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The gaps between occupied sites on linear cuts of two and three dimensional critical percolati
clusters are found to be closely described as statisticallyindependent,with a universal scaling
distribution close to that of positive Lévy flights. The moments of the mass distribution of Lévy
flights obeykmklykmlk ­ k! fGsa 1 1dgkyGska 1 1d, wherea is their fractal dimension. Our data
on linear cuts of critical percolation clusters are consistent (within the numerical error bars) with the
predictions. The property of statistical independence of the gaps characterizes thelacunarity of the
percolation clusters as beingneutral. [S0031-9007(96)00801-0]
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Nature contains many random fractal structures [1],
much effort has been devoted to identifying good wa
to characterize them and to divide them into universa
classes. The fractal dimensionD, which describes the
scaling of the massM within a volume of sizeL, via
M ~ LD, provides one such characteristic. Howev
many different structures share the same value ofD
but look very different from each other ([1], Chaps.
and 35 [2,3]). A more detailed characterization involv
cutting a fractal structure which is embedded in ad
dimensional Euclidean space with a one dimensional l
Self-similarity implies that the mass of the fractal du
of points on the linear cut scales asm ­ ALa , where
a ­ D 2 d 1 1 , 1 is the fractal dimension of the cu
[1]. Although the exponenta characterizes the scale
all the measurements, the amplitudeA depends on the
process (A is not the same for all fractals for whic
the cut has dimensiona), fluctuates among differen
random realizations and between different linear c
and may even oscillate as a function of lnL for a given
realization [4]. These variations result from the prese
of empty holes of different sizes, and are associated w
the concept oflacunarity [1].

A nontrivial consequence of self-similarity is that th
moments ofm scale as

kmkl ­ mkLka , (1)

with the unifractal exponentska and with mk ­ kAkl.
The cumulantskAklc and, particularly,kDm2lykml2 ;
kA2lcykAl2 ­ m2ym

2
1 2 1 have been used to quanti

mass lacunarity: large (small) values of this ratio cor
spond to a less (more) uniform mass distribution [1
Fractal models with small mass lacunarity have b
shown to relate to standard analytic continuations
Euclidean dimensions [5].

Starting from a point on the line which belongs to t
structure, consider the length of the nearest gap, tha
0031-9007y96y77(5)y877(4)$10.00
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the distancet1 to the next such point along the line, an
similarly the lengthsti between consecutive more dista
gaps. By a general theorem on fractals, the distribut
of ti is Prhti . tj , t2a ([1], p. 78). Our simulations on
critical percolation clusters, presented below, confirm t
prediction. Lacunarity involves thecompletedistribution
of points along the linear cut, including the possiblein-
terdependencebetween successive gaps. Statistically
dependent gaps characterize the Lévy dust (stopovers
positive Lévy flight that always moves to the right). Th
case was selected [2,3,6] as defining aneutral lacunar-
ity, i.e., the boundary betweenhigh and low lacunarity,
as reflected, e.g., by negative and positive antipodal co
lations, respectively [3]. Since the gap lengths of frac
dusts have infinite expectation, correlation is not usa
in their study and special methods were brought to be
For critical percolation clusters, a test of antipodal cor
lations [3] favored asymptotic independence, which w
approached slowly (from the negative side) as the sys
size increased. The goal of this Letter is to report tw
additional tests that support the notion that a cut throug
critical percolation cluster is modeled well by a Lévy du
of dimensiona ­ D 2 d 1 1, where D is the fractal
dimension of the cluster. Just like Lévy dusts, critic
clusters exhibitlong range correlations. Therefore, the
investigations in [3] and in this paper demonstrate an i
portant new feature of the correlations present in per
lation clusters: within small deviations—which may b
due to sampling fluctuations (e.g., averages being do
nated by rare events), slow finite size convergence
other systematic errors—they are compatible with inde
pendent gaps.This conclusion yields a variety of quant
tative predictions involving the distributions of these gap

To study dependence, we renormalize the gaps
putting q successive gaps together. The length of aq
gap” is xq ­

