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Decoherence in Ion Trap Quantum Computers
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The intrinsic decoherence from vibrational coupling of the ions in the Cirac-Zoller quantum com
[Phys. Rev. Lett.74, 4091 (1995)] is considered. Starting from a state in which the vibrational m
are at a temperatureT , and each ion is in a superposition of an excited and a ground state, an adi
approximation is used to find the inclusive probabilityPstd for the ions to evolve as they would withou
the vibrations, and for the vibrational modes to evolve into any final state. An analytic form is f
for Pstd at T  0, and the decoherence time is found for allT . The decoherence is found to be qu
small, even for 1000 ions. [S0031-9007(96)00750-8]

PACS numbers: 89.80.+h, 03.65.Db, 32.80.Pj, 36.40.–c
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Quantum computers (QC) are (as yet hypothetical)
vices with states that are quantal in nature, and wh
perform calculations by unitary transformations on the
states [1–3]. The linearity of the superposition princip
leads to an in-built massive parallelism: a computer w
N two-state elements can operate on2N states simultane
ously. This parallelism underlies Shor’s recent algorith
[4] for factorizing a composite number of order2L in ,L3

steps on a QC. The best known classical algorithm ta
,expfcsLdL1y3g steps withcsLd , slnLd2y3. The poten-
tial for other quantum algorithms is clearly exciting, as
the emergence of a new paradigm for computation itse

It is obvious that maintaining perfect phase cohere
among all the states of a QC is a daunting task, no
mention getting these states to evolve in the desired fas
in the first place [5]. An imaginative proposal for a QC b
Cirac and Zoller (CZ) [6] seems promising in address
these problems [7,8]. It utilizes a string ofN identical
ions in a linear Paul trap [9], with each ion separate
addressable by a laser. Two internal states of each
jel andjgl, are used for the QC, along with the center-o
mass (CM) axial vibrational mode of the entire array.
program is implemented as a specified sequence of (py2,
p , etc.) pulses that drivejel $ jgl transitions on any
given ion, along with pulses detuned by the CM frequen
that enable coupled transitions between any pair of ion

Two types of decoherence should be distinguished in
CZ (indeed, any) QC. The first is technical, due, e.g.,
imperfect phase locking, mistuning of lasers, errors in ti
ing and duration of pulses, and overlooked perturbation
the Hamiltonian. The second kind is intrinsic, and aris
from coupling of the computationally useful to the und
sirable bath degrees of freedom. Although the techn
problems alone render the pursuit of a QC a fool’s ques
many people’s eyes, intrinsic decoherence sets basic li
on the capabilities of a QC. It is with this motivation th
we study intrinsic decoherence in the CZ QC [10].

We take as our bath the vibrations of the ions, wh
we treat as undamped harmonic oscillators. Damp
can be included if necessary [11]. Radiative decohere
0031-9007y96y77(5)y964(4)$10.00
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is accounted for very simply by demanding that a
computation take less time thantspyN, wheretsp is the
spontaneousjel ! jgl decay time for one ion. It clearly
pays to have as large atsp as possible, by working with
E1 forbidden transitions [6], or with hyperfine subleve
of the ground ionic multiplet [7]. The total Hamiltonian
minus the driving lasers can be generally written as (sett
h̄  1)

H 
1
2

X
i

v0siz 1
X
m

µ
p2

m

2m
1

1
2

mv2
mq2

m

∂
1

X
i,m

si' ? cimqm . (1)

Here, thes’s are equivalent Pauli spin operators in th
hjel, jglj space,s'  ssx , sy , 0d, qm and pm are the
vibrational normal mode coordinates and momenta, a
m is the mass of each ion. We shall refer to the thr
terms in Eq. (1) asHi , Hnm, andH 0, respectively. Thecim

are calculable functions (see below) of the ionic transiti
matrix elements and equilibrium ion positions, which w
assume are such that there is nojel $ jgl transition term
in H in equilibrium. It is the key to successful operation o
the CZ QC that the vibrations be cooled to nearly zero te
perature, and that the frequenciesvm and the couplingscim

be small [12]. The approximations of this paper requ
thatv0 ¿ vm, k

P
m cimqml, and

P
mkcimqml2yv0 ø vm,

which as we shall see, can be satisfied comfortably.
The coupling between the ionic vibrations and the inte

nal states of the ions will give rise to decoherence for t
following reason. The vibrations create fluctuating ele
tric fields that drive transitions between the internal stat
and thus alter the time evolution of the computing degre
of freedom from that which is desired in stochastic a
uncontrollable fashion. It should be noted that this dec
herence is present even at zero bath temperature bec
of zero point ionic motion.

