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Quantum Critical Behavior for a Model Magnet
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The classical, thermally driven transition in the dipolar-coupled Ising ferromagnet LiKIBF=
1.53 K) can be converted into a quantum transition driven by a transverse magneticHfiedd
T = 0. The transverse field, applied perpendicular to the Ising axis, introduces channels for quantum
relaxation, thereby depressiriz. We have determined the phase diagram in EeT plane via
magnetic susceptibility measurements. The critical expongnt 1, has a mean-field value in
both the classical and quantum limits. A solution of the full mean-field Hamiltonian using the
known LiHoF, crystal-field wave functions, including nuclear hyperfine terms, accurately matches
experiment. [S0031-9007(96)00753-3]

PACS numbers: 75.40.Cx, 05.30.—d, 75.50.Dd

Quantum phase transitions can differ fundamentallysions [11]. Furthermore, a mean-field theory using known
from their classical counterparts because of the unpamagnetic parameterpiantitativelydescribes the observed
alleled influence of the dynamics on tfe= 0 static magnetic susceptibility in both the quantum and the ther-
critical behavior [1]. In addition, unusual electronic and mal regimes.
magnetic behavior can arise at nonzero temperature. ThusLiHoF, in an external fieldH; is the experimental
includes the peculiar mix of the spin and charge derealization of the simplest quantum spin model, namely,
grees of freedom in transition-metal oxides [2], the apthe Ising magnet in a transverse magnetic field. The
parent “non-Fermi-liquid” behavior of highly correlated corresponding Hamiltonian is
f-electron compounds [3,4], and the unusual normal-state N N
properties of the high:. superconducting cuprates [5—8]. H = Zjija;"(r} - T Z o7, @
The remarkable properties of these systems have been i.j i
ascribed in each case to the proximity of'a= 0 quan- where theo’s are Pauli spin matrices, thé;;’s are
tum critical point. longitudinal couplings, andl' is a transverse field. Since

There remain considerable experimental and theoretithe commutatofH, o] is finite whenI" # 0, zero-point
cal barriers to describing quantum phase transitions witffluctuations are germane at low temperatures. These
fidelity and precision. In the high-temperature superconfluctuations increase withl’, which tunes an order-
ductors, for example, the superconductivity masks the didisorder transition al' = 0.
rect study of the quantum order-disorder transition. In In our experiments, the magnetic fiel, is applied
heavy-fermion materials, characterization of the= 0  perpendicular to the easfc-) axis for the Ho spins.
magnetic instability is complicated by the presence ofAt low temperatured7T < 2 K), the only HG* crystal
charge carriers and by substitutional disorder. In spirfield state which is appreciably populated is tig = 0)
glasses [9], the combination of frustration and disor-ground-state doublet, which can be split in continuous
der impedes consensus on a correct description of eveashion with great precision by the laboratory figtf
the thermally driven transition. Moreover, despite their[9,12]. The splittingl" plays the role of the transverse
power and elegance, pressure-tuning studies of quantufield in Eq. (1), while the doublet plays the role of the
critical points [2,3,10] cannot approach the exactitudespin-1/2 eigenstates. We focus here on the pure system
which has become the hallmark of experiments on clastiHoF,, which is a ferromagnet with a Curie temperature
sical critical phenomena. T. = 1.53 K.