Pq
i­1 ti $ q, and we consider the proba

bility Nqssd that xq ­ s. If the htij’s were independent
© 1996 The American Physical Society 877
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identically distributed random variables, then a gen
alization of the central limit theorem implies that, fo
q, s ¿ 1, Nqssd approaches astable distribution[7,8] de-
scribed by the scaling form

Nqssd ­ sgqd21yaFafss 2 dqd sgqd21yag ,

asq, s ¿ 1 . (2)

Here, the scale factorsg andd are nonuniversal, butFa

is a universal scaling function determined completely
the fractal dimensiona. When the independent variable
ti have a finite variance, then the central limit theore
yields the Gaussian distribution, i.e., Eq. (2) witha ­ 2.
In contrast, for self-similar (fractal) dusts witha , 1,
N1ssd decays with the power laws2a21. In this case we
expectNq also to decay ass2a21 for sufficiently larges,
and to have some nontrivial structure whens becomes of
orderq1ya [7,8]. Specifically, in this case one has

Fasud ­
1

pu

X̀
k­1

s21dk21

k!
sinspkadGska 1 1du2ka ,

(3)

where Gsxd is the gamma function. These results al
imply that, for a stable distribution, the mass amplitud
A obey the Mittag-Leffler distribution [6,9] with the
universal amplitude ratios

Dk ; mkymk
1 ­ k! fGsa 1 1dgkyGska 1 1d . (4)

The present Letter considers critical percolation clu
ters, at the percolation thresholdpc, which have become
an excellent test ground for studying physics on rand
fractal structures [10]. Two of the present authors ha
measured the antipodal correlations in two dimensio
(2D) percolation clusters, and found them to be sligh
negative and decaying to zero for large samples [3]. T
decay was interpreted as indicating asymptotic neutral
cunarity. However, this measurement is somewhat in
rect; a much clearer check of the dependence along
linear cut is obtained by comparing the mass distribut
with the predictions based on stable distributions for t
reference positive Lévy flight. The present Letter repo
on measurements ofNqssd and of theDk ’s for linear cuts
of critical percolation clusters in two and three dime
sions; they turn out to be closely described by Eqs. (1
(4). This is strong evidence that consecutive steps al
linear cuts of such clusters are indistinguishable fromin-
dependent. Thus it seems that the universality class
stable distributions, which includes the Lévy flights, c
also describe critical percolation clusters. This opens
possibility of using this universal distribution to calcula
other percolation properties.

Our numerical work began by testing Eqs. (1) and (
We generated the percolation clusters atpc using the
Leath algorithm [11], starting with a single occupied s
in the center of the lattice of sizes2Lmax 1 1dd, and
continuing the growth until the cluster touched one of t
boundaries. In order to generate large statistics, sev
lines, both horizontal and vertical, were analyzed for ea
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realization of the cluster, collecting data only for tho
horizontal (vertical) lines for which the point atx ­ 0
sy ­ 0d (zeroth incident) was occupied. For each su
line we counted the massm as the number of the occupie
sites within a linear segment of lengthL, but excluding
the zeroth incident point.

Figure 1 shows the average mass for cuts on the squ
triangular, and 3D simple cubic lattices, at criticality (th
is, for pc ­ 0.592 746 [12], 0.5, and0.3116 [10], respec-
tively), as a function of the linear sizeL ( lattices with
30 0012 and 10253 sites). Except for finite size effect
when L approachesLmax, the data are consistent wit
Eq. (1), and the slopes agree witha ­ D 2 d 1 1 for
percolation clusters, for which one expects the asympt
valuesD ­ 91y48, 2.53 in 2D, 3D [10], as shown by the
dashed lines. Quantitative measurements of the loga
mic local slopes allow errors of60.006 and60.02 on the
measureda’s. Since we believe in the asymptotic valu
a ­ D 2 d 1 1, we attribute this scatter to numerica
fluctuations, e.g., due to finite sampling. Similar behavi
with exponentka, was observed for the higher momen
of the mass, confirming the unifractal mass distribution
the cuts (data not shown).

