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Field Theory of Electromagnetic Brain Activity
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A semiquantitative nonlinear field theory of the brain is presented derived from the quasimicroscopic
conversion properties of neural populations. Realistic anatomical connectivity conditions like long
range excitation and short range inhibition are used. Predictions of our field equation are checked
against experimental MEG results. [S0031-9007(96)00748-X]

PACS numbers: 87.10.+e

The brain is considered as a complex, physical, andieurons the pulse-to-wave conversion in neural ensembles
open system that exhibits spatiotemporal behavior ais constrained to a linear small-signal range, whereas the
various time and length scales. A necessary condition fowave-to-pulse conversion shows a sigmoidal behavior [4].
this pattern forming character of the brain is a nonlineaThese two conversion operations are shown in Fig. 1.
dynamics and a spatial interconnection of its elements, the The field variablesy.(x,7) and #;(x,t) denote the
neurons. The functional behavior of the brain is encodedleviations from a fixed physiological state of excitatory
in these spatiotemporal structures and can, at least partlgnd inhibitory wave amplitude at locatiom at the
be extracted from the dynamics of the macroscopidime point r and ¢g(x, 1), ¢;(x,t) the corresponding
quantities measured by the EEG and MEG. Accordingexcitatory and inhibitory pulse amplitudes. We define the
to synergetics [1], this extraction contains all the relevantonversion operations by
information about the spatiotemporal behavior of the
brain and has, in general, a small number of degrees of Yilx, 1) = f dX fi(x,X)H;(x, X, 1), @
freedom. This idea has been formalized to treler r
parameter concegtased on circular causality: The order wherej = e, i, E,I. Here the functiort;(x, X, ) repre-
parameters are determined and created by the cooperatisants the output of a conversion operation ghtk, X)
of microscopic quantities, but at the same time the ordethe corresponding distribution function depending on the
parameters govern the behavior of the whole systenspatial connectivity. The considered surface area of the
Based on this approach phenomenological models wetgrain is denoted by'. We utilize a hierarchy in time and
set up in the past for different experiments in order tospatial scales known from anatomy and physiology [6,7].
find evolution equations that describe the experimentall\Bynaptic delays, refractory times, and delays due to propa-
observed macroscopic dynamics [2]. gation along intracortical fibers (excitatory and inhibitory)

The purpose of this Letter is twofold: First, we de- are of the order of 1 msec, the neural membrane constant
rive a nonlinear partial differential equation from simpleis in the 10 msec range [8]. Propagation along cortico-
properties of neural populations. This field equation gov-cortical fibers (only excitatory) causes delays of up to
erns the dynamics of the macroscopic quantities measuregtveral 100 msec [8]. The spatial range of connectivity
by EEG and MEG. Second, with respect to a particu-
lar MEG experiment by Kels@t al. [3] we discuss the
obtained field equation analytically and numerically and Conversion operations
prove that it reproduces the experimentally observed phe
nomena. An explicit derivation and discussion of the field

equation will be published elsewhere. P Y

Single neurons have two main state variables: (1) e /és"
Dendritic currents are generated by active synapses the L L
serve as current sources causingwhaesof extracellular -2.00 -1.00 1.00 2.00 200 -1.00 1.00 2.00
fields. These waves mainly correspond to the quantities 1-250 v 1-250 P
measured by EEG and MEG [4]. (2) Action potentials

are generated at the somas of neurons and correspor
to pulses See [5] for a detailed discussion of these
guantities and their experimental measurements. The Wave-to-pulse Pulse-to-wave

conversion of pulses to current amplitude occurs ak|G. 1. On the left the wave-to-pulse conversion operation in

