organized criticality in nonconse
vative coupled-map models of earthquakes has attracte
lot of attention to models like the one used here since
was first shown to exist [8]. Similar non-mean-field co
pled maps have also been applied to biological proble
such as firing neurons [9]. In this latter case, the int
est does not lie in the SOC distribution but rather in t
phase locking and the speed of convergence between
cal events. Coupled maps are mathematical objects wh
each site can take a value from a continuum and evo
following an often complex function of the site itself an
its local neighbors. These objects are therefore idea
describe coupled macroscopic systems like fireflies, hea
cells, or neurons where each individual evolves in time f
lowing a nontrivial function of its own state and environ
ment. In the earthquake model, proposed by Olami, Fed
and Christensen [8] and studied in details by Grassber
[10] and Middleton and Tang [11], each site or map rep
sents a block moving along some direction under the p
of a field but connected, via nonlinear forces, to its fir
neighbors. In neural terminology, a single site represe
a neuron, affected by both global loading and the sign
regularly received by and sent to its firing neighbors [9]

Recent studies of these models have focused on ho
geneous lattices with or without periodic boundary co
ditions. But it is clear that the real systems modeled
these objects are not homogeneous. In a geological fa
for example, the local friction between the moving plate
which influences both the rate of motion and the red
tribution on the neighbors in the OFC model, cannot
expected to be a constant value but should fluctuate
cording to local variations. Similarly, the local elasticit
of the sheets, which determines how the energy is tra
ferred from one point to another, is also expected to
variable. A first step is therefore to simply see how the
troduction of quenched disorder in the simple coupled-m
representation for these systems will affect their dynami
behavior. Some work has already been done along th
lines. Jánosi and Kertész [12] studied the influence
© 1996 The American Physical Society
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randomness in the threshold for the OFC rule and fou
that this type of disorder destroys criticality and chang
the distribution of avalanche size from power law to e
ponential. Ceva [13], for his part, looked at uncorrela
and correlated disorder in the redistribution parametera.
He was interested, however, in the effects of concentra
of defects and not their amplitude. He found, in this ca
that SOC is stable under small concentration of defect

A full description of the OFC model and its propertie
can be found in many papers (see, for example, [8]
[10]) and will be described only succinctly here. A co
tinuous functionFistd is assigned to every site of a squa
lattice. Each function evolves linearly in time followin
dFistdydt  1. When a site, say,i reaches a threshol
valuetC ( 1 in this paper), time evolution is stopped an
an event is triggered: (1) The function is set back to ze
Fistd ! F0

i t  0, and (2) a certain weight is redistribute
to the neighboring sitesj, Fjstd ! F0

jstd  Fjstd 1

Distd, whereDistd  aiFistd. This process is repeate
until all functions fall below threshold. The numbe
of sites which have been triggered gives the size of
avalanche. Time evolution is then restarted until anot
site hits the threshold. In the present work, disorder
introduced in the redistribution fractionai which now
varies from site to site asai  a 1 di, wheredi is a ran-
dom number taken from a linear distributionf2d, dg. In
order to make sure that no site, once the disorder is ad
to a, becomes an effective source in the lattice or reac
the conservative regime, I have limited my investigatio
to cases where0 , ai , 0.25. The disorder is quenche
in beforethe start of the simulation. Att  0, the state
of the system,fFig, is also chosen randomly from a linea
distributionf0, 1g. This ensures than two sites cannot a
simultaneously as seeds for an event.

The propagation of the avalanche is done radially fr
the first toppled site. Physically, this presupposes that
triggering time is much faster than the propagation tim
The exact type of propagation plays an important r
in determining the dynamical behavior, especially in t
presence of open boundaries, as is the case for the m
studied. Results obtained with other types of prop
gation will be discussed elsewhere [14]. The progr
used here implements the Grassberger algorithm wh
improves enormously the efficiency over a straightforwa
application of the algorithm (see [10] for details).

