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Wall-Slip and Polymer-Melt Flow Instability
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Instabilities and complex time dependence are often associated with wall slip in polymer-melt fl
We present here a phenomenological slip model that takes into account the unsteady-state kin
the wall-polymer interactions. In this model, both the shear and normal stresses arise, in cont
other models used in stability analyses of shear flow, which incorporate only shear stresses an
only stable flow. Asymptotic analysis of viscoelastic shear flow with this slip model predicts instab
with respect to short wavelength fluctuations at sufficiently high shear rates, showing that slip ca
to instability in viscoelastic shear flow. [S0031-9007(96)00776-4]

PACS numbers: 83.50.Lh, 47.20.–k, 47.50.+d, 68.45.Kg
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The behavior of polymers near interfaces is intere
ing and important from several points of view. At th
most fundamental level, the kinetics of adsorption a
diffusion of polymers near interfaces are fundamenta
different than for small molecules, and are topics of a
tive research (see, e.g., [1–3]). We present here th
retical evidence that this fact has important implicatio
at the macroscopic level, for the fluid dynamics of pol
mer melts. At very high shear stresses, polymer-m
flows violate the classical no-slip hydrodynamic bounda
condition at solid surfaces, and exhibit flow instabilitie
and complex nonlinear dynamics whose mechanisms
as yet poorly understood. In this Letter, we develop
simple phenomenological model for the slip process a
show for the first time that a well-posed, single valu
slip model, in conjunction with viscoelasticity, can exhib
shear flow instabilities consistent with those observ
experimentally.

Wall slip has been reported in polymer-melt flows sin
the work of Mooney in 1931 [4] and has long been su
pected to contribute to the melt fracture instabilities o
served in polymer-melt extrusion processes [5]. M
fracture is a macroscopic change in the surface m
phology that varies from small scale (100mm) rough-
ness (“sharkskin”) to large scale distortion of the ent
extrudate. The site of initiation of these instabilities r
mains controversial, but a number of experimental stud
demonstrate that at least in some cases, instability is
due to processes at the die entry or exit, but is coincid
with the onset of slip in the die land (flow channel) [6–8
Very large degrees of slip, however, may lead to sta
flow because slip reduces the stress in the fluid. Most
ten, the evidence of slip is indirect. For example, slip m
be inferred from the observation of an anomalously hi
flow rate for a given pressure drop. In many experimen
the onset of slip depends on the material of construction
the boundary, strongly suggesting that the wall-polym
interaction is important [2,7,9]. These experiments a
others indicate that the no-slip condition seems to be va
0031-9007y96y77(5)y956(4)$10.00
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until the shear stress reaches a critical value, above wh
the steady-state slip velocityus roughly follows a power
law in the wall shear stresstw [2,6,10]. Data and analy-
ses suggest that slip velocity also depends on press
decreasing as pressure increases [10,11]. Recently, d
optical observations of slip have been made. Archer, L
son, and Chen [12] observed the motion of microsco
beads within a fewmm of a solid surface during simple
shear flow of polystyrene solutions. Migler, Hervet, an
Leger [13] used evanescent-wave-induced fluorescenc
combination with fringe pattern fluorescence recovery
ter photobleaching to observe slip in a region less th
70 nm from the wall during shear flow of polydimethy
siloxane on silica.

