
VOLUME 77, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 1996

60637

tum

he
es

940
Quantum Critical Behavior for a Model Magnet
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The classical, thermally driven transition in the dipolar-coupled Ising ferromagnet LiHoF4 sTc 
1.53 Kd can be converted into a quantum transition driven by a transverse magnetic fieldHt at
T  0. The transverse field, applied perpendicular to the Ising axis, introduces channels for quan
relaxation, thereby depressingTc. We have determined the phase diagram in theHt-T plane via
magnetic susceptibility measurements. The critical exponent,g  1, has a mean-field value in
both the classical and quantum limits. A solution of the full mean-field Hamiltonian using t
known LiHoF4 crystal-field wave functions, including nuclear hyperfine terms, accurately match
experiment. [S0031-9007(96)00753-3]

PACS numbers: 75.40.Cx, 05.30.–d, 75.50.Dd
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Quantum phase transitions can differ fundamenta
from their classical counterparts because of the unp
alleled influence of the dynamics on theT  0 static
critical behavior [1]. In addition, unusual electronic an
magnetic behavior can arise at nonzero temperature. T
includes the peculiar mix of the spin and charge d
grees of freedom in transition-metal oxides [2], the a
parent “non-Fermi-liquid” behavior of highly correlate
f-electron compounds [3,4], and the unusual normal-s
properties of the high-Tc superconducting cuprates [5–8
The remarkable properties of these systems have b
ascribed in each case to the proximity of aT  0 quan-
tum critical point.

There remain considerable experimental and theor
cal barriers to describing quantum phase transitions w
fidelity and precision. In the high-temperature superc
ductors, for example, the superconductivity masks the
rect study of the quantum order-disorder transition.
heavy-fermion materials, characterization of theT  0
magnetic instability is complicated by the presence
charge carriers and by substitutional disorder. In s
glasses [9], the combination of frustration and dis
der impedes consensus on a correct description of e
the thermally driven transition. Moreover, despite th
power and elegance, pressure-tuning studies of quan
critical points [2,3,10] cannot approach the exactitu
which has become the hallmark of experiments on c
sical critical phenomena.

High-precision measurements of quantum critical b
havior in clean, insulating magnets simply do not e
ist, even with the great current interest in quantu
phase transitions. Therefore, we have carried out s
measurements for a model magnet LiHoF4. The key con-
clusion is that the quantum critical behavior is mean-fie
like, as predicted by long-standing and elegant the
identifying sT  0d quantum phase transitions ind di-
mensions with thermal phase transitions ind 1 1 dimen-
0031-9007y96y77(5)y940(4)$10.00
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sions [11]. Furthermore, a mean-field theory using know
magnetic parametersquantitativelydescribes the observed
magnetic susceptibility in both the quantum and the th
mal regimes.

LiHoF4 in an external fieldHt is the experimental
realization of the simplest quantum spin model, name
the Ising magnet in a transverse magnetic field. T
corresponding Hamiltonian is

H 
NX
i,j

Jijsz
i sz

j 2 G

NX
i

sx
i , (1)

where the s’s are Pauli spin matrices, theJij ’s are
longitudinal couplings, andG is a transverse field. Since
the commutatorfH, szg is finite whenG fi 0, zero-point
fluctuations are germane at low temperatures. The
fluctuations increase withG, which tunes an order-
disorder transition atT  0.

In our experiments, the magnetic fieldHt is applied
perpendicular to the easysc-d axis for the Ho spins.
At low temperaturessT , 2 Kd, the only Ho31 crystal
field state which is appreciably populated is thesHt  0d
ground-state doublet, which can be split in continuo
fashion with great precision by the laboratory fieldHt

[9,12]. The splittingG plays the role of the transverse
field in Eq. (1), while the doublet plays the role of th
spin-1y2 eigenstates. We focus here on the pure syst
LiHoF4, which is a ferromagnet with a Curie temperatu
Tc  1.53 K.