As can be seen in Fig. 1, the introduction of quench
disorder can affect qualitatively the dynamical behavior
the OFC model. Fora $ ad ø 0.10, the lattice continues
to demonstrate a SOC distribution of avalanches (Fig
even for some finite presence of quenched disorder.
effects are noticeable in this phase, and the exponen
the power-law distribution has to be rescaled by a fac
of the form 1 2 1yLn, where n has been found to be
0.10. Belowad, the system synchronizes with any amou
of disorder although the transient period towards a fu
synchronized state can be extremely long. The dynam
behavior of the perfect OFC model also depends u
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FIG. 1. Approximate phase diagram for the OFC model
a function of the redistribution factora and the quenched
disorder d. The points result from simulations on a100 3
100 lattice. The phases are discussed in the text. The arro
a  0.10 indicates the position ofad and the one ata  0.18
indicatesac.

a. In an extensive study of the OFC model, Grassber
[10] showed that, although the transition at very sm
a’s reported by Olamiet al. was only due to the limited
size of the original simulations, something happened
ac ø 0.18. Fora , ac, large avalanches happen main
near the surface. Deep in the bulk, there is complete ph
locking, i.e., all sites fall one at a time but within the sam
period; there is no global synchronization. Whena . ac,
large avalanches appear everywhere, from the surfac
deep inside the lattice. A SOC distribution holds, howev
for all values ofa’s. The fact thatac fi ad indicates
that the mechanism which controls synchronization
somewhat different from the one which allows propagat
of large avalanches from the edges in the perfect SOC

So, for a . ad , the transition from phase I (SOC dis
tribution) to II (synchronized) happens only for a fini
d. Moreover, this disorder-to-order transition is cle
and sharp, except for largea’s (close to0.25) where the

FIG. 2. Integrated probability distribution for avalanches
a function of their size,n, for lattices in phase I of Fig. 1
a  0.18 and d  0.002. Lattice sizes areL  49 (long
dashes),100 (dots), 169 (short dashes), and225 (solid line).
The exponentn  0.10.
969
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exact position of the transition between SOC and sync
nized phases becomes slightly blurred. As mentioned
fore, from the initial random configuration, the transie
in phase II from the initial random configuration to fu
synchronization of phase II can be relatively long.
Fig. 3, we see that all avalanches are slowly absor
into a single one which ends up dominating almost
whole lattice. For the chosen parameters in Fig. 3,
main avalanche involves almost 90% of all the sites a
although slightly fluctuating, remains remarkably stab
Looking at snapshots of this realization (Fig. 4), befo
and after a large avalanche has been triggered, we see
the 10% of sites not participating in it are situated at
edges of the lattice, the bulk region being perfectly s
chronized. The boundaries between the bulk and e
regions, however, are not frozen and contribute to
fluctuations seen in Fig. 3. Edge sites themselves do
synchronize at all, and avalanches in this region are es
tially of size one. When disorder becomes large enou
the system loses synchronization and falls back into a S
distribution [phase III and Fig. 5(a)]. Here again, the tra
sition is quite sharp and well defined. Because the lar
avalanches do not reach a significant fraction of the s
tem size, size effect seems to be much less important
in phase I. Finally, as quenched disorder is increase
a higher level, this SOC distribution makes a place for
exponential-like one [phase IV and Fig. 5(b)]. The tra
sition from phase III to phase IV is relatively smooth a
difficult to find precisely. As seen in Fig. 5(b), the dist
bution is not exactly exponential, except for the tail, b
it decays much faster than a power law. In both th
two phases, large avalanches become rare and never
much more than a few tenths of the total size of the syst
a proportion decreasing with increasing quenched disor

FIG. 3. Size of avalanches,n, as a function of time for
100 3 100 lattice in phase II witha  0.12 and d  0.007.
10 000 periodsT have been rejected. The vertical scale
normalized by the total number of sites on the lattice,N .
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As mentioned in [10], in the absence of noise, the OF
rule on a lattice with periodic boundary conditions (PBC
does not display any collective mode: Sites are ph
locked and triggered one at a time in a given order fix
from the first instant of simulation. When very sma
amounts of disorder are introduced, a distribution in t
size of avalanche forms. But the decay of this distributi
with size remains extremely fast, essentially exponent
and accelerates with increasing levels of disorder, so t
the introduction of disorder does not change the qualitat
behavior of the OFC rule when placed on a lattice w
periodic boundary conditions. With or without disorde
open boundaries are needed to achieve collective mo
All results presented here were obtained on lattices w
open boundaries on the four sides of a square lattice.

