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Enhanced Spin-Dependent Scattering at Interfaces
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Correlations in the scattering from the ordering of impurities due to interdiffusion between m
at interfaces are taken into account. The constructive interference between scattering amp
produces enhanced spin-dependent scattering from the interface between magnetic and nonm
metals. [S0031-9007(96)00764-8]

PACS numbers: 73.40.–c, 73.50.Bk, 75.70.Pa
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The giant magnetoresistance (GMR) observed in
transition-metal magnetic multilayers results from t
change in the scattering of the conduction electrons
the magnetic configuration of the multilayer goes fro
one where the layers are on the average antiparalle
zero or coercive field to one where they are aligned
parallel at the saturation field. There is some debate
to the origin of the dependence of this scattering on
magnetic configuration [1]; however, it is clear that spi
dependent scattering is needed for GMR to occur, a
that the scattering at interfaces plays a critical role
producing this effect [2].

For interfacial scattering to produce resistance it is n
essary for it to be diffusive; this requires defects or roug
ness at the interface. For metals which are well latt
matched, most of the important roughness will be of tw
types: interdiffusional and geometrical; see Fig. 1. In th
figure we show a pair of atoms that have exchanged th
host positions [3]; rearrangements involving more ato
are often indistinguishable from short-range geometri
roughness. Geometrical roughness is more complica
because this type of roughness has several length sc
associated with it; its effect on conduction electron sc
tering has received some attention [4]. Notwithstand
other sources of scattering [5] we focus our attention
one source that has heretofore not been considere
either model orab initio calculations [6] of the GMR:
thecorrelatedscattering from pairs of interdiffused atom
at interfaces.

In the bulk of the layers the impurities are not spatia
correlated; e.g., they can exist as isolated impurities o
uncorrelated clusters. The scattering between rando
located impurities is phase incoherent, and one adds s
tering probabilities to arrive at the total. However, at inte
faces the scattering from a pair of interdiffused impuriti
is phase coherent; therefore one adds the scattering am
tudes before calculating the probability. In this latter ca
the resultant scattering can be greater or less than the
of the individual ones due to quantum interference.

To illustrate the difference between scattering from u
correlated and correlated impurities we develop multip
scattering theory for correlated impurities; for clarity w
restrict ourselves to an ordered pair that is created at an
0031-9007y96y77(5)y916(4)$10.00
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terface. We show that for the same single-site scatter
parameters correlated scattering from a pair of impurit
produces scattering which is much more strongly spin
pendent than the scattering from the individual impuritie

We choose as our Hamiltonian for a magnetic multilay

H ­ Hc 1 V ­ Hc 1
X

i

yi , (1)

where Hc is the Hamiltonian for any chosen cohere
potential which may be complex, andyi is the difference
between the actual scattering potentialya (if the site is
occupied by the atoma) and the coherent potentialSi

at i site. As we are discussing a multilayered period

FIG. 1. Profiles of the interface due to geometrical roughne
(a), and due to interdiffusion (b) (exchange of a pair
atoms). While there exists a clear interface for (a), it is n
true for interdiffusion. The present calculation is focused
interdiffusional interfaces (b).
© 1996 The American Physical Society
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structure, our coherent potential varies from one atom
layer to another within a unit cell [7]. The Green
function is written as

G ­ se 2 Hc 2 V d21 ­ G0 1 G0TG0 , (2)

whereG0 ­ se 2 Hcd21,

T ­
X

i

yis1 1 G0T d ;
X

i

Ti , (3)

Ti ­ ti 1 tiG0

X
jfii

Tj , (4)

and

ti ­ s1 2 yiG0d21yi (5)

represent repeated scattering by the impurity at sitei.
Equation (4) is exact; it separates the total scattering
site i as a part coming from single-site scatteringti and
that from the surroundingTjsj fi id. In the single-site ap-
proximation (SSA) one neglects correlations between s
tering at different sites, so that the condition for th
coherent potential in the coherent potential approximat
(CPA) reduces to the requirement that the impurity av
aged scatteringt matrix at a site vanishes,ktil ­ 0 [8].

To account for correlations in the scattering from a p
of impurity sites we regroup theT matrix into pairwiset
matrices. From Eq. (4) this is written as

Ti ­ ti 1 tiG0Tj 1 tiG0

X
mfii,j

Tm (6)

and

Tj ­ tj 1 tjG0Ti 1 tjG0

X
mfii,j

Tm . (7)

By replacing Eq. (7) into Eq. (6), we arrive at

Ti ­ p
j
i 1 p

j
i G0

X
mfii,j

Tm , (8)

where

p
j
i ­ s1 2 tiG0tjG0d21tis1 1 G0tjd (9)

represents repeated scattering at sitesi and j. The
structure of Eq. (8) is similar to Eq. (4); one replaces t
single-sitet matrices by the pair matricesp

j
i .

