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Enhanced Spin-Dependent Scattering at Interfaces
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Correlations in the scattering from the ordering of impurities due to interdiffusion between metals
at interfaces are taken into account. The constructive interference between scattering amplitudes
produces enhanced spin-dependent scattering from the interface between magnetic and nonmagnetic
metals. [S0031-9007(96)00764-8]

PACS numbers: 73.40.—c, 73.50.Bk, 75.70.Pa

The giant magnetoresistance (GMR) observed in theéerface. We show that for the same single-site scattering
transition-metal magnetic multilayers results from theparameters correlated scattering from a pair of impurities
change in the scattering of the conduction electrons agroduces scattering which is much more strongly spin de-
the magnetic configuration of the multilayer goes frompendent than the scattering from the individual impurities.
one where the layers are on the average antiparallel in We choose as our Hamiltonian for a magnetic multilayer
zero or coercive field to one where they are aligned in
parallel at the saturation field. There is some debate as H=H,+V=H,+ Zvi’ (1)
to the origin of the dependence of this scattering on the i
magnetic configuration [1]; however, it is clear that spin-where H. is the Hamiltonian for any chosen coherent
dependent scattering is needed for GMR to occur, angotential which may be complex, and is the difference
that the scattering at interfaces plays a critical role inbetween the actual scattering potentigl (if the site is
producing this effect [2]. occupied by the atoma) and the coherent potential;

For interfacial scattering to produce resistance itis necat i site. As we are discussing a multilayered periodic
essary for it to be diffusive; this requires defects or rough-
ness at the interface. For metals which are well lattice
matched, most of the important roughness will be of two(a)
types: interdiffusional and geometrical; see Fig. 1. In this O O !!
figure we show a pair of atoms that have exchanged their
host positions [3]; rearrangements involving more atoms O O
are often indistinguishable from short-range geometrical
roughness. Geometrical roughness is more complicated, O
because this type of roughness has several length scales
associated with it; its effect on conduction electron scat- O O

tering has received some attention [4]. Notwithstanding O O 6]

other sources of scattering [5] we focus our attention on

one source that has heretofore not been considered in O = A
either model orab initio calculations [6] of the GMR: (b)

the correlatedscattering from pairs of interdiffused atoms 21 22 . =B

at interfaces.
In the bulk of the layers the impurities are not spatially O O O O . . . .
correlated; e.g., they can exist as isolated impurities or as O O O . O . ‘ .

uncorrelated clusters. The scattering between randomly

located impurities is phase incoherent, and one adds scat- O O O O . . . .

faces the scatienng fom a pair of merditused mpuriies O O O(@ O]@ @ @

(ades hefore calculating the probailty. s tater case. O QOO O @ @ @

the re:?ult_ar)t scattering can be greater or less than the sum ‘| 2

of the individual ones due to quantum interference. FIG. 1. Profiles of the interface due to geometrical roughness

To illustrate the difference between scattering from un-

lated and lated | it d I It I(a), and due to interdiffusion (b) (exchange of a pair of
correlated and correlated impurities we develop muitip eoltoms). While there exists a clear interface for (a), it is not

scattering theory for correlated impurities; for clarity we true for interdiffusion. The present calculation is focused on
restrict ourselves to an ordered pair that is created at an imterdiffusional interfaces (b).
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structure, our coherent potential varies from one atomigsites, by uncoupling the impurity averages of Theatrix,
layer to another within a unit cell [7]. The Green’s Eq. (8), as follows,
function is written as

—(e — H. — V)" =Gy + GoTGy,  (2) (T) = Z<T> = Z<p,> + Z<p, Go D (T). (10)

m#i,j
whereG e — H)™ !, . . . . .
0= ) Since all pairs at interfaces are the same after impurity

_ ‘ _ _ average, the CPA conditiof7() = 0) for determining the

d Zvl(l  Gol) = ZT” (3) coherent potential within the approximation of pairwise
ordering is
T, =t +1t,G T;, 4 i
02, *) (o= 0. (11)
and For comparison, in the SSA itig;) = 0.

