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Theintrinsic decoherence from vibrational coupling of the ions in the Cirac-Zoller quantum computer
[Phys. Rev. Lett74, 4091 (1995)] is considered. Starting from a state in which the vibrational modes
are at a temperaturg, and each ion is in a superposition of an excited and a ground state, an adiabatic
approximation is used to find the inclusive probabilityr) for the ions to evolve as they would without
the vibrations, and for the vibrational modes to evolve into any final state. An analytic form is found
for P(¢r) at T = 0, and the decoherence time is found for &ll The decoherence is found to be quite
small, even for 1000 ions. [S0031-9007(96)00750-8]

PACS numbers: 89.80.+h, 03.65.Db, 32.80.Pj, 36.40.—c

Quantum computers (QC) are (as yet hypothetical) deis accounted for very simply by demanding that any
vices with states that are quantal in nature, and whicltomputation take less time thag, /N, wherer, is the
perform calculations by unitary transformations on thesespontaneouge) — |g) decay time for one ion. It clearly
states [1-3]. The linearity of the superposition principlepays to have as largea, as possible, by working with
leads to an in-built massive parallelism: a computer withE'1 forbidden transitions [6], or with hyperfine sublevels
N two-state elements can operateDhstates simultane- of the ground ionic multiplet [7]. The total Hamiltonian
ously. This parallelism underlies Shor’s recent algorithmminus the driving lasers can be generally written as (setting
[4] for factorizing a composite number of ord&rin ~L3 7 = 1)
steps on a QC. The best known classical algorithm takes ) ) |
~exfc(L)L'] steps withe(L) ~ (InL)*>. The poten- H==Y woi. + Z(p_# + = m“’iﬁ)
tial for other quantum algorithms is clearly exciting, as is 2 4 o \2m 2
the emergence of a new paradigm for computation itself.

It is obvious that maintaining perfect phase coherence + ZUM " Cindu - )
among all the states of a QC is a daunting task, not to LA
mention getting these states to evolve in the desired fashiddere, theo’s are equivalent Pauli spin operators in the
in the first place [5]. Animaginative proposal for a QC by {le), |¢)} space,o, = (04, 0,,0), g, and p, are the
Cirac and Zoller (CZ) [6] seems promising in addressingvibrational normal mode coordinates and momenta, and
these problems [7,8]. It utilizes a string &f identical m is the mass of each ion. We shall refer to the three
ions in a linear Paul trap [9], with each ion separatelytermsin Eq. (1) a#l;, H,m, andH’, respectively. The;,
addressable by a laser. Two internal states of each iomye calculable functions (see below) of the ionic transition
le) and|g), are used for the QC, along with the center-of-matrix elements and equilibrium ion positions, which we
mass (CM) axial vibrational mode of the entire array. Aassume are such that there is|ap— |g) transition term
program is implemented as a specified sequencerg?2,( in H in equilibrium. Itis the key to successful operation of
7, etc.) pulses that drivée) — |g) transitions on any the CZ QC thatthe vibrations be cooled to nearly zero tem-
given ion, along with pulses detuned by the CM frequencyperature, and that the frequencigg and the couplings; ,
that enable coupled transitions between any pair of ions.be small [12]. The approximations of this paper require

Two types of decoherence should be distinguished in théhatwo > w,, &, cipgu), andY. ,(cipqu)*/ o < w,,

CZ (indeed, any) QC. The first is technical, due, e.g., tovhich as we shall see, can be satisfied comfortably.
imperfect phase locking, mistuning of lasers, errors intim- The coupling between the ionic vibrations and the inter-
ing and duration of pulses, and overlooked perturbations imal states of the ions will give rise to decoherence for the
the Hamiltonian. The second kind is intrinsic, and arisedollowing reason. The vibrations create fluctuating elec-
from coupling of the computationally useful to the unde-tric fields that drive transitions between the internal states,
sirable bath degrees of freedom. Although the technicahnd thus alter the time evolution of the computing degrees
problems alone render the pursuit of a QC a fool's quest imf freedom from that which is desired in stochastic and
many people’s eyes, intrinsic decoherence sets basic limitencontrollable fashion. It should be noted that this deco-
on the capabilities of a QC. It is with this motivation that herence is present even at zero bath temperature because
we study intrinsic decoherence in the CZ QC [10]. of zero point ionic motion.