With our classification of theTi, Eq. (8), it is possible
to keep correlations between scattering impurities at a p
of sites and neglect those between this pair and ot
ic
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sites, by uncoupling the impurity averages of theT matrix,
Eq. (8), as follows,

kT l ­
X

i

kTil ­
X

i

kpj
i l 1

X
i

kpj
i lG0

X
mfii,j

kTml . (10)

Since all pairs at interfaces are the same after impu
average, the CPA condition (kTl ­ 0) for determining the
coherent potential within the approximation of pairwis
ordering is

kpj
i l ­ 0 . (11)

For comparison, in the SSA it isktil ­ 0.
In magnetic multilayers, impurity scattering occurs

the bulk and at the interfaces. The CPA treatment for
scattering in the bulk is the same as the alloy proble
i.e., by using the uncorrelated single-site approximatio
ktil ­ 0 when the sitei is not at an interface. For
correlated pairs at interfaces, we use our pairwise C
kpj

i l ­ 0. When solved self-consistently these equatio
determine the coherent potentials at each site within
unit cell of the superlattice; compared to the homogene
alloy CPA, they are considerably more complicated
solve because we haveN coupled equations (N is number
of monolayers in the unit cell). Since the main purpo
of this Letter is to show the critical role of short
range ordering at interfaces in producing spin-depend
scattering, we focus our attention purely on interfa
scattering. For simplicity, we first consider a simple cub
structure; then we outline our results for the bcc structu

Let us designate two metalsA andB in contact, sharing
a common f100g interface with monolayers 1 and 2
nearest to the interface, see Fig. 1(b). When atomA
with potential ya occupies monolayer 2, atomB is in
layer 1 directly to the left ofA; i.e., we limit ourselves
to nearest neighbor diffusion. We introduce the sit
diagonal coherent potentialŜ for a layered structure [9]

Ŝ ­ j1lS1k1j 1 j2lS2k2j 1

NX
mfi1,2

jmlymkmj , (12)

where we have only included the disorder of the tw
layers adjacent to the interface, andVm is a potential at
site m which is not at the interface. With this coheren
potential, the potential at sitei (i ­ 1, 2) is eitherya 2

Si or yb 2 Si depending whether the sitei is occupied
by theA or B atom. The Green’s function for our chose
coherent potential isG0 ­ se 2 H0 2 Ŝd21. Explicitly,
we can write down the CPA condition, Eq. (11), as
s1 2 cd
sya 2 S1d 2 sya 2 S1d syb 2 S2d sG22 2 G12d

1 2 sya 2 S1dG11 2 syb 2 S2dG22 1 sya 2 S1d syb 2 S2d sG11G22 2 G12G21d

1 c
syb 2 S1d 2 syb 2 S1d sya 2 S2d sG22 2 G12d

1 2 syb 2 S1dG11 2 sya 2 S2dG22 1 syb 2 S1d sya 2 S2d sG11G22 2 G12G21d
­ 0 (13)
917
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and a similar equation by exchanging the labels 1 and 2
the above equation, whereGij ­ kij se 2 H0 2 Sd21jjl,
and c is the concentration (probability) that atomB is
found in layer 1. These are the equations that m
be solved self-consistently to determine the self-ene
(coherent potentials)S1 andS2.

The key difference entering the pairwise CPA co
ditions for the coherent potentials, Eq. (13), is the s
off-diagonal Green’s functions, which are absent in t
single-site CPA condition. These propagators keep tr
of the correlations in the scattering from the ordered i
purities that may exist at interfaces; the SSA makes
unrealistic assumption that impurities on the two sides
an interface are uncorrelated. At the present time ther
no direct evidence for ordering of interdiffused impuritie
however, its existence explains the enhanced spin de
dence of the interface scattering that has been observed

To demonstrate the importance of short-range or
on the resistivity and magnetoresistance, we examine
limit where both the concentrationc and the relative
scattering potentialya 2 yb are small, i.e., dilute and
weak scattering limit. We linearize Eq. (13) with respe
to c, and only keep terms up to second order in t
potentials. We find the simple expression for the se
energies (coherent potentials),

S1 ­ ya 1 chyb 2 ya 1 sya 2 ybd2sG0
11 2 G0

12dj
(14)

and

S2 ­ yb 1 chya 2 yb 1 syb 2 yad2sG0
22 2 G0

21dj ,
(15)

where G0
ij ­ kij se 2 H0d21jjl is the matrix element of

the Green’s function for the perfect superlattice. T
local relaxation time, which is given by the inverse of th
imaginary part of the self-energy, is

1yt1 ­ 2ImS1 ­ csya 2 ybd2f2ImsG0
11 2 G0

12dg
(16)

and a similar expression holds for1yt2. For comparison
the self-energy without taking account of the short-ran
order of the impurities at the interfaces is

1yti ­ csya 2 ybd2s2ImG0
iid ­ csya 2 ybd2prsed

(17)

for i ­ 1, 2, where rsed is the density of states at th
interface.