The sample, a single crystal of LiHoF4, was ground
into a sphere of diameter 4.1 mm to minimize inho
mogeneities in the internal field distribution. It wa
suspended from the mixing chamber of a helium d
lution refrigerator inside the bore of an 80 kOe su
perconducting magnet, with the field direction oriente
along the crystala axis (within 5±), perpendicular to
the Ising axis (within 0.5±). A trim coil oriented along
the Ising direction nulled any unwanted longitudinal fie
© 1996 The American Physical Society
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component. Heat sinking was achieved via sapphire r
spring loaded against small flats ground onto the side
the sample. We measured the complete ac suscep
ity, xs f d  x 0s f d 1 ix 00s f d, along the Ising axis using
a standard gradiometer configuration and a digital lock
technique [13] with an ac excitation amplitude of 0.075
x 0s f d in the paramagnet was found to be frequency in
pendent below 1 kHz at all temperatures and transv
fields investigated; the measurements reported here
restricted tof , 0.4 kHz.

We plot in Fig. 1 both the real and imaginary parts
the susceptibility as a function ofT for zero transverse
field. x 0sT d diverges atTc  1.53 K, below which the
Ho spins order ferromagnetically [14,15]. At the iden
cal temperature, there is a sharp increase inx 00sT d, most
likely due to the motion of domain walls [16]. We use th
feature inx 00, which occurs at the transition for all tran
verse fields and temperature studied, as an independen
terion to establishTc (or Hc

t ). This eliminatesTc (or Hc
t )

as a fitting parameter. As a check on this procedure,
have confirmed that the lowest-order nonlinear suscept
ity x3sT , Htd exhibits a sharp feature at the identicalTc (or
Hc

t ) in both the classical and quantum limits.
Before discussing the critical behavior in the qua

tum limit, we briefly consider the classical limit. Th
marginal dimensionality, which separates mean-field fr
non-mean-field behavior, isdp  3 for a dipolar-coupled
Ising ferromagnet. As a consequence, in 3D the crit
behavior of the system is mean field with logarithmic c
rections. For example, the susceptibility should diverge
t21jlntj1y3, wheret is the reduced variablejT 2 TcjyTc

[17,18]. While there is experimental evidence for cr
cal forms with logarithmic corrections in LiHoF4 [18],
it is difficult to distinguish experimentally between the
forms and simple (mean-field) power laws, particula

FIG. 1. Divergence of the real part of the magnetic susce
bility (filled circles) and sharp increase in the imaginary p
(open circles) at the thermally driven ferromagnetic transit
in LiHoF 4. Inset: Mean-field critical behavior withx 0 ~ t2g

and best-fit valueg  1.00 6 0.09 (line).
ds,
of

bil-

in
.

e-
rse
ere

f

-

s
-
cri-

e
il-

-

m

al
r-
as

-

e
y

ti-
rt
n

in a susceptibility measurement [15]. We therefore lim
ourselves in the Letter to discussing only the leadin
order critical behavior, ignoring any logarithmic correc
tions which may be present.

The inset of Fig. 1 shows our data for the classic
sHt  0d limit in the critical region. We fixx 0 by a
simple power lawx 0 ~ t2g , and find a best-fit valueg 
1.00 6 0.09. The error bars for this exponent, and th
other exponents we measure, are dominated by system
errors in the demagnetization correction of the data, a
not by statistical errors. By comparison, susceptibil
measurements by Beauvillainet al. [15] find a best-fit
valueg  1.05.