We take as our bath the vibrations of the ions, which Let us now study the effects of the bath on the simplest
we treat as undamped harmonic oscillators. Dampingomputation of all, i.e., just waiting. We include the CM
can be included if necessary [11]. Radiative decoherencébrational mode in the bath for simplicity in this note,
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as this is not expected to change the result qualitativelywhere o;.|+); = *|=*);. This state is illustrative of the
Suppose that initially, the bath is described by a densitgomplex superpositions of computational basis states that
matrix p(Q, Q') (Q denotes all they, collectively), and give QC'’s their parallelism. Since Eq. (1) describes a
the ions are in some stafi@). The system is not driven by finite, closed systemP(r) /~ 0 ast — o, but we expect
any lasers, and simply sits for a time We are interested that P(¢) will drop close to zero at some time;, after

in the probability P(r) of finding the ions in the final which it will fluctuate with small amplitude [13]. The
internal statefin) = exp(—iH;t) |in) that one would get time 7, limits the longest computation that can be done
in the absence of the bath, and the bath in any final stateith the CZ QC (ifr; < 7,/N). The coherence time is

whatsoever. For the stafim), we take expected to decrease when transitions are driven by the
lasers, and can also be estimated [11].
lin) = l_[2’1/2(|+>,- + 1)), 2 To evaluateP(r), we write the reduced bath density

matrix propagator as a double path integral

0 ro , ,
101.05:0.0) = [ | TdQ1lag e 10 s Ohafo (o' o) ©)

wheresS, is the action for the bath alone, and
in>. 4

Texp(—ij;t[H,- + H’(Q(t’))]dt’)

Alo(0)] = <fin

In terms of/J, P(¢) is given by | derw?, /w2. We thus obtaim; = cosb;(z) with
— / . !/ ! t
(5) ’
It now does no good to integrate out the oscillators. In-Equation (6) holds forr < O(8wj/(@7.)), where ()
stead, we exploit the fact thaty > w, —typically wy ~ denotes an average value, and the dot denatet.

105!, andw, ~ 10”s~'—to integrate outhe spins  (The results obtained below imply that this time scale ex-

It is easily seen that[Q(r)] factorizes into] |; A;[Q(1)]. ceedsr;.) We have also omitted a negligible Berry phase
Theith spin experiences a field;;, =23, ¢;,q,(r) in ~ term [11]. _ '

the x-y plane, with magnitudey; | < wo and|d Inw; / It now pays to rearrange the expressionfgr). First,

dt| < wo, as we may safely assume that Eq. (3) is domiwe write cosb; as a sum ofe*'®, and substitute the
nated by pathg(¢) varying slowly on thew, ' time scale.  resulting expression fot[Q()] in Eq. (3). This yields
This permits us to evaluate[Q(z)] using an adiabatic ap- |

proximation. We may further take the instantaneous pre- . nN_ _* LSNP
cession axis of the spin asfor all + with negligible error /(0. 0:0.0) 22N {S%,} K (Qr. QK112 09,
(of order w; , /wp). It is far more important to approxi- ’ (7)
mate the phase well. The instantaneous energies of the

stated *); are given by*(wq + w,ﬂ/zwo) to relative or- | with

Oy ) t
Ki(Qr, Q) = fQ [dQ]eXp<iSo[Q(t)] +iy Siu;yf() qu(t)q, (1) dt>. )
NN
In Egs. (7) and (8Ys} = (s1,s2,...,sn), {s'} is similarly L tis apparent thay, is the propagator for a set of
given, eachs; = =1 is an Ising-like variable, andi,, =  coupled harmonic oscillators, described by a Hamiltonian

¢y - €in/wo. Next we define the following combination that depends on the Ising configuratifi:

of propagators, )
Ppu 1

R{s,s’}(Q’ Q/) = f de K{S}(Qf’ Q)K{*S’}(Qf, Ql), 9 Hym({s}) = %: E + 5 /;QM(QZ),U«VQV > (11)
Znée(r;r;]s of whichP(r) can be written as [see Egs. (5) (02),, = mwiﬁuv B 22&‘”;,,- 12)

P(t)=2% s

f [ dQ dQ' R 1(0,0"p(0, Q). We can thus writeRy, , alternatively as
{shis}

(10) R s/(Q, Q") = (Q/le/mEDre~Hm | 9) (13
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Since Eq. (13) only involves harmonic oscillators, we can A sinhBhw, /2
evaluate it exactly by reverting to path integrals. The exact u() = SinN(Bhw, — i5,1)/2°
answer involves trigonometric functions and determinants ‘

of the matrices({s}) and Q({s"}) and is of limited use Note thats, = 3(s; — s)u},,/mw, depends on the
because of the remaining sum on this. To make Ising configuration, and!, , is given below Eg. (8).