High-precision measurements of quantum critical be- The sample, a single crystal of LiHgFwas ground
havior in clean, insulating magnets simply do not ex-into a sphere of diameter 4.1 mm to minimize inho-
ist, even with the great current interest in quantummogeneities in the internal field distribution. It was
phase transitions. Therefore, we have carried out sucbuspended from the mixing chamber of a helium di-
measurements for a model magnet LiHoF he key con- lution refrigerator inside the bore of an 80 kOe su-
clusion is that the quantum critical behavior is mean-fieldperconducting magnet, with the field direction oriented
like, as predicted by long-standing and elegant theornglong the crystala axis (within 5°), perpendicular to
identifying (T = 0) quantum phase transitions ih di- the Ising axis (within 0.5. A trim coil oriented along
mensions with thermal phase transitionsdin- 1 dimen-  the Ising direction nulled any unwanted longitudinal field
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component. Heat sinking was achieved via sapphire rod#, a susceptibility measurement [15]. We therefore limit
spring loaded against small flats ground onto the sides ajurselves in the Letter to discussing only the leading-
the sample. We measured the complete ac susceptibibrder critical behavior, ignoring any logarithmic correc-
ity, x(f) = x'(f) + ix"(f), along the Ising axis using tions which may be present.
a standard gradiometer configuration and a digital lock-in The inset of Fig. 1 shows our data for the classical
technique [13] with an ac excitation amplitude of 0.075 G.(H, = 0) limit in the critical region. We fixy’ by a
x'(f) in the paramagnet was found to be frequency indesimple power lawy’ « ¢~7, and find a best-fit valug =
pendent below 1 kHz at all temperatures and transverse00 = 0.09. The error bars for this exponent, and the
fields investigated; the measurements reported here weother exponents we measure, are dominated by systematic
restricted tof < 0.4 kHz. errors in the demagnetization correction of the data, and
We plot in Fig. 1 both the real and imaginary parts ofnot by statistical errors. By comparison, susceptibility
the susceptibility as a function df for zero transverse measurements by Beauvillaiet al. [15] find a best-fit
field. x/(T) diverges atT, = 1.53 K, below which the valuey = 1.05.
Ho spins order ferromagnetically [14,15]. At the identi- By crossing the phase boundary varying either tempera-
cal temperature, there is a sharp increasg’ifT’), most  ture or transverse field, we can study the critical behavior
likely due to the motion of domain walls [16]. We use this of the system throughout th,-T plane. In the quantum
feature iny”, which occurs at the transition for all trans- limit, a large field H, is required to traverse the phase
verse fields and temperature studied, as an independent doeundary. At7 = 0.100 K, we find Hf = 49.3 kOe.
terion to establisiT, (or Hf). This eliminates, (or HY)  We again fit the susceptibility with a power law of
as a fitting parameter. As a check on this procedure, wéhe form y’ « h~Y, whereh = |H, — Hf|/Hf and the
have confirmed that the lowest-order nonlinear susceptibileritical exponent is independent of the choicerfyfor I'
ity x3(T, H;) exhibits a sharp feature at the idential(or ~ for the reduced variable. Beauvilla@t al. [15] found the
H{) in both the classical and quantum limits. upper limit of the critical region to be ~ 1072 in the
Before discussing the critical behavior in the quan-classical regime, while Griffiret al. [18] found it to be
tum limit, we briefly consider the classical limit. The ¢t ~ 10~!'. Although the size of the critical region in the
marginal dimensionality, which separates mean-field fromguantum limit may be unrelated, to be conservative we
non-mean-field behavior, i¢* = 3 for a dipolar-coupled use a critical region of0™3 < 4 < 1072 when analyzing
Ising ferromagnet. As a consequence, in 3D the criticathe transverse field scan (solid circles in Fig. 2). We
behavior of the system is mean field with logarithmic cor-find y = 1.07 = 0.11. Approaching the transition i
rections. For example, the susceptibility should diverge agat fixed H, = 49.0 kOe) at nearly the same point in
t~'|Int|'/3, wheret is the reduced variablg” — T.|/T.  the H,-T plane, we find a distinct upturn iy” and a
[17,18]. While there is experimental evidence for criti- divergence ofy’ at7. = 0.114 K, with y = 1.01 = 0.08
cal forms with logarithmic corrections in LiHgF[18],  (open circles in Fig. 2). Fof = 0.1 K our temperature
it is difficult to distinguish experimentally between thesescans are limited to¢ = 1072, we analyze these data
forms and simple (mean-field) power laws, particularlyassuming a critical region dio=2 < r < 10™!.
We find y = 1 within error bars at all temperatures
studied, down to the lowest temperature prob&ds=
10* 0.050 K or 3% of T.(H, = 0). Hence, we conclude
that the critical behavior at the quantum ferromagnetic
transition in LiHoF, retains its mean-field character. This
observation verifies the theoretical prediction [11] that the
T = 0 critical exponents of @-dimensional Ising model
in transverse field are equivalent to those ofda+ 1)-
diemensional Ising model in zero transverse field. Studies
of the d = 3 Ising antiferromagnet MnGl- 4H,0O [19]
suggested a crossover to four-dimensional behavior near
T = 0, but did not fully reach the quantum limit.
By repeating the same procedure at other temperatures,
®q)® % we have mapped out the phase diagram shown in Fig. 3.
TJ . 10’ Upon observing mean-field-like critical behavior in both
T(K) the classical and quantum limits in LiHgFit is natural
_ _ ‘to ask whether the entire phase diagram can be explained
FIG. 1. Divergence of the real part of the magnetic susceptiiy terms of mean-field theory. In fact, in the region

bility (filled circles) and sharp increase in the imaginary part . L
(open circles) at the thermally driven ferromagnetic transition, ~ 0-6 K the phase diagram has a shape which is well

