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Wall-Slip and Polymer-Melt Flow Instability

William B. Black and Michael D. Graham*

Department of Chemical Engineering and Rheology Research Center, University of Wisconsin-Madison,
Madison, Wisconsin 53706-1691
(Received 12 March 1996; revised manuscript received 13 May)1996

Instabilities and complex time dependence are often associated with wall slip in polymer-melt flows.
We present here a phenomenological slip model that takes into account the unsteady-state kinetics of
the wall-polymer interactions. In this model, both the shear and normal stresses arise, in contrast to
other models used in stability analyses of shear flow, which incorporate only shear stresses and yield
only stable flow. Asymptotic analysis of viscoelastic shear flow with this slip model predicts instability
with respect to short wavelength fluctuations at sufficiently high shear rates, showing that slip can lead
to instability in viscoelastic shear flow. [S0031-9007(96)00776-4]

PACS numbers: 83.50.Lh, 47.20.-k, 47.50.+d, 68.45.Kg

The behavior of polymers near interfaces is interestuntil the shear stress reaches a critical value, above which
ing and important from several points of view. At the the steady-state slip velocity, roughly follows a power
most fundamental level, the kinetics of adsorption andaw in the wall shear stress, [2,6,10]. Data and analy-
diffusion of polymers near interfaces are fundamentallyses suggest that slip velocity also depends on pressure,
different than for small molecules, and are topics of ac-decreasing as pressure increases [10,11]. Recently, direct
tive research (see, e.g., [1-3]). We present here themptical observations of slip have been made. Archer, Lar-
retical evidence that this fact has important implicationsson, and Chen [12] observed the motion of microscopic
at the macroscopic level, for the fluid dynamics of poly-beads within a fewum of a solid surface during simple
mer melts. At very high shear stresses, polymer-melshear flow of polystyrene solutions. Migler, Hervet, and
flows violate the classical no-slip hydrodynamic boundarylLeger [13] used evanescent-wave-induced fluorescence in
condition at solid surfaces, and exhibit flow instabilities combination with fringe pattern fluorescence recovery af-
and complex nonlinear dynamics whose mechanisms ater photobleaching to observe slip in a region less than
as yet poorly understood. In this Letter, we develop a0 nm from the wall during shear flow of polydimethyl-
simple phenomenological model for the slip process andiloxane on silica.
show for the first time that a well-posed, single valued Several theoretical approaches have been developed to
slip model, in conjunction with viscoelasticity, can exhibit understand slip in polymer melts. de Gennes and co-
shear flow instabilities consistent with those observedvorkers [14] and Sung [15] have modeled slip during
experimentally. steady shear flow of polymer melts at surfaces contain-

Wall slip has been reported in polymer-melt flows sinceing grafted chains. This model is based on the disentan-
the work of Mooney in 1931 [4] and has long been sus-glement of the bulk chains from the grafted chains, and
pected to contribute to the melt fracture instabilities ob-predicts that the slip velocity jumps sharply at a critical
served in polymer-melt extrusion processes [5]. Meltvalue of the shear stress, as is observed in experiments
fracture is a macroscopic change in the surface morfl6]. Chemical interactions between melt and surface are
phology that varies from small scale (1@0n) rough- only considered as a mechanism for providing grafted
ness (“sharkskin”) to large scale distortion of the entirechains. In contrast, Lau and Schowalter [17] take chem-
extrudate. The site of initiation of these instabilities re-ical interactions to be dominant. They postulate that the
mains controversial, but a number of experimental studieshear stress alters the activation energies for the forma-
demonstrate that at least in some cases, instability is ndon and destruction of bonds between melt and surface.
due to processes at the die entry or exit, but is coincidertlill, Hasegawa, and Denn [10] argue that the work of
with the onset of slip in the die land (flow channel) [6—8]. adhesion must be included in a slip theory and that nor-
Very large degrees of slip, however, may lead to stablenal stresses rather than shear stress control the onset of
flow because slip reduces the stress in the fluid. Most ofslip. Stewart [18] and Hatzikiriakos [19] modify Eyring’s
ten, the evidence of slip is indirect. For example, slip maytheory for the viscosity of a liquid (cf. [20]) to describe
be inferred from the observation of an anomalously higtslip. As in Lau and Schowalter’s theory, but unlike that
flow rate for a given pressure drop. In many experimentsof Hill et al., their expressions for slip velocity depend
the onset of slip depends on the material of construction obn shear stress, but not normal stress. In the model
the boundary, strongly suggesting that the wall-polymemwe present below, both the shear and normal stresses
interaction is important [2,7,9]. These experiments andarise, and the normal stress dependence is necessary for
others indicate that the no-slip condition seems to be valichstability.
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In capillary flow, the shear rate is nonuniform andin the bulk, and that this structure affects the slip behavior.
cohesive failure (“constitutive instability”) within the We denote the structure with a dimensionless scéjdhe
material has been proposed as an alternate mechanidgraction of available polymer segments that are strongly
for the onset of slip. This view reflects the fact thatinteracting with the solid surface. Genericalk,is anal-
some constitutive models of polymer-melt flows canogous to the network junction density in transient network
exhibit multiple shear rates for the same shear stressheories for bulk melt behavior [28]. In the disentangle-
at sufficiently high shear stresses [21]. If a high sheament picture of slipX roughly corresponds to the density
rate region is localized at the boundary, as would beof entanglements between bulk chains and chains attached
the case in capillary flow, apparent slip will occur. In to the surface. We take the structure creation (attachment)
this view, however, slip is only affected by the bulk rate to be proportional to the number of free segments and
polymer properties, rather than the interfacial propertiesthe destruction (detachment) rate to be proportional to the
a prediction that is not consistent with observations. number of bound segments and the elastic stress in the seg-