further progress, we employ an approximation in the same Equations (16) and (17) formally answer the question
spirit as that used to obtain the spin transition amplitudeve set out to investigate, but the sum on thie is
A;(Q[r]). Thatis to say that accuracy in the normal modenontrivial. Some general properties of the result are worth
frequencies is much more important than in the normanoting, however. Thusp() is real, and sinc¢A , (1) =
modes themselves. Errors in the former lead to errord, P(t) = 1. [Infact, P(r) = 1 onlyif >, u), t/7w, is

in K and Ry, that grow with time, while errors in aninteger for al simultaneously.] The expressions sim-
the latter do not. We therefore treat the second term iplify greatly at7 = 0. Then,A,(t) = ¢/%+/2, and

Eq. (12) as a perturbation, and use the unperturbed normal

modes, but correct the frgquencies to first ordej;: = P(1) = nCOg(Zizt/Zwo) (T =0), (18)
Wy~ D siuy,,/mo,. [Given the stated assumptions ;

about the relative sizes of the three terms in Eqg. (1), the

frequency shift can indeed be seen to be small.] With this = Z {izﬂ = Z Cipy " Cip/mhw, . (29)
approximation, the kernety, ;, factorizes into a product m m

[1. R, of kernels for each mode (we suppress the Isin
variables where no confusion is possible), with

(17)

Note that{; and ¢;,, have dimensions of frequency. We
can also obtain the decoherence timg for all T by
iH#({S’})’e’iH#({S})’IqFL), (14) examining the initial drop ofP(¢) from unity. Writing

/ — /
Ru(qy-qu) = {q,le 1 — P(t) = (t/74)*, we obtain

and H, = p,/2m + mo}q;/2. Equation (14) has a 2

simple physical interpretation. Starting from an initial — = L Z[(Z £? cothx ) + ng* cosecRx :|
D . 2 2 ip M ip K~

state, the system evolves forward in time for a duratiaa ~ 7d 4og 7 “ “

a harmonic oscillator of frequeney,, say. Itthen evolves (20)

backward in time for duratiom as a harmonic oscillator ] ]

of slightly different frequencyw,. For our problem, this Wherex, = ﬁhwu/%-z Note thf‘tTd 1;a||s asT rises, as it

difference propagator®,,, can be further simplified be- should. AtT =0, 7, = >, {i'/4w;.

cause the frequencies, andw, are almost identical [14]. ~ We still need the couplings;,. These depend on the

If we think about the corresponding classical problem innhature of statege) and |g), so we will find them only

phase space, the forward and backward evolutions tak@r a particularly favorable situation obtained by using

place on ellipses of nearly equal eccentricity. To goodBa’ ions, and states withM = =1 in the 6s°S)/, and

approximation, we may regard the ellipses as coincidenfid >Ds/2 (or D3 2) multiplets for|g) and|e), respectively.

With suitably scalegh andg axes, this common ellipse is The *Ds;; — 25/, decay is ank2 process, withr, =

a circle, on which the particle sweeps out anglgs and 35 s [16], andwo/27 = 1.7 X 10'* Hz. The interaction

—w,t in the forward and backward motions. The net evo-Hamiltonian is given by

lution is that of a single harmonic oscillator of frequency ,

8, = w, — wy,and massmw,/5,, for atimer [15]. In I —4 ij Ayi

other words, e " q%“a;‘jy Gij UaQaz - (21)

Ru(qyqu) = <q;LIei(”ﬁ+’”2wi‘1i)5“’/z”’“’~Iq,). (15) where ¢ is the ionic chargez;, QLz, and ul, are the

equilibrium position, quadrupole moment tensor, and dis-
It is now easy to carry out the coordinate integrals inplacement from equilibrium of théth ion; z;; = z; —

Eq. (10) for the special case wheseis a thermal equilib-  z;, u%/ = u!, — u/,. Note that only transverse vibrations
rium density matrixx e ##m with g = 1/kT. Sincep  appear in Eq. (21) because stafes and |g) are con-
and R both factorize by normal mode, i.ep, = l_[M pu,  nected bylAM| = 1; the same restriction ensures that the
and R =[], R, the summand in Eq. (10) also factor- equilibrium quadrupole fields do not drive afs) < |g)
izes into [1, A.(t), where A, = [ [Rup,dq,dq,. transitions. Writing the mode index = (r,a), with
By using standard coordinate representations of the = 1,2,...,N, we can writeu!, = >, Flgq,,, where the
harmonic oscillator density matrix and propagatdr,  F. are normal mode eigenvectors [17]. We scale these
is easily evaluated, and the result can be written ao obey Y, FiF] = &;;, >, FiFi = 8,,. With Fi/ =