By crossing the phase boundary varying either tempe
ture or transverse field, we can study the critical behav
of the system throughout theHt-T plane. In the quantum
limit, a large field Ht is required to traverse the phas
boundary. At T  0.100 K, we find Hc

t  49.3 kOe.
We again fit the susceptibility with a power law o
the form x 0 ~ h2g, where h  jHt 2 Hc

t jyHc
t and the

critical exponent is independent of the choice ofHt or G

for the reduced variable. Beauvillainet al. [15] found the
upper limit of the critical region to bet , 1022 in the
classical regime, while Griffinet al. [18] found it to be
t , 1021. Although the size of the critical region in the
quantum limit may be unrelated, to be conservative
use a critical region of1023 , h , 1022 when analyzing
the transverse field scan (solid circles in Fig. 2). W
find g  1.07 6 0.11. Approaching the transition inT
(at fixed Ht  49.0 kOe) at nearly the same point in
the Ht-T plane, we find a distinct upturn inx 00 and a
divergence ofx 0 at Tc  0.114 K, with g  1.01 6 0.08
(open circles in Fig. 2). ForT # 0.1 K our temperature
scans are limited tot  1022, we analyze these data
assuming a critical region of1022 , t , 1021.

We find g  1 within error bars at all temperature
studied, down to the lowest temperature probed,T 
0.050 K or 3% of TcsHt  0d. Hence, we conclude
that the critical behavior at the quantum ferromagne
transition in LiHoF4 retains its mean-field character. Th
observation verifies the theoretical prediction [11] that t
T  0 critical exponents of ad-dimensional Ising model
in transverse field are equivalent to those of asd 1 1d-
diemensional Ising model in zero transverse field. Stud
of the d  3 Ising antiferromagnet MnCl2 ? 4H2O [19]
suggested a crossover to four-dimensional behavior n
T  0, but did not fully reach the quantum limit.

By repeating the same procedure at other temperatu
we have mapped out the phase diagram shown in Fig
Upon observing mean-field-like critical behavior in bo
the classical and quantum limits in LiHoF4, it is natural
to ask whether the entire phase diagram can be expla
in terms of mean-field theory. In fact, in the regio
T . 0.6 K the phase diagram has a shape which is w
described by the mean-field formula for an orderedS 
1
2 magnet in transverse field, cothsGy2kTcd  JyG [20].
941
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FIG. 2. Mean-field critical behavior of the magnetic susce
tibility in the T ! 0 limit as functions of reduced tempera
ture (open circles,Tc  0.114 K, Ht  49.0 kOe) and reduced
transverse field (filled circles,Hc

t  49.3 kOe, T  0.100 K).

HereJ is a measure of the interaction between spins,k is
Boltzmann’s constant, andG is dependent on the mixing
by Ht of the ground-state doublet with the excited cryst
field states.

The exact mean-field phase boundary can be calcul
by solving the Hamiltonian for a single Ho31 ion sJ 
8, I 

7
2 d self-consistently:

H  Vc 2 g'mBHtĴx 1 AsÎ ? Ĵd 2 2J0kĴzlĴz , (2)

where Vc represents the zero-field crystal-field opera
[12], g' is the transverseg factor, A is the hyperfine
coupling strength, andJ0 is an averaged spin-spin lon

FIG. 3. Experimental phase boundary (filled circles) for t
ferromagnetic transition in the transverse field-temperat
plane. Dashed line is a mean-field theory including only
electronic spin degrees of freedom; solid line is a full mea
field theory incorporating the nuclear hyperfine interacti
[Eq. (2)]. Both theories have the same two fitting paramete
942
-

l-

ed

r

e
re
e
-

n
.

gitudinal coupling constant. The hyperfine term aris
from the interaction of the Ho nuclear spins with the ele
tronic states through a core polarization effect [21], and
practical relevance for the magnetic ordering of quantu
magnets in effective transverse fields was first noted
Andres for PrCu2 [22]. For LiHoF4, both heat capacity
[21] and hyperfine resonance [23] measurements at lowT
give A  0.039 K  sAkdgygk, whereAk  0.43 K, the
Landég-factor g  1.25, and the ground-state longitudi
nal g-factorgk  13.8.