As Eqs. (16) and (17) hold for each direction of sp
the ratio of scattering rates for up spins to down spins
an interface, due to correlated scattering, is from Eq. (1

aint ­
sy"

a 2 y
"
bd2f2ImsG0"

11 2 G
0"
12dg

sy#
a 2 y

#
bd2f2ImsG0#

11 2 G
0#
12dg

, (18)

while that fromuncorrelatedscattering at the interface o
in the bulk is from Eq. (17)
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abulk ­
sy"

a 2 y
"
bd2r"seF d

sy#
a 2 y

#
bd2r#seF d

. (19)

The enhancement from correlated scattering at the in
face is the ratio of Eqs. (18) and (19), in which the facto
sys

a 2 y
s
b d2 cancel.

To quantitatively determine the enhancement of t
spin-dependent scattering at interfaces, we model
interfacial region by spin-polarized tight binding band
For a simple cubic lattice we use

es
k ­ es 2 tfcosskxa0d 1 cosskya0d 1 cosskza0dg,

(20)

wherea0 is the lattice constant, ands is the spin index.
The spin dependence of the band is described by a c
stant exchange potentiale" 2 e#. Taking the bandwidtht
to be one, we show in Fig. 2 the spin-dependent scatte
ratios at interfaces with, Eq. (18), and without, Eq. (19
short-range correlations. The spin dependence of sca
ing from correlated pairs at interfaces is indeed enhan
compared to scattering in the bulk. This provides one
planation for the observation [2] that interface scattering
more spin dependent than the scattering in the bulk. T
enhancement of the spin dependence of interface sca
ing will be in proportion to the fraction of scattering a
interfaces coming from interdiffused pairs of atoms.

We have also carried out similar calculations for b
and fcc structures. For af100g bcc interface, an impurity
can diffuse to four possible nearest neighbors; therefo
we need to extend our formulation to include four pa
for each site at an interface. Following our decoupli
procedure of impurity averaging, we regroup theT matrix

FIG. 2. The ratio of the spin-dependent scattering rates at
interface compared to that in the bulk from Eqs. (16) and (1
for the f001g interface of a simple cubic lattice. For simplicit
we have assumed that the spin dependence of the scatt
from the bulk and from interfaceswithout correlations is the
same. Note that the ratio at the interface is one when the b
is one.
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as follows:

T0 ­ t0 1 t0G0

4X
a­1

Ta 1 t0G0

X
bfi0,...,4

Tb , (21)

where the label “0” in thet matrix represents a site
at the monolayer 1 with nearest neighbors “1–4”
the monolayer 2. Similar equations forTa can also be
rearranged. In the dilute and weak scattering limit we c
discard the last term in Eq. (21), and we find

1yt0 ­ csya 2 ybd2

"
2Im

√
G0

00 2

4X
a­1

G0
0ay4

!#
, (22)

where again we have limited ourselves to scattering fr
nearest neighbors. By using the tight binding band
a bcc latticee

s
k ­ es 2 t cosskxb0d cosskyb0d cosskzb0d

where b0 ­ s
p

2y2da0, we are able to reach the sam
conclusion, i.e., the spin dependence of scattering
enhanced by the correlated scattering at interfaces f
pairs of interdiffused impurities. For example, if one us
the same band parameters, the enhancement will befour
for bcc structures if that for the simple cubic isten. This
is indeed quite significant. For thef100g fcc interface
the four nearest neighbors are rotated by 45± with respect
to the bcc lattice; from the consideration below we c
anticipate the enhancement to be less than that for sim
cubic lattices and the same order as the bcc quoted ab

While quantitative calculations for realistic multilayer
are much more complicated than our tight binding ba
approximation, our simple model in the limit of dilute an
weak scattering provides physical insights of the effect
the short-range order at interfaces. The essential in
dient in Eqs. (16) and (22) is the appearance of interf
ence in the scattering through the Green’s functions.
we limit ourselves toM nearest neighbors at an interfac
the interference term is

1
M

MX
a

G0a ­
1
M

MX
a

X
k

expsik ? r0ad
e 2 ek 1 id

, (23)

where r0a is the vector connecting two correlated site
When the diffusion process happens beyond nea
neighbors (bad multilayers), the effect of interference
much smaller (for example, if the diffusion happens f
the third nearest neighbors, the interference effect is p
tically zero) since the average of expsik ? r12d approaches
zero, and one recovers the single-site CPA approximat
The calculations for various crystallographic orientatio
of the multilayered growth will be presented elsewhere

In summary, we have accounted for correlations in
scattering from a pair of impurity sites at an interfa
by replacing the single-site CPA conditionktil ­ 0 by
the conditionkp

j
i l ­ 0, and have developed a multipl

scattering theory to explicitly take into account this sho
range order. The new CPA algorithm goes beyond sing
site CPA, and we have demonstrated that it accounts
an enhanced spin dependence of the interface scatte
As structural evidence for short-range ordering of impu
t
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ties at interfaces becomes available,ab initio calculations
of the transport properties of metallic multilayers shou
take into account these important correlations.
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