r

(restoring}i) Fi — Fi, and Q.5 = (e|0.zlg), we obtain|c;,.| =
—q %) Fz; 10} |.
P(r) =272V Z l_[A,L(t), (16) It remains to substitute the above expressiondgt,
{s.5} m into Egs. (19) and (20) to obtairy. In general, this is a
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straightforward, if lengthy, numerical procedure. Here we
will only outline a simplified calculation aI' = 0. The
steps are as follows. First, in Eq. (19) we replagg by

w; N, the frequency of the zigzag transverse mode, for all
K. Sincew,y is the smallest normal mode frequency,
this replacement yields a lower bound fqr. It also ob-
viates finding theF!, as the sum over can be done by
orthonormality of theFi. Second, for the states in ques-
tion|QL.|* = 18ﬁ/k87’sp,with ko = wo/c,anda = x,y.
Third, we note that ifw, is the longitudinal CM vi-
brational frequencyd, = (¢>/m®?)'/? is a natural trap
length scale. We define the dimensionless sSp{s) =

> z;"dy. (The expression forr;” contains a factor
3[S1(i) + Ss(i)]2.) We estimatsS,, (i) using a continuum
approximation for the ion array [18]. In this approxi-
mation, the local interionic spacing igz) = s(0) (1 —
z2/L?)~ !, wheres(0) = 4L /3N, and2L is the total length

of the array, withL?> =~ 3N In(0.8N). (All lengths are in
units ofdy.) This yieldsS, (i) = 2{(n)/s"(z;). The sum
over i can now be estimated by an integral. Combining
these results, we obtain a bound #qrentirely in terms of
trap and ion parameters,

D. Wineland, C.E. Wieman, and S.J. Smith (AIP Press,
New York, 1994).

[3] A detailed study of practical issues in implementing QC'’s

can be found in the JASON draft Report No. JSR-95-115,
1996 (unpublished).

[4] P. Shor, inProceedings of the 35th Annual Symposium

on the Foundations of Computer Scier{tteEE Computer
Society, Los Alamitos, CA, 1994).

[5] R. Landauer, Philos. Trans. R. Soc. London3B3 367

(1995).

[6] J.1. Cirac and P. Zoller, Phys. Rev. Lef4, 4091 (1995).
[7] A universal two-bit quantum logic gate inspired by the CZ

proposal has been built by C. Monroe, D. M. Meekhof,
B.E. King, W.M. Itano, and D.J. Wineland, Phys. Rev.
Lett. 75, 4714 (1995).

[8] Another interesting proposal for a QC, based on cavity

guantum electrodynamics (CQED), is that of T. Pellizzari,
S.A. Gardiner, J.l. Cirac, and P. Zoller, Phys. Rev.
Lett. 75, 3788 (1995). A CQED based universal two-bit
logic gate has been built by Q. A. Turchette, C.J. Hood,
W. Lange, H. Mabuchi, and H.J. Kimbléid. 75, 4710
(1995). For a proposal to invert quantum jumps in such
setups, see H. Mabuchi and P. Zollébjd. 76, 3108
(1996).

[9] M. G. Raizen, J. M. Gilligan, J.C. Bergquist, W. M. Itano,

1 1 N35/6 2
= < 036— @

Z
T4 Tsp [IN(0.8N) 3/ wow, n(kodo)®

(22)

The last step is to estimate, .
transverse force on the central ion, we ggty ~
c(N)wf, where w; is the CM transverse vibrational
frequency, andc(N) = 9/(3)N?/16In(0.8N). In fact,
requiring w,y > 0 gives the criticalw; (w:.:) needed
to avoid the zigzag instability [18]. The numerical value
of 7, implied by Eq. (22) is a very sensitive function of
w, (~w_ '%3). By choosingw,y = /2, andw, /2
in the 10—100 kHz range, the ratig /7, is seen to lie
in the 10°~10° range forN = 1000. [The assumptions
behind Egs. (6), (14), and (15) can all be seen to hold.]
We thus see that contrary to what might have been

By considering the

expected, vibrations of the ions are not a significant sourcE4!

of decoherence in the CZ QC fof = 1000, at least at
low enough temperatures. Larglrvalues pose serious
technical challenges in trap design and in keepif@
large enough to be optically resolvable. The conclusions
of the present paper, however, can only be encouraging
for the prospect of quantum computation.
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