synapses, the dendritic wave amplitude is converted t@eural ensembles is shown, on the right the same situation for
a pulse frequency at the somas. In contrast to singléhe pulse-to-wave conversion.
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is for intracortical fibers about 0.1 cm and for corticocor-a classj ensemble. The distribution function$:(x, X)
tical fibers 1 to 20 cm [5,6]. Cortical propagation veloc- and f;(x, X) are of short range and can be assumed to be
ities are in the range of 1 fsec [7]. The time scale we & functions. Inserting these into (1) we obtain
want to consider here is in the range of 100 msec, the spa-
tial scale in the range of several cm. Excitatory neurons #e(x,t) = ] dX 8(x — X)Hp(x,X,t) = Hg(x,1)
have only excitatory synapses, inhibitory neurons only in- r
hibitory synapses [6]. External input is realized such that = Se[We(x,1) = hi(x, 1) + pe(x,0)],  (6)
afferent fibers make synaptic connections. These facts
lead to the following relations between conversion out-  ;(x,1) = [ dX 6(x — X)H;(x,X,t) = H;(x,1)
put and pulse amplitudes: r
H, (0, X,1) = S[pe(X,t— | x — X | /v)] = Sile(x,t) — i(x, 1) + pi(x,1)]. (7)
_ . B In order to obtain the dynamics of the wave amplitudes
= apXot=lx = X1 /v), (@) ¥j(x, 1) with j = ¢,i we insert (2) and (3) into (1) and
Hi(x, X, 1) = S[gn(X, 1= | x = X | /v)] obtain

~apX,t—lx =X 1/v), Q)  y(x,1) = f dX fo(x,X)H,(x,X,1)
and between conversion output and wave amplitudes r
Hp(x,X,1) = Se[¢p(X, 1= | x = X | /v) = de deXfe(x,X)tﬂE(X,t— lx =X | /v),
—¢iX, = |x =X | /v) (8)
+pX,t=x=X1/v)], (4
Hie X,0) = STpeX,i= | x = X | /o) i) = [ e 0G0
— X, t— | x — X | /v)
+piXt=|x =X |/v)]. (5

Here a., a; are constant parameters, the velocity, (9)
pj(X, ) external input, and, S; the sigmoid functions of| Inserting (6) into (8) and (7) into (9) the system reads

- fr dX fi(6, X (X, i~ | x — X | /o).

Ui(nt) = a; fr AXFi (6 X)S T (X t— | x — X | /) — ds(Xot— 1% — X | /o) + py(oi— 1 x — X | /0)].

(10)

with j = e,i. In its linearized form this set of integraﬁ Y.(x,t) and p;(x,), which means that on this time

equations corresponds to the model equations by Nunesxcale the intrinsic dynamics af;(x, 7) is negligible. The

[9] and is discussed in [5]. We assume the connectivityhigher order contributions of these quantities cause small

functions to be of the following form: modifications of the corresponding parameters and are
i, X) = Qo) 'expg— | x — X | /o)), (11)  neglected here. Inserting (13) into (10), we readily obtain

a description in terms of the slow field variahle(x, 7)

with j = e,i. Here the spatial range of the d|str|but|onr‘|3‘nd the modified external input now denotedi. 1),

of the fibers defines a hierarchy in time scales on whic

y.(x,r) and ¢;(x,r) operate. Taking into account that

intracortical fibers are only local the connectivity function pe(x, 1) = a, fr dX fe(x — X)

fi(x,X) reduces tod(x — X) in the short range limit. _

Inserting this into (10) withj = i the inhibitory wave X Selppe(X, 1= 1 x = X | /v)
amplitudey; (x, r) becomes + pX,t— | x — X | /v)], (14)

i(x, 1) = a;Silge(x,1) — i(x, 1) + pi(x,0)]. (12 - . .
"//.(x ! a. e, 1) . gb.(x 0 pilx _t)] (12) where g is a modified density due to the elimination of
Taking pnly linear pontrlbut|o_ns of (12.) Into_account Yi(x,1). Using the method of Green’s functions we can
we obtain the following behavior of the inhibitory wave o ite the above integral equations as a nonlinear partial