A solution for Tc as a function ofHt is found by fix-
ing Ht and then calculatingkĴzl self-consistently, start-
ing at a high temperature and then decreasingT in small
steps until a nonzero (spontaneous) magnetization is
served. The hyperfine interaction effectively mixes t
nuclear and electronic eigenstates together; therefore,
solution proceeds by diagonalizing Eq. (2) in as136 3

136d eigenfunction space (17 crystal field states38 nu-
clear states). The solution is shown in Fig. 3 as the so
line, providing an excellent account of the experimen
data. We find best fit valuesJ0  0.0270 6 0.0005 K
and g'  0.74 6 0.04. The value J0  0.0270 K >
2hTcsHt  0dj hgygkj2. The experimentally determined
value ofg' is remarkably close to the single ion Landég
factor given the large uncertainty in the matrix elements
Jx which connect the ground state and excited state crys
field levels. These matrix elements are calculated from
eigenstates ofVc and depend on the measurements whi
not only contain statistical errors$25%, but are interpo-
lated from the dilute limit (lightly doped LiYF4) [12].

We can illuminate the underlying physics and recov
the more conventional mean-field form of the phase d
gram by fixingJ0 andg' to their best-fit values and setting
A  0 in Eq. (2). Solving self-consistently for the mag
netization gives the dashed line in Fig 3. At high tempe
ature,J is the only pertinent quantum number. At lowT ,
however, the eigenstates ofÎ and Ĵ are slaved together
and an effective composite spinsI 1 Jd raises the trans-
verse field scale required to destroy the ferromagnetic st
Hence, it is clear that the upturn in the phase boundary
T , 0.6 K results directly from the inclusion of the well-
known Ho31 hyperfine term in the Hamiltonian. Given th
spherical symmetry of the hyperfine interaction and the n
clear eigenstates, the hyperfine interaction would not s
the axis of quantization if the electronic crystal-field stat
also possessed spherical symmetry. In LiHoF4, spherical
symmetry is broken by the strongly Ising nature of th
crystal-field states and the effect of the hyperfine term
large forT # Ak.

As a further test that the full mean-field Hamiltonia
of Eq. (2) is an accurate description of the physics,
use it to calculate the susceptibilityx 0sHtd of LiHoF4

in the paramagnet. The calculation is performed
adding a smalls,1023 Oed longitudinal field hz to the
Hamiltonian and solving self-consistently for the magn
tization Mz with no floating parameters The susceptib
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ity x 0 is thenMzyhz, where we have checked explicitl
that no higher order terms inhz are present. We plot in
Fig. 4 the measuredx 0sHtd at two temperatures, one i
the classical regimesT  1.018 Kd and one in the quan-
tum regime where the hyperfine term has a large eff
sT  0.200 Kd, together with the calculated values ofx 0.
The congruence of experiment and theory shows tha
complete mean-field treatment can predict accuratelyboth
the functional form and the absolute value of the susc
tibility as it falls off in the paramagnet with increasin
transverse field.

In summary, we have examined the critical behav
of a 3D Ising ferromagnet in the classical regime
varying temperature, and at the quantum critical po
by varying a transverse magnetic field nearT  0. A
full mean-field theory in thes136 3 136d eigenfunction
space of the 17 crystal-field and 8 nuclear states of
Ho31 ion accounts quantitatively for the critical behavio
of x 0sT , Htd, the shape of the phase boundary betwe
paramagnet and ferromagnet, and the temperature
transverse field evolution of the susceptibility well in
the paramagnet. With a quantitative understanding
the clean, insulating, quantum ferromagnet, it sho
now be possible to address the effects of spin disor
[24], and perhaps even charge carriers, on quantum c
cal phenomena.

We have benefited greatly from discussions w
R. Wickham. The work at the University of Chicag
was supported primarily by the MRSEC Progra
of the National Science Foundation under Awa
No. DMR-9400379.

FIG. 4. Transverse field dependence of the susceptibility
the paramagnet for two temperatures. Solid line is a fi
principles calculation with parameters fixed by the fit to t
phase boundary of Fig. 3.
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