The experimental observations of melt flow instabilitiesments, measured bysir, the trace of the polymer stress
and their association with slip have motivated a numbetensor evaluated at the wall (cf. [28,29]). The resulting
of stability analyses attempting to understand their origingvolution equation foX is
with notably little success. The important dimensionless DX |
parameter in these flows is the Deborah numberszDgy, — =
whereA and+y are the fluid relaxation time and shear rate, Dt De,
respectively. With no-slip boundary conditions, steadyHere De and s are positive constantss is the ratio
inertialess plane Poiseuille and Couette flows of Oldroydpetween the dimensionless detachment and attachment
B fluids are linearly stable at all Deborah numbers [22,23]rate constants and Dés the dimensionless attachment
Steady state or static slip models [i.e., algebraic models afme constant (slip Deborah number). Time has been
the formg(uy, 7,) = 0] have been applied to shear flows, scaled with the inverse nominal shear rate and stress
but only predict instability whedu,/dr, < 0forarange with the shear modulus. This equation is to be evaluated
of 7,, [24,25], a condition which has neither been observedt all points on the polymer-solid boundaries of the
nor theoretically predicted for polymer melts. domain; an appropriate initial condition is the equilibrium

Use of an algebraic model for slip in a dynamical solutionX = 1. Given this evolution equation, we now
analysis is tantamount to assuming that the slip velocityelate the structure at the wall to the velocity there. If
responds instantaneously to changes in stress at the wathe drag on a free segment is given by Stokes’ law
However, measurements reveal surprisingly slow surfac@ith a drag coefficient proportional to the number of
processes at polymer-solid interfaces [1-3], suggestingound segments, a reasonable form for its velocity is
that stability analyses should incorporate the possibleg,f = €7, /X, Wheree is a constant. If the overall slip

dependence of slip on the stress history at the boundaryelocity «, is the average velocity of the free and bound
Prior to the work presented here, the only such mode{stationary) segments [17], then

that had been studied in the context of polymer-melt

[(1 - X) — sXtrs,]. (2)

1 - X

instabilities [26,27] was arad hoc evolution equation us = (1 — X)uy = € T . (3)
introduced by Pearson and Petrie [24]: X
Du In steady shear flow, or in the limit as Pe» 0 (fast
N + D N = wlos 1 . . . . !
u_ ' “Di _ ) (1) interfacial kinetics)u, = es(trr,,)7,.
where Dg = Ayy is the “slip Deborah number”A, To examine the effect of this model on polymer-melt

is the characteristic time for the slip process. Heréflow, we consider the stability of inertialess plane Couette
D/Dt is the usual substantial derivative, evaluated at thélow of viscoelastic liquid, replacing the usual no-slip
boundary under the assumption that the fluid velocity aboundary condition with Egs. (2) and (3). To facilitate
the boundary is always tangent to the boundary. Renardy closed form solution, we consider the upper convected
[26] showed that this boundary condition applied toMaxwell (UCM) model for viscoelasticity and perform
inertialess shear flow of an upper convected Maxwellan asymptotic analysis, using from Eq. (3) as the
fluid leads to an ill-posed problem: the growth ratesmall parameter and considering sha?(§)] wavelength
of fluctuations increases without bound as wavelengthiuctuations localized near the solid surface= 0. In this
decreases. This pathology may stem from the unphysicéimit, the analysis and results presented here also apply to
property that even if the shear stress vanishes, the modpbiseuille flow.
allows a finite slip velocity to persist. The governing equations are the UCM constitutive equa-
Our goal here is to introduce a well-posed phenomenotion and the equations of motion and continuity [30]:
logical continuum model of slip that encompasses the ideas o+ T
of the microscopic theories, but allows us to perform analy- 5, * ¥~ Vr = {(Vo) -7+ 7 Vop + De,
sis and make predictions at the macroscopic, fluid dynami- — (Vv + (Vo))
cal level. The modelis based on the ideas that the material ’
structure very near a solid boundary is different from that (4a)
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V:-#-Vp=0, (4b)  the linearization of Egs. (2) and (3 =1 + 57y,