amplitude: differential equation for the fielgh, (x, )
a;;
i(x’t) = #[ 6(x7t) + pi(xs t)] 13 . .
v Il + aia; g (13) ¥, + (wé — V2N, + 2woth, = (a)g + woi>
Here the dynamics ofy;(x, r) is expressed in terms of 9t
the leading order of the slowly varying field variables X p(x,t), (15)
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with K1 = €[2Q sin2Qtyp, — cos2Qt(. + @dor.)],
p(x,1) = a,Sc[pe(x,t) + plx,1)] K, = C[Q cosQry? + sith(Zzpe{pe + woyp?)],
~ afapp.(x,t) + p(x,1)] K3 = D(Q2 cosQt + wysinr) (18)
— 2a3[p(x, ) + p.0P}, (16) + D,[Q c0s3Q1 + (wo/3)sin3Q1¢],

where A denotes the Laplacian. In (16) we performed K4 = Y1y

a Taylor expansion around the inflection point of thepere k; represents a parametric excitation of the neural
sigmoid functlon.whlch we assumed to be_ the Ioglsnctissue with twice the stimulus frequencik, a nonlin-
curve. Herea, is the slope of the sigmoid function egy term with a parametric coefficient oscillating with the
andwg = v/o,. Equation (15) represents the dynamicsgiimyus frequency, ank; a linear periodic driving of the
of the field ¢.(x,7) interacting with functional units neyral tissue with the frequenciés and3Q. The last
p(x,7) which are embedded as inhomogeneities in thgerm , is obtained from considerations about the motor
neural sheet. , , , feedback loop which we treat here in a linear approxi-
We now want to tackle the field equation (15) with re- yaiion:  The finger is assumed to be a linearly damped
spect to the brain-behavior experiment by Ket$@l. [3].  qgcillator driven by the motor signak(r) which repre-
In this experiment a subject was exposed to acoustic stimsenis the average activity of the neural sheet in a first
uli and pressed a button in a syncopated motion. Th@pnroximation. As a feedback the finger oscillator sends
stlmglus frequency at the beginning was set to 1' Hz ang, sensory-motor signal, to the neural fieldy,. Equa-
was increased by 0.25 Hz after 10 stimulus repetitions Uggp (17) determines the dynamics of a field containing
to _2.25 Hz. Around the frequency of 1._75 Hz th_e subjectinear and nonlinear damping terms,i§, B > 0, and an
switched spontaneously to a synchronized motion. Durampjitude dependent frequency. The most prominent fea-
ing this experiment the magnetic field data were recordeg{;re of the above equations is the parametric excitation
over the left pgrletotemporal co_rtex, mainly covering thepf the neural sheet with twice the stimulus frequency.
motor and auditory areas. Detailed analyses of the experirhe parametric excitation has two main characteristics:
mental data [10] revealed that phase transition phenonrst it provides a frequency selection by enforcing stable

ena can also be observed in the spatiotemporal dynamigs,q nstable solutions dependent on the relation between
of the brain. In the pretransition region this dynamics is , _ (Q2 — v2A)2 and Q. The unstable solutions

dominated by one spatial mode corresponding to one St%‘rle obtained fow, /2Q = k, wherek = 1/2,1,3/2, ....
tionary order parameter state oscillating mainly with thegecong the parametric excitation causes a bistable situa-
stimulus frequency. At the critical frequency a transitionsjon, for the relative phase between stimulus signal and the
occurs to a new order parameter state with a different spays¢ temporal Fourier component of the first field mode.
tial structure mainly oscHIaﬁmg Wlth twice the gtlmulus In contrast a linear driving term liké; causes a purely
frequency. In the pretransition region the relative phasgnsnostable situation which is not observed in the Kelso

between brain signals and acoustic stimulus is locked angxperiment. Thus the parametric excitatiostbe the
bistable, which means that two stationary states coregominant excitation.

sponding to antiphase and in phase of the relative phase | order to treat the system (17) analytically we perform
between brain and stimulus signal coexist. At the criticaly 1,5qe expansion

frequency a transition byr from antiphase into in phase |

is observed as in the relative phase between motor and We(x, 1) = Z &, (1) explinkx) (19)
stimulus signal. In the posttransition region a monostable o " ’

situation corresponding to in phase is present.