Let us now study the effects of the bath on the simpl
computation of all, i.e., just waiting. We include the CM
vibrational mode in the bath for simplicity in this note
© 1996 The American Physical Society
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as this is not expected to change the result qualitativ
Suppose that initially, the bath is described by a den
matrix rsQ, Q0d (Q denotes all theqm collectively), and
the ions are in some statejinl. The system is not driven b
any lasers, and simply sits for a timet. We are interested
in the probability Pstd of finding the ions in the fina
internal statejfinl ; exps2iHitd jinl that one would ge
in the absence of the bath, and the bath in any final s
whatsoever. For the statejinl, we take

jinl 
Y

i

221y2sj1li 1 j2lid , (2)
In

-
r

-

n

)

y.
ty

te

wheresizj6li  6j6li. This state is illustrative of the
complex superpositions of computational basis states
give QC’s their parallelism. Since Eq. (1) describes
finite, closed system,Pstd !y 0 as t ! `, but we expect
that Pstd will drop close to zero at some timetd , after
which it will fluctuate with small amplitude [13]. The
time td limits the longest computation that can be do
with the CZ QC (iftd , tspyN). The coherence time is
expected to decrease when transitions are driven by
lasers, and can also be estimated [11].

To evaluatePstd, we write the reduced bath densit
matrix propagator as a double path integral
JsQf , Q0
f ; Q, Q0d 

Z Q0
f

Q0

Z Qf

Q
fdQg fdQ0geihS0fQstdg2S0fQ0stdgjAfQstdgApfQ0stdg , (3)

whereS0 is the action for the bath alone, and

AfQstdg 

*
fin

É
T exp

√
2i

Z t

0
fHi 1 H 0sssQst0ddddg dt0

! É
in

+
. (4)
ex-
se
In terms ofJ, Pstd is given by

Pstd 
Z Z Z

dQf dQ dQ0 JsQf , Qf ; Q, Q0drsQ, Q0d .

(5)

It now does no good to integrate out the oscillators.
stead, we exploit the fact thatv0 ¿ vm —typically v0 ,
1015 s21, andvm , 107 s21 —to integrate outthe spins.
It is easily seen thatAfQstdg factorizes into

Q
i AifQstdg.

The ith spin experiences a fieldvi'  2
P

m cimqmstd in
the x-y plane, with magnitudevi' ø v0 and jd lnvi'y
dtj ø v0, as we may safely assume that Eq. (3) is dom
nated by pathsQstd varying slowly on thev21

0 time scale.
This permits us to evaluateAifQstdg using an adiabatic ap
proximation. We may further take the instantaneous p
cession axis of the spin asẑ for all t with negligible error
(of order vi'yv0). It is far more important to approxi
mate the phase well. The instantaneous energies of
statesj6li are given by6sv0 1 v

2
i'y2v0d to relative or-
-

i-

e-

the

derv
2
i'yv

2
0 . We thus obtainAi  cosFistd with

Fistd 
Z t

0
dt0 v2

i'st0dy4v0 . (6)

Equation (6) holds fort , Os8v
3
0 yk Ùv2

i'ld, where k l
denotes an average value, and the dot denotesdydt.
(The results obtained below imply that this time scale
ceedstd .) We have also omitted a negligible Berry pha
term [11].

It now pays to rearrange the expression forPstd. First,
we write cosFi as a sum ofe6iFi , and substitute the
resulting expression forAfQstdg in Eq. (3). This yields

JsQf , Q0
f ; Q, Q0d 

1
22N

X
hsj,hs0j

KhsjsQf , QdKp
hs0jsQ

0
f , Q0d ,

(7)

with
KhsjsQf , Qd 
Z Qf

Q
fdQg exp

√
iS0fQstdg 1 i

X
i,m,n

siu
i
mn

Z t

0
qmstdqnstd dt

!
. (8)
f
an
In Eqs. (7) and (8),hsj  ss1, s2, . . . , sN d, hs0j is similarly
given, eachsi  61 is an Ising-like variable, andui

mn 
cim ? cinyv0. Next we define the following combinatio
of propagators,

Rhs,s0jsQ, Q0d 
Z

dQf KhsjsQf , QdKp
hs0jsQf , Q0d , (9)

in terms of whichPstd can be written as [see Eqs. (5
and (7)]

Pstd 
1

22N

X
hsj,hs0j

Z Z
dQ dQ0 Rhs,s0jsQ, Q0drsQ, Q0d .