V-v=0. (4c) D= sX,B = %,G = —x:. Considering only solu-
tions that decay ag — o, we find

The polymer stress tensar and pressure are scaled iDe,—/TFDD)s i
with G, the shear modulus, velocity with V, the 0(5) = Kt 1P Y + Ko(§ + ity — c)e .
velocity of the upper surface, lengths with the gap @)

WLdth’ anq tilme Vk‘)/ith ':1he invsrse n_ominal shehar rb,te_f. Application of the boundary conditions at= 0, Egs. (6),
The nominal Deborah number Dés AV/I, whereA is  aq 19 a fifth order polynomial for the eigenvalue At
the polymer relaxation time. Because of slip, the ru§q,; pe  the imaginary parts of all five roots are nega-
Deborah number Deis smaller than the nominal one, e At higher De, one of the roots becomes positive,

but this difference is negligible to leading order & Jindicating flow instability. The critical Deborah number
The phyS|caI setup of the problem is _shown In Fig. 1i instability, De., is shown graphically in Fig. 2. In-

to leading order the séte_ady state solution (denoted withy,pijity occurs at all values of Déf De, is sufficiently
overlines) ISTax = Z-D?’TW‘ . De”z’ Ty =0, =1u + |3rge. Figure 3 shows a snapshot of the component

(1 = 2a,)y, o = 0,X = (I + 2sDe;)~", with the steady ¢ the structure of the destabilizing disturbance when
s'gate slip velocitya, = 2De3nse. Only two'-dlm.ensmnal 0.01,De, = 0,De, = De, = 10.7256. The destabilizing
disturbances of the base flow (denoted with circumflexesy, cyations are localized very near the wall and the elastic
will be considered, since Squire’s theorem holds for thesyese  dominates the stress fluctuation. The wave speed
UCM equation [31]. Linearization of Egs. (48)-(4C) e (,)is essentially identical to the slip velocity so the fluc-
around the steady state values results in a system of S{gation travels downstream with the steady base flow. As
coupled partial differential equations for the disturbancesyieria| that has undergone this instability is extruded from
a channel, the normal stress perturbations will lead to small
X > - o Stale corrugation of the polymer surface, as occurs in mild
a is large @ = € ') and § = ye ' is the stretched qt fracture.
vertical coordinate. The wave speeek) is explicitly — pigre 2 shows that instability occurs only when
madeO(e), as we expect it to scale with the fluid velocity pe (¢ the effect of elasticity) is sufficiently large.
near the wall. Instability occurs when the imaginary partag ¢ — De. ~ s~ /4, consistent with the classical

of ¢ becomes positive. The amplitude®,y), and the gt of Gorodtsov and Leonov [23] that Couette flow

elgenvalue,c,_ are written as asymptotic expansionsein i, yha apsence of slips(= 0) is stable at all De.

and we consider here only the leading order behavior. Furthermore, we have found that if the detachment
After incorporating the scalings., the stability prol:A)Iem kinetics in Eq. (2) are modified to depend @m2, the

can be reduced to a single equation for fheelocity 0 gteaqy state value of4y, rather than t,, itself, the flow

(cf. [23]): is again always stable. Thus both slip and elasticity are

< 2d_2 _ s d Lo 2) necessary for instability and the normal stress dependence
Q dy? Q dy Q of the interfacial interactions is an essential element of the

2 d instability mechanism.
X (dyZ + 2iDe, 7o~ 1= 2De,3>ﬁ =0,
®)
with boundary conditions gt = 0 . T T T T T T
i =iv' = B#, + GX, (6a)
[(ifty — ic)Dey + AlX = —D (%, + #,,), (6Db)
where QO(y)=9% + @&, —c —i/De, and i, = 100 v

ise ! =2De’s. The values ofc where Q = 0 de-
fine a stable continuous component of the eigenvalue ¢
spectrum. The constant$, B, D, and G arise from

Y 7z Z—V
T 10 Stable E
y [
l [ ! ] ! ] ! ] ] ! ] |
1 - 10° 107 105 103 101 10!
Y 7z % 5
FIG. 1. Simple shear (Couette) flow geometry, showing theFIG. 2. Critical Deborah number Defor instability as a
steady state velocity profile with slip. function of Dg ands.
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