B _1 In magnetic multilayers, impurity scattering occurs in
i = (1= viGo) v (3)  the bulk and at the interfaces. The CPA treatment for the

represent repeated scattering by the impurity at site Scattering in the bulk is the same as the alloy problem,
Equation (4) is exact; it separates the total scattering dt€., by using the uncorrelated single-site approximation,
site i as a part coming from single-site scatteripgand ~ (#;) = 0 when the sitei is not at an interface. For
that from the surrounding;(j # i). In the single-site ap- correlated pairs at interfaces, we use our pairwise CPA
proximation (SSA) one neglects correlations between sca(p,} = 0. When solved self-consistently these equations
tering at different sites, so that the condition for thedetermine the coherent potentials at each site within the
coherent potential in the coherent potential approximationunit cell of the superlattice; compared to the homogeneous
(CPA) reduces to the requirement that the impurity averalloy CPA, they are considerably more complicated to
aged scatteringmatrix at a site vanishe$;) = 0 [8]. solve because we havwe coupled equationsV is number

To account for correlations in the scattering from a pairof monolayers in the unit cell). Since the main purpose
of impurity sites we regroup th€ matrix into pairwiset  of this Letter is to show the critical role of short-

matrices. From Eq. (4) this is written as range ordering at interfaces in producing spin-dependent
scattering, we focus our attention purely on interface

T: = t; + t:GoT; + ;G Z T, (6)  scattering. For simplicity, we first consider a simple cubic

m#i,j structure; then we outline our results for the bcc structure.

Let us designate two meta#sandB in contact, sharing

and a common[100] interface with monolayers 1 and 2
nearest to the interface, see Fig. 1(b). When atdm
T; =t + 1;GoTi + 1;Go Z'Tw (")  with potential v, occupies monolayer 2, ator is in
mFL layer 1 directly to the left ofA; i.e., we limit ourselves
By replacing Eq. (7) into Eq. (6), we arrive at to nearest neighbor diffusion. We introduce the site-
diagonal coherent potential for a layered structure [9]
T_pt+szOZ ms (8) R N
mEL] S =Sl + 12520+ D Imva(ml,  (12)
where m#1,2
lj -1 - t-GOt,-GO)"r(l + Got;) (9) where we have only included the disorder of the two

layers adjacent to the interface, alig is a potential at
represents repeated scattering at siteand j. The  site m which is not at the interface. With this coherent
structure of Eq. (8) is similar to Eq. (4); one replaces thepotential, the potential at site(i = 1,2) is eitherv, —
single-sitet matrices by the pair matrices . >; or v, — ; depending whether the siteis occupied
With our classification of thd;, Eq. (8), it is possible by theA or B atom. The Green’s function for our chosen
to keep correlations between scattering impurities at a pairoherent potential iy = (e — Hy — 3. Explicitly,
of sites and neglect those between this pair and othewxe can write down the CPA condition, Eqg. (11), as

|
(va — 21) — (o — 21 (vp — 22) (G — G1o)
1 = (va — 201G — (vp — 22)G + (v — 21) (vp — 22) (G11Gn — G12G2y)
(vp — 21) — (vp — 21) (Vg — 22)(Gn — G1n)

=0 13
e 1= (vp — 211G — (Vg — 22)G + (vp — 21) (Vg — 22) (G116 — G12G2y) (13)

(I —=oc)
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and a similar equation by exchanging the labels 1 and 2 of (] — UL)ZPT(GF)
the above equation, whe®; = (i| (e — Hy — 2)~ '), @pulk = ok — ol Ppler) (19)
and ¢ is the concentration (probability) that atoBis va = Up)"pLEF

found in layer 1. These are the equations that musThe enhancement from correlated scattering at the inter-
be solved self-consistently to determine the self-energyace is the ratio of Egs. (18) and (19), in which the factors
(coherent potentials); andX.,. (v? — vj)?* cancel.

The key difference entering the pairwise CPA con- To quantitatively determine the enhancement of the
ditions for the coherent potentials, Eq. (13), is the sitespin-dependent scattering at interfaces, we model the
off-diagonal Green’s functions, which are absent in thenterfacial region by spin-polarized tight binding bands.
single-site CPA condition. These propagators keep trackor a simple cubic lattice we use
of the correlations in the scattering from the ordered im- -
purities that may exist at interfaces; the SSA makes the €k — € tlcodkzao) + coskyag) + cosk:ao)l,
unrealistic assumption that impurities on the two sides of (20)

an interface are uncorrelated. At the present time there ignhere 4, is the lattice constant, and is the spin index.
no direct evidence for ordering of interdiffused impurities; The spin dependence of the band is described by a con-
however, its existence explains the enhanced spin depeggnt exchange potential — €. Taking the bandwidth
dence of the interface scattering that has been observed [3}, pe one, we show in Fig. 2 the spin-dependent scattering
To demonstrate the importance of short-range ordefatios at interfaces with, Eq. (18), and without, Eq. (19),
on the resistivity and magnetoresistance, we examine thénort-range correlations. The spin dependence of scatter-
limit where both the concentration and the relative jng from correlated pairs at interfaces is indeed enhanced
scattering potentiab, — v, are small, i.e., dilute and compared to scattering in the bulk. This provides one ex-
weak scattering limit. We linearize Eq. (13) with respectp|anation for the observation [2] that interface scattering is
to ¢, and only keep terms up to second order in themore spin dependent than the scattering in the bulk. The
potentials. We find the simple expression for the self-enhancement of the spin dependence of interface scatter-