(10)
It is apparent thatKhsj is the propagator for a set o
coupled harmonic oscillators, described by a Hamiltoni
that depends on the Ising configurationhsj:

Hnmshsjd 
X
m

p2
m

2m
1

1
2

X
m,n

qmsV2dmnqn , (11)

sV2dmn  mv2
mdmn 2 2

X
i

siu
i
mn . (12)

We can thus writeRhs,s0j alternatively as

Rhs,s0jsQ, Q0d  kQ0jeiHnmshs0jdte2iHnmshsjdtjQl . (13)
965
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Since Eq. (13) only involves harmonic oscillators, we c
evaluate it exactly by reverting to path integrals. The ex
answer involves trigonometric functions and determina
of the matricesVshsjd and Vshs0jd and is of limited use
because of the remaining sum on thes’s. To make
further progress, we employ an approximation in the sa
spirit as that used to obtain the spin transition amplitu
AisQftgd. That is to say that accuracy in the normal mo
frequencies is much more important than in the norm
modes themselves. Errors in the former lead to err
in Khsj and Rhs,s0j that grow with time, while errors in
the latter do not. We therefore treat the second term
Eq. (12) as a perturbation, and use the unperturbed no
modes, but correct the frequencies to first order:v0

m 
vm 2

P
i siui

mmymvm. [Given the stated assumption
about the relative sizes of the three terms in Eq. (1),
frequency shift can indeed be seen to be small.] With
approximation, the kernelRhs,s0j factorizes into a producQ

m Rm of kernels for each mode (we suppress the Is
variables where no confusion is possible), with

Rmsq0
m, qmd  kq0

mjeiHmshs0jd te2iHmshsjd tjqml , (14)

and Hm  p2
my2m 1 mv02

mq2
my2. Equation (14) has a

simple physical interpretation. Starting from an initi
state, the system evolves forward in time for a durationt as
a harmonic oscillator of frequencyv1, say. It then evolves
backward in time for durationt as a harmonic oscillato
of slightly different frequencyv2. For our problem, this
difference propagator,Rm, can be further simplified be
cause the frequenciesv1 andv2 are almost identical [14].
If we think about the corresponding classical problem
phase space, the forward and backward evolutions
place on ellipses of nearly equal eccentricity. To go
approximation, we may regard the ellipses as coincid
With suitably scaledp andq axes, this common ellipse i
a circle, on which the particle sweeps out anglesv1t and
2v2t in the forward and backward motions. The net ev
lution is that of a single harmonic oscillator of frequen
dm  v2 2 v1, and massmvmydm, for a timet [15]. In
other words,

Rmsq0
m, qmd ø kq0

mjeis p2
m1m2v2

mq2
mddmty2mvmjqml . (15)

It is now easy to carry out the coordinate integrals
Eq. (10) for the special case wherer is a thermal equilib-
rium density matrix~ e2bHnm with b  1ykT . Sincer

and R both factorize by normal mode, i.e.,r 
Q

m rm,
and R 

Q
m Rm, the summand in Eq. (10) also facto

izes into
Q

m Lmstd, where Lm 
R R

Rmrm dqm dq0
m.

By using standard coordinate representations of
harmonic oscillator density matrix and propagator,Lm

is easily evaluated, and the result can be written
(restoringh̄)

Pstd  222N
X

hs,s0j

Y
m

Lmstd , (16)
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Lmstd 
sinhbh̄vmy2

sinhsbh̄vm 2 idmtdy2
. (17)

Note that dm 
P

issi 2 s0
idui

mmymvm depends on the
Ising configuration, andui

mm is given below Eq. (8).
Equations (16) and (17) formally answer the questi

we set out to investigate, but the sum on thes’s is
nontrivial. Some general properties of the result are wo
noting, however. Thus,Pstd is real, and sincejLmstdj #

1, Pstd # 1. [In fact, Pstd  1 only if
P

i ui
mmtypvm is

an integer for allm simultaneously.] The expressions sim
plify greatly atT  0. Then,Lmstd  eidmty2, and

Pstd 
Y

i

cos2sz 2
i ty2v0d sT  0d , (18)

z 2
i 

X
m

z 2
im 

X
m

cim ? cimymh̄vm . (19)

Note thatzi andzim have dimensions of frequency. W
can also obtain the decoherence timetd for all T by
examining the initial drop ofPstd from unity. Writing
1 2 Pstd ø stytdd2, we obtain

1

t
2
d


1

4v
2
0

X
i

"√X
m

z 2
im cothxm

!2

1
X
m

z 4
im cosech2xm

#
,

(20)

wherexm  bh̄vmy2. Note thattd falls asT rises, as it
should. AtT  0, t

22
d 

P
i z

4
i y4v

2
0 .