in LiHOoF,. Inset: Mean-field critical behavior witly’ o = dlescribed by the mean-field formula for an ordefee
and best-fit valuey = 1.00 = 0.09 (line). - magnet in transverse field, cotty2kT,) = J/I" [20].
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(T-T) /T, gitudinal coupling constant. The hyperfine term arises
P (U 10” . (' 10°  from the interaction of the Ho nuclear spins with the elec-
i tronic states through a core polarization effect [21], and its
practical relevance for the magnetic ordering of quantum
magnets in effective transverse fields was first noted by
Andres for PrCy [22]. For LiHoF,, both heat capacity
[21] and hyperfine resonance [23] measurements atflow
give A = 0.039 K = (A))g/g|, whereA) = 0.43 K, the
Landég-factor g = 1.25, and the ground-state longitudi-
nal g-factorg) = 13.8.
A solution for T, as a function of, is found by fix-
ing H, and then calculatingJ.) self-consistently, start-
ing at a high temperature and then decreagding small
. steps until a nonzero (spontaneous) magnetization is ob-
107 10°  served. The hyperfine interaction effectively mixes the
nuclear and electronic eigenstates together; therefore, the
FIG. 2. Mean-field critical behavior of the magnetic suscep-Solution proceeds by diagonalizing Eqg. (2) in(E36 <
tibility in the 7 — 0 limit as functions of reduced tempera- 136) eigenfunction space (17 crystal field state8 nu-
ture (open circles]. = 0.114 K, H, = 49.0 kOe) and reduced clear states). The solution is shown in Fig. 3 as the solid
transverse field (filled circled/; = 49.3 kOg T = 0.100 K). line, providing an excellent account of the experimental
data. We find best fit valueg, = 0.0270 = 0.0005 K
HereJ is a measure of the interaction between spins, and g, = 0.74 = 0.04. The value J, = 0.0270 K =
Boltzmann’s constant, anH is dependent on the mixing 2{T.(H, = 0)}{g/g|}*>. The experimentally determined
by H, of the ground-state doublet with the excited crystal-value ofg, is remarkably close to the single ion Langlé
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field states. factor given the large uncertainty in the matrix elements of
The exact mean-field phase boundary can be calculatet} which connect the ground state and excited state crystal-

by solving the Hamiltonian for a single Fio ion (/ = field levels. These matrix elements are calculated from the

8,1 = %) self-consistently: eigenstates o¥. and depend on the measurements which

R PN A A not only contain statistical errors25%, but are interpo-
H=Ve=gippHJc + AU - J) = 2000::. (2) |ated from the dilute limit (lightly doped LiYE) [12].
where V. represents the zero-field crystal-field operator We can illuminate the underlying physics and recover
[12], g. is the transversg factor, A is the hyperfine the more conventional mean-field form of the phase dia-

coupling strength, and, is an averaged spin-spin lon- gram by fixingJy andg , to their best-fit values and setting
A = 0in Eqg. (2). Solving self-consistently for the mag-
netization gives the dashed line in Fig 3. At high temper-
ature,J is the only pertinent quantum number. At Idy
LiHOF4 however, the eigenstates HfandJ are slaved together,
and an effective composite spid + J) raises the trans-
verse field scale required to destroy the ferromagnetic state.
Op ———— W Hence, it is clear that the upturn in the phase boundary for
T < 0.6 K results directly from the inclusion of the well-
known HA'* hyperfine term in the Hamiltonian. Given the
spherical symmetry of the hyperfine interaction and the nu-
clear eigenstates, the hyperfine interaction would not shift
the axis of quantization if the electronic crystal-field states
also possessed spherical symmetry. In Liiaspherical
symmetry is broken by the strongly Ising nature of the
crystal-field states and the effect of the hyperfine term is
0 0.4 0.8 12 1.6 large forT < Aj.

T (K) As a further test that the full mean-field Hamiltonian
of Eqg.(2) is an accurate description of the physics, we
FIG. 3. Experimental phase boundary (filled circles) for theyse it to calculate the susceptibility’(H,) of LiHoF,
ferromagnetic transition in the transverse field-temperature, ine paramagnet. The calculation is performed by
plane. Dashed line is a mean-field theory including only the

. S 3 o ;
electronic spin degrees of freedom; solid line is a full mean-addlng a smal(~10~" Oe) longitudinal field . to the

field theory incorporating the nuclear hyperfine interactionHamiltonian and solving self-consistently for the magne-
[Eg. (2)]. Both theories have the same two fitting parameters.tization M, with no floating parameters The susceptibil-
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