energies (coherent potentials), ing will be in proportion to the fraction of scattering at
S =ve + c{vp — va + (vg — vp)2(GY — GO} interfaces coming from interdiffuged pairs of atoms.
(14) We have also carried out similar calculations for bcc
and fcc structures. For[d00] bcc interface, an impurity
and can diffuse to four possible nearest neighbors; therefore,

we need to extend our formulation to include four pairs
for each site at an interface. Following our decoupling
procedure of impurity averaging, we regroup thenatrix

=v, tcfvg —vp + (vp — Ua)z(ng - G(Z)l)}’
(15)

where G?,- = (il (e — Hy)~'lj) is the matrix element of

the Green’s function for the perfect superlattice. The
local relaxation time, which is given by the inverse of the
imaginary part of the self-energy, is L

B
/71 = —Im3; = c(v, — vp)*[—IM(GY, — GY,)] E 50 ]
16 F L 1
. . . g - -
and a similar expression holds fofr,. For comparison g i i
the self-energy without taking account of the short-range i'?’ 40 _
order of the impurities at the interfaces is £ - -
1/7i = c(va — vp)*(—IMGY) = c(vy — vp)?7p(e) 8 | i
(17) E 20 - 5
for i = 1,2, wherep(e) is the density of states at the A L N
interface. C | I i
As Egs. (16) and (17) hold for each direction of spin 0o P a—
the ratio of scattering rates for up spins to down spins at Bulk spin—dependent ratio
an interface, due to correlated scattering, is from Eq. (16}, 2. The ratio of the spin-dependent scattering rates at the
T — o, Iyere o _ &0 interface compared to that in the bulk from Egs. (16) and (17)
Aing = (e = vp)[=IM(G11 — G1o)] 18 for the[001] interface of a simple cubic lattice. For simplicit
int ] ] 0l 0l ) ( ) p p y
(va — vp))[—Im(G|; — G13)] we have assumed that the spin dependence of the scattering

. . . from the bulk and from interfacewithout correlations is the
while that fromuncorrelatedscattering at the interface or same. Note that the ratio at the interface is one when the bulk

in the bulk is from Eq. (17) is one.
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as follows:

4
T0=l‘0+l‘oG()ZTa + t0Go Z Tlg,

a=1

(21)

ties at interfaces becomes availatab, initio calculations
of the transport properties of metallic multilayers should
take into account these important correlations.

This research was supported by the Office of Naval

where the label “0” in thet matrix represents a site Research under Grant No. NO0014-96-1-0203.

at the monolayer 1 with nearest neighbors “1-4" at
the monolayer 2. Similar equations f@f, can also be
rearranged. In the dilute and weak scattering limit we can
discard the last term in Eq. (21), and we find

4
1/7-0 = c(v, — Uh)2|:_|m(G(())0 - Z G(())a/4)i|’ (22)
a=1

where again we have limited ourselves to scattering from

nearest neighbors. By using the tight binding band for [2]

a bcc latticeey = €” — t codk,by) cogk,bg) codk,b)
where by = (v/2/2)ay, we are able to reach the same
conclusion, i.e., the spin dependence of scattering is
enhanced by the correlated scattering at interfaces from
pairs of interdiffused impurities. For example, if one uses
the same band parameters, the enhancement wiibloe

for bcce structures if that for the simple cubicten. This

is indeed quite significant. For thid00] fcc interface

the four nearest neighbors are rotated by @ih respect

to the bcc lattice; from the consideration below we can
anticipate the enhancement to be less than that for simple

cubic lattices and the same order as the bcc quoted above.

While quantitative calculations for realistic multilayers
are much more complicated than our tight binding band
approximation, our simple model in the limit of dilute and
weak scattering provides physical insights of the effect of
the short-range order at interfaces. The essential ingre-
dient in Egs. (16) and (22) is the appearance of interfer-
ence in the scattering through the Green’s functions. If
we limit ourselves taW nearest neighbors at an interface,
the interference term is

M
v 200 = 37 ZZ s ICS

[1] That is, whether the spin dependence of the scattering is

primarily due to the band structure of the superlattice and
thus to the different density of states at the Fermi level for
the majority and minority conduction electrons, or whether
the spin dependence is intrinsic to the scattering poten-
tial itself.
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