Several theoretical approaches have been develope
understand slip in polymer melts. de Gennes and
workers [14] and Sung [15] have modeled slip durin
steady shear flow of polymer melts at surfaces conta
ing grafted chains. This model is based on the disent
glement of the bulk chains from the grafted chains, a
predicts that the slip velocity jumps sharply at a critic
value of the shear stress, as is observed in experim
[16]. Chemical interactions between melt and surface
only considered as a mechanism for providing graft
chains. In contrast, Lau and Schowalter [17] take che
ical interactions to be dominant. They postulate that t
shear stress alters the activation energies for the for
tion and destruction of bonds between melt and surfa
Hill, Hasegawa, and Denn [10] argue that the work
adhesion must be included in a slip theory and that n
mal stresses rather than shear stress control the ons
slip. Stewart [18] and Hatzikiriakos [19] modify Eyring’s
theory for the viscosity of a liquid (cf. [20]) to describ
slip. As in Lau and Schowalter’s theory, but unlike th
of Hill et al., their expressions for slip velocity depen
on shear stress, but not normal stress. In the mo
we present below, both the shear and normal stres
arise, and the normal stress dependence is necessar
instability.
© 1996 The American Physical Society
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In capillary flow, the shear rate is nonuniform an
cohesive failure (“constitutive instability”) within the
material has been proposed as an alternate mecha
for the onset of slip. This view reflects the fact th
some constitutive models of polymer-melt flows c
exhibit multiple shear rates for the same shear str
at sufficiently high shear stresses [21]. If a high sh
rate region is localized at the boundary, as would
the case in capillary flow, apparent slip will occur.
this view, however, slip is only affected by the bu
polymer properties, rather than the interfacial propert
a prediction that is not consistent with observations.

The experimental observations of melt flow instabiliti
and their association with slip have motivated a num
of stability analyses attempting to understand their orig
with notably little success. The important dimensionle
parameter in these flows is the Deborah number, De­ l Ùg,
wherel and Ùg are the fluid relaxation time and shear ra
respectively. With no-slip boundary conditions, stea
inertialess plane Poiseuille and Couette flows of Oldro
B fluids are linearly stable at all Deborah numbers [22,2
Steady state or static slip models [i.e., algebraic model
the formgsus, twd ­ 0] have been applied to shear flow
but only predict instability whendusydtw , 0 for a range
of tw [24,25], a condition which has neither been observ
nor theoretically predicted for polymer melts.

Use of an algebraic model for slip in a dynamic
analysis is tantamount to assuming that the slip velo
responds instantaneously to changes in stress at the
However, measurements reveal surprisingly slow surf
processes at polymer-solid interfaces [1–3], sugges
that stability analyses should incorporate the poss
dependence of slip on the stress history at the bound
Prior to the work presented here, the only such mo
that had been studied in the context of polymer-m
instabilities [26,27] was anad hoc evolution equation
introduced by Pearson and Petrie [24]:

us 1 Des
Dus

Dt
­ fstwd , (1)

where Des ­ ls Ùg is the “slip Deborah number”;ls

is the characteristic time for the slip process. He
DyDt is the usual substantial derivative, evaluated at
boundary under the assumption that the fluid velocity
the boundary is always tangent to the boundary. Rena
[26] showed that this boundary condition applied
inertialess shear flow of an upper convected Maxw
fluid leads to an ill-posed problem: the growth ra
of fluctuations increases without bound as wavelen
decreases. This pathology may stem from the unphys
property that even if the shear stress vanishes, the m
allows a finite slip velocity to persist.

Our goal here is to introduce a well-posed phenome
logical continuum model of slip that encompasses the id
of the microscopic theories, but allows us to perform ana
sis and make predictions at the macroscopic, fluid dyna
cal level. The model is based on the ideas that the mat
structure very near a solid boundary is different from th
ism
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in the bulk, and that this structure affects the slip behav
We denote the structure with a dimensionless scalarX, the
fraction of available polymer segments that are stron
interacting with the solid surface. Generically,X is anal-
ogous to the network junction density in transient netwo
theories for bulk melt behavior [28]. In the disentang
ment picture of slip,X roughly corresponds to the densi
of entanglements between bulk chains and chains atta
to the surface. We take the structure creation (attachm
rate to be proportional to the number of free segments
the destruction (detachment) rate to be proportional to
number of bound segments and the elastic stress in the
ments, measured by trtw, the trace of the polymer stres
tensor evaluated at the wall (cf. [28,29]). The resulti
evolution equation forX is