We specify the external acoustic stimulus representin%/herefn,(’) = £7,(r) and the asterisk indicates the com-
the periodic acoustic signat(x,7) = By(x) sinQs and lex conjugate. The geometry of the brain, given by the

assume as a first approximation that the stimulus iéiimensio_n and the boundar)_/conditions, is an open nontriv-
localized via a global couplingy(x) =~ By = const in ial question. Two geometries are proposed [5]: a closed

the neural sheet. Q) denotes the stimulus frequency, SPhere and a closed one-dimensional loop. Here we as-

which represents the control parameter in the present case'Me Periodic boundaries of the neural sheet and only
Inserting these into (15) we obtain take standing waves into account. In our present one-

dimensional description the first experimental order param-
de + (Q2 — V2N + yoibo + AP eter state corresponds to the spatial mode wits 0 in
4 (19) and the second te = 1. We make the following
+ By, + ZKZ' =0, (17) ansatz for the time-dependent amplitudgsand¢;:
i=1

n=-—1

2
(m) . .
— " exp(imQ1) + c.c, =0,1, (20
where £ mZo d im0y ! )
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amplitudefj(m) is slowly varying in time with respect to },38

27r /) and higher harmonics are neglected. Following the™
lines in [2] we can investigate the dynamics of the ampli-

tude and phase (ff;-m) separately and calculate their time- ,1,:%"‘:._
independent stationary solutions. The stability of these1.00
stationary solutions can be determined in dependence ¢ - —0 >0 —00
the parameters. In the case of a strong parametric exciti %~ .~~~ o o s s
tion of the neural sheet the relative phase between the fir -3 <~

. . . . . -1.00 Vi
mode &, and the stimulus signal will show bistability or ~%F ™~

monostability depending on the time-independent station , g—

ary solutions of the amplitudes @I}‘-m). This dependence ﬁ:oo
can be explicitly calculated. -100
Numerical simulations of (17) yield the following be-
havior: Only standing waves are observed. In Fig. 2 the
first and second rows present the pretransition situation &lG. 2. The temporal behavior of the amplitudes of the field
Q = 0.31 whereg, (bold line) is in the unstable region of Modes £ (bold line) and &, (slim line) and the external
k = 1/2 and dominates oscillating witR in phase (first stimulus signal (dotted line) is plotted over the timefor
. . 9 pha . different stimulus frequencies. The amplitudes are scaled in
row) and in antiphase (second row). The stimulus sigarbitrary units and the time in sec. See main text for details.
nal (dotted line) is also plotted there. All higher modes

are damped. Note that here the terms in phase and an-

tiphase refer to the situation where the motor behavio r?atl(?l Iocl:allzatlotn cgtfrl]mctlontal ufnt':]S T)'ght tlji r(?[Latet(:] t?
is in phase or antiphase with respect to the stimulus sig- 'S development. er units ot the brain like the thal-
amus or the cerebellum were entirely neglected here and
might be embedded within the neural sheet according to
with respect to the auditory stimulus. The temporal pehe here mtro_duced notion of funct|or_1al units. Cognitive
aspects are involved in the conversion operations: The

havior of &, directly corresponds to the motor behavior : .
in the case of the Kelso experiment, since the finger osSlope of the pulse-to-wave conversion changes with leam-

cillator has been modeled as linearly driven by the mo-m%'1 the slolpe of the wave-to-pulse conversion changes
tor areas in the brain which are localized such thais with arousal. . . .
selected as the driving force. The third row shows th We gratefully ack_novyledge useful d'SCUSS'OnS. with
transition regime af) = 0.4 where the second modg . Bestehorr?', R. Friedrich, and A. Fuchs. We wish to
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up oscillating with2Q). Here the first modé&, performs anatomy and physiology.
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