We still need the couplingscim. These depend on th
nature of statesjel and jgl, so we will find them only
for a particularly favorable situation obtained by usin
Ba1 ions, and states withDM  61 in the 6s 2S1y2 and
5d 2D5y2 (or 2D3y2) multiplets forjgl andjel, respectively.
The 2D5y2 ! 2S1y2 decay is anE2 process, withtsp .
35 s [16], andv0y2p  1.7 3 1014 Hz. The interaction
Hamiltonian is given by

H 0  q
0X

i,j

X
ax,y

z24
ij uij

a Q̂i
az , (21)

where q is the ionic charge,zi , Q̂i
ab, and ui

a are the
equilibrium position, quadrupole moment tensor, and d
placement from equilibrium of theith ion; zij  zi 2

zj , uij
a  ui

a 2 uj
a . Note that only transverse vibration

appear in Eq. (21) because statesjel and jgl are con-
nected byjDMj  1; the same restriction ensures that t
equilibrium quadrupole fields do not drive anyjel $ jgl
transitions. Writing the mode indexm  sr , ad, with
r  1, 2, . . . , N, we can writeui

a 
P

r Fi
rqra, where the

Fi
r are normal mode eigenvectors [17]. We scale th

to obey
P

r Fi
r Fj

r  dij,
P

i Fi
r Fi

s  drs. With Fij
r ;

Fi
r 2 Fj

r , and Qi
ab ; kejQ̂i

abjgl, we obtain jci,ra j 
2q

P0
j Fij

r z24
ij jQi

az j.
It remains to substitute the above expression forci,ra

into Eqs. (19) and (20) to obtaintd. In general, this is a
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straightforward, if lengthy, numerical procedure. Here
will only outline a simplified calculation atT  0. The
steps are as follows. First, in Eq. (19) we replacevm by
vt,N , the frequency of the zigzag transverse mode, for
m. Sincevt,N is the smallest normal mode frequenc
this replacement yields a lower bound fortd . It also ob-
viates finding theFi

r , as the sum overr can be done by
orthonormality of theFi

r . Second, for the states in que
tion jQi

azj
2  18h̄yk5

0tsp , with k0  v0yc, anda  x, y.
Third, we note that ifvz is the longitudinal CM vi-
brational frequency,d0  sq2ymv2

z d1y3 is a natural trap
length scale. We define the dimensionless sumsSnsid P0

j z2n
ij dn

0 . sssThe expression fort22
d contains a factorP

ifS
2
4sid 1 S8sidg2.ddd We estimateSnsid using a continuum

approximation for the ion array [18]. In this approx
mation, the local interionic spacing issszd  ss0d s1 2

z2yL2d21, wheress0d  4Ly3N , and2L is the total length
of the array, withL3 ø 3N lns0.8Nd. (All lengths are in
units ofd0.) This yieldsSnsid ø 2z sndysnszid. The sum
over i can now be estimated by an integral. Combini
these results, we obtain a bound fortd entirely in terms of
trap and ion parameters,

1
td

, 0.36
1

tsp

N35y6

flns0.8Ndg8y3

v2
z

v0vt,N sk0d0d5 . (22)

The last step is to estimatevt,N . By considering the
transverse force on the central ion, we getv

2
t,N ø v2

t 2

csNdv2
z , where vt is the CM transverse vibrationa

frequency, andcsNd  9z s3dN2y16 lns0.8Nd. In fact,
requiring vt,N . 0 gives the criticalvt (vt,cr) needed
to avoid the zigzag instability [18]. The numerical valu
of td implied by Eq. (22) is a very sensitive function o
vz (,v216y3

z ). By choosingvt,N . vt,cry2, andvzy2p

in the 10–100 kHz range, the ratiotdytsp is seen to lie
in the 104–108 range forN  1000. [The assumptions
behind Eqs. (6), (14), and (15) can all be seen to hold.

We thus see that contrary to what might have be
expected, vibrations of the ions are not a significant sou
of decoherence in the CZ QC forN # 1000, at least at
low enough temperatures. LargerN values pose seriou
technical challenges in trap design and in keepingss0d
large enough to be optically resolvable. The conclusi
of the present paper, however, can only be encourag
for the prospect of quantum computation.
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the error is of relative orderdmyvm for all t. Hence,
the errors in the mean and the width of the position a
momentum of a quantum mechanical wave packet
similarly small for all t. One can find complicated initia
and final states for which the approximation (15) is po
but these are not contained in the thermal density ma
rsQ, Q0d which we employ.

[16] D. A. Church, Phys. Rep.228, 253 (1993). See Table 7.b
[17] For the linear Paul trap as in Ref. [9],Fi

r is independent
of a, includinga  z.

[18] D. H. E. Dubin, Phys. Rev. Lett.71, 2753 (1993).
967