DX
Dt

­
1

Des
fs1 2 Xd 2 sXtrtwg . (2)

Here Des and s are positive constants;s is the ratio
between the dimensionless detachment and attachm
rate constants and Des is the dimensionless attachme
time constant (slip Deborah number). Time has be
scaled with the inverse nominal shear rate and st
with the shear modulus. This equation is to be evalua
at all points on the polymer-solid boundaries of t
domain; an appropriate initial condition is the equilibriu
solution X ­ 1. Given this evolution equation, we now
relate the structure at the wall to the velocity there.
the drag on a free segment is given by Stokes’ l
with a drag coefficient proportional to the number
bound segments, a reasonable form for its velocity
uf ­ etwyX, wheree is a constant. If the overall slip
velocity us is the average velocity of the free and bou
(stationary) segments [17], then

us ­ s1 2 Xduf ­ e
1 2 X

X
tw . (3)

In steady shear flow, or in the limit as Des ! 0 (fast
interfacial kinetics),us ­ esstrtwdtw.

To examine the effect of this model on polymer-m
flow, we consider the stability of inertialess plane Coue
flow of viscoelastic liquid, replacing the usual no-sl
boundary condition with Eqs. (2) and (3). To facilita
a closed form solution, we consider the upper convec
Maxwell (UCM) model for viscoelasticity and perform
an asymptotic analysis, usinge from Eq. (3) as the
small parameter and considering short [Osed] wavelength
fluctuations localized near the solid surfacey ­ 0. In this
limit, the analysis and results presented here also app
Poiseuille flow.

The governing equations are the UCM constitutive eq
tion and the equations of motion and continuity [30]:

≠t

≠t
1 y ? =t 2 hs=ydT ? t 1 t ? =yj 1

1
Den

t

­ h=y 1 s=ydT j ,

(4a)
957
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= ? y ­ 0 . (4c)

The polymer stress tensort and pressurep are scaled
with G, the shear modulus, velocityy with V , the
velocity of the upper surface, lengths withl, the gap
width, and time with the inverse nominal shear ratelyV .
The nominal Deborah number Den is lVyl, wherel is
the polymer relaxation time. Because of slip, the tr
Deborah number Det is smaller than the nominal one
but this difference is negligible to leading order ine.
The physical setup of the problem is shown in Fig.
to leading order the steady state solution (denoted w
overlines) ist̄xx ­ 2De2

n, t̄yx ­ Den, t̄yy ­ 0, ū ­ ūs 1

s1 2 2ūsdy, ȳ ­ 0, X̄ ­
°
1 1 2sDe2

n

¢
21, with the steady

state slip velocityūs ­ 2De3
nse. Only two-dimensional

disturbances of the base flow (denoted with circumflex
will be considered, since Squire’s theorem holds for
UCM equation [31]. Linearization of Eqs. (4a)–(4
around the steady state values results in a system o
coupled partial differential equations for the disturbanc
A solution of the form âs ỹdeiasx2ectd is proposed for
each of the disturbance variables, where the wave num
a is large (a ­ e21) and ỹ ­ ye21 is the stretched
vertical coordinate. The wave speed (ec) is explicitly
madeOsed, as we expect it to scale with the fluid veloci
near the wall. Instability occurs when the imaginary p
of c becomes positive. The amplitudes,âs ỹd, and the
eigenvalue,c, are written as asymptotic expansions ine

and we consider here only the leading order behavior.
After incorporating the scalings, the stability proble

can be reduced to a single equation for theỹ velocity ŷ

(cf. [23]):µ
Q2 d2

dỹ2 2 2Q
d

dỹ
1 2 2 Q2

∂
3

µ
d2

dỹ2 1 2iDen
d

dỹ
2 1 2 2De2

n

∂
ŷ ­ 0 ,

(5)

with boundary conditions at̃y ­ 0:

û ­ iŷ0 ­ Bt̂yx 1 GX̂ , (6a)

fsiūw 2 icdDes 1 AgX̂ ­ 2Dst̂xx 1 t̂yyd , (6b)

where Qs ỹd ­ ỹ 1 ūw 2 c 2 iyDen and ūw ­
ūse21 ­ 2De3

ns. The values ofc where Q ­ 0 de-
fine a stable continuous component of the eigenva
spectrum. The constantsA, B, D, and G arise from

FIG. 1. Simple shear (Couette) flow geometry, showing
steady state velocity profile with slip.
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the linearization of Eqs. (2) and (3):A ­ 1 1 st̄xx ,
D ­ sX̄, B ­

12X̄
X̄ , G ­ 2

t̄yx

X̄2 . Considering only solu-
tions that decay as̃y ! `, we find

ŷs ỹd ­ K1es2iDen2
p

11De2
ndỹ 1 K2s ỹ 1 ūw 2 cde2ỹ .

(7)
Application of the boundary conditions atỹ ­ 0, Eqs. (6),
leads to a fifth order polynomial for the eigenvaluec. At
low Den, the imaginary parts of all five roots are nega
tive. At higher Den, one of the roots becomes positive
indicating flow instability. The critical Deborah numbe
for instability, Dec, is shown graphically in Fig. 2. In-
stability occurs at all values of Des if Den is sufficiently
large. Figure 3 shows a snapshot of thet̂xx component
of the structure of the destabilizing disturbance whens ­
0.01, Des ­ 0, Den ­ Dec ­ 10.7256. The destabilizing
fluctuations are localized very near the wall and the elas
stresŝtxx dominates the stress fluctuation. The wave spe
Rescd is essentially identical to the slip velocity so the fluc
tuation travels downstream with the steady base flow.
material that has undergone this instability is extruded fro
a channel, the normal stress perturbations will lead to sm
scale corrugation of the polymer surface, as occurs in m
melt fracture.

Figure 2 shows that instability occurs only whe
De (i.e., the effect of elasticity) is sufficiently large
As s ! 0, Dec , s21y4, consistent with the classica
result of Gorodtsov and Leonov [23] that Couette flo
in the absence of slip (s ­ 0) is stable at all De.
Furthermore, we have found that if the detachme
kinetics in Eq. (2) are modified to depend on2t2

w , the
steady state value of trtw , rather than trtw itself, the flow
is again always stable. Thus both slip and elasticity a
necessary for instability and the normal stress depende
of the interfacial interactions is an essential element of t
instability mechanism.

FIG. 2. Critical Deborah number Dec for instability as a
function of Des ands.
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FIG. 3. Structure of the first normal stress perturbationt̂xx at
the onset of instability.

As s increases, Dec approaches a constant value
about10.67, suggesting the existence of a lower bound
the stress required for instability. The analysis presen
here is only valid fores ø 1; when s is large, slip
significantly reduces Det (the actual shear stress) relati
to Den. In fact, when es . 2.05 3 1024, Det never
exceeds10.67, suggesting that the flow will be stab
at all De. A more detailed analysis [32] confirms th
prediction: Dec ! ` as es % 2.05 3 1024. Therefore
the model predicts the existence of a window ines where
instability occurs at a given De. Sinces is a measure
of the tendency of a polymer to detach from a particu
surface, this prediction may unify disparate experimen
results showing that instability may be avoided both
surface modifications that enhance slip and ones
minimize it.

Clearly, more work is necessary to solidify the relatio
ship between our phenomenological evolution equation
X and the actual physics near the wall (e.g., the dep
dence of slip on pressure), as well as to study more real
constitutive equations and flow geometries. Neverthel
the present results do predict instabilities at short wa
lengths, localized near the polymer-solid interface, wh
are intimately related to both the slip (interfacial) and b
(elastic) properties of the polymer. These predictions
cord with experimental observations and clarify the role
the polymer-solid interface in extrusion and other polym
melt flow instabilities.
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