The unit of time retained in Figs. 2 and 3 is th
period of return for avalanches on a lattice with period
boundary condition,P  1 2 4a [9]. The synchronized
phase displays a characteristic time closely related to
one and independent of the period associated with
edge sites. This is somewhat surprising and contr
to what would be expected based on the behavior
the closely related earthquake model of Feder and Fe
(FF) [15]. The FF model is known to rapidly evolv
into a state with many well defined avalanches whi
all recur with the same periodicity. This period o
return is completely determined by the sites at t

FIG. 4. Snapshots in the time evolution of
100 3 100 lattice with the same parameters as in th
previous figure. The four figures are in chronological ord
and the avalanche happens between (a) and (b), while con
uration (d) is back to the state shown in (a), after a periodT
defined in the text. The darker the points, the lower the va
of the local functionFistd.
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FIG. 5. Integrated probability distribution of avalanches as
function of their size for lattices. (a) Lattice in phase III of th
phase diagram (Fig. 1),a  0.18 andd  0.023. Lattice sizes
are L  100 (dotted line),169 (dashed line), and225 (solid
line). (b) Lattice in phase IV of the phase diagram,a  0.18
and d  0.029. Lattice sizes areL  49 (dashed line),100
(dotted line), and169 (continuous line).

edges, which lack a fourth neighbor, givingP  1 2 3a.
Nevertheless, for the modified OFC studied here,
factor 3a does not appear in the periodicity of glob
avalanches. The choice of the dominating avalanc
described previously, is totally controlled by its period
return: It is always the one present with the longest per
which wins. If one neglects the presence of the bound
sites in the disordered OFC system, this result can
made consistent with the FF model, where the lon
period of 1 2 3a is also favored over the bulk perio
given by1 2 4a. The precise value of the return perio
of the dominating avalanche increases with the disord
d, but decreases witha. From observation, the period
seems to go as1 2 4sa 2 Ddd, whereDd is the width
of the disorder distribution from whichd is taken. Many
distributions have been tested for the frozen disorder,
all results are consistent with this relation although the
is no theoretical argument for this relation.

The results discussed above were obtained on latt
of size L  49, 100, 169, and 225. Size effects vary
depending on the phase. In phase I, the size is limi
enough to need finite-size scaling. In phases III a
IV [see Fig. 5(b)], these effects disappear for sizeL 
100. Effects on the position of the phase boundar
are more difficult to study precisely because of the lar
numerical effort it would demand. The general tre
is the following. For the transition from phase I t
phase II, increasing the size decreases the threshol
synchronization, i.e., the larger the size, the less quenc
disorder it takes to synchronize the lattice. However
looks as though a finite threshold is needed to destroy
SOC phase fora . ad even in the very large limit. As
for the transition from phase II to phase III, the spat
dimensions of the lattice do not play any noticeable eff
in the limit of precision achieved here: Lattices betwe
L  49 andL  169 show transitions for the same value
of quenched disorder.

In view of recent discussions about the effect
integrate-and-fire rules versus continuous ones on
namical systems, results presented here show that
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introduction of disorder in an IAF coupled map not on
does not destroy the correlations present in the per
model [1] or simply preserves those already present
but increases them in a dramatic fashion. When a fin
amount of quenched disorder is applied to the OFC mo
the system goes from a self-organized-critical distributi
to a single system-wide synchronized and periodic eve
On a more general level, the question of the role
disorder in dynamical systems is fundamental beca
most biological, neurological, or geological dynamic
systems evolve in the presence of one or another typ
disorder. From the example presented here, it beco
clear that in some cases noise can play a significant pa
the synchronization and, therefore, stabilization of cyc
in complex systems.

On this model specifically, the exact periodicity of th
dominating avalanche as well as the ambiguous role
the boundary sites, isolated but required, remain to
understood. Analytical work on the effects of disord
on coupled systems will also be needed. Above all th
it is important to try to tie these results to experiment
real systems, where disorder and noise are usually fo
as a matter of fact.
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