The analysis of the moment ratiosDk turned out to be
complicated because of the finite size effects: we nee
extrapolate bothL andLmax to infinity, keeping the ratio
LyLmax very small. In practice, both1yL andLyLmax are
finite, and the competition between them results in “U
shaped curves when the data forDk are plotted as a func-
tion of 1yL (as done in the insets in Fig. 2). We analyz
these data assumingDksL, Lmaxd ­ Dk 1 akyLx 1

bksLyLmaxdy ; this simple scaling predicts that the minim
scale as minfDksL, Lmaxdg ­ Dk 1 a0

kL2z
max, where z ­

xyysx 1 yd. We find our data to be compatible wit
the theoretically reasonable valuesx ­ y ­ 1 and there-
fore also withz ­ 1y2. For example, the extrapolatio
of D2 usingz ­ 1y2 is shown in Fig. 2(a) [2(b)] for the
square [triangular] lattice. We also tried several altern
tive analyses, and all gave similar results, leading
our final estimates of D

2D perc
k ­ 1.096 6 0.015,

1.26 6 0.04, 1.50 6 0.06 for k ­ 2, 3, 4, respectively.
The error bars account for the difference between
two lattices and especially the spread of the extrapolat
results between the different methods of analysis. T
estimate ranges include the theoretical predictions for
stable distribution for this value ofa [see Eq. (4)], for
which Dk ­ 1.108, 1.292, 1.561, especially if one notes
that the error bars ona also imply error bars on thes
“theoretical” values. (For example, the range of “me
sured”a implies values ofD2 between 1.101 and 1.114
Similar analysis of the 3D data givesD

3D perc
k ­

1.53 6 0.04, 2.90 6 0.20, 6.3 6 0.5, for k ­ 2, 3, 4,
again including the moments of the stable distribution
for a ­ 0.53, Eq. (4) yields Dk ­ 1.534, 2.957, 6.648.
The errors ina again add some uncertainty to the latt
values. Given the difficulties in finite size extrapolatio
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we conclude that our data show no observable deviat
from those of Lévy flights.

We next turn to the distributionNqssd. We first note
thatFasud ~ u2a21 for u ¿ 1. sssThis can be seen heuris
tically, e.g., by assuming a power law decay forFa, cal-
culating kql ­ kml ­

PL
q­1 qNqsLdyf

PL
q­1 NqsLdg with

fixed, largeL, and requiring thatkml ~ La.ddd For very
small u, the probability to findq consecutive occupied
sites on the line equals approximatelyp

q
c , with a combi-

natorial prefactor which may involve a power ofq or at
least a multiplicative constant. Keeping only the exp
nential accuracy, one can writeNqsqd ø p

q
c . Using the

scaling form of Eq. (2), a change in variables yields t
asymptotics foru ø 1,

lnFasud ø 2sCudaysa21d, (5)

with C ­ f2lnspcdyggsa21dyagys1 2 dd. It is satisfac-
tory to note that these percolation arguments capture
sentially the correct asymptotics for the general family
the stable distributionsFa [7,13].

FIG. 1. Log-log plot of the average mass (dots) versus lin
size L for the (a) square (upper points) and triangular ( low
points) lattices, (b) 3D simple cubic lattice. The dashed lin
in (a) and (b) have slopes43y48 and0.53, respectively.
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To check Eqs. (2) and (3) quantitatively, we calculat
first the distributionNqssd for percolation cluster cuts
on the square and triangular lattices. Figures 3(a)
3(b) show the excellent data collapse ofNqssd sgqd1ya

for these systems, as predicted in Eq. (2). Furtherm
the observed data collapse also supports both asympt
as discussed above [in 3D, in Fig. 3(c), the smallu
asymptotic form contains an additive constant to Eq. (
representing the leading correction to that limit]. In th
figure we have chosen scale and location parameterd

and g) so that the measured scaling function match
the stable distributionFa. Indeed, choosingg ­ 1.8
and d ­ 20.45 (g ­ 3.1, d ­ 21.7) for the square
(triangular) lattice gives a reasonable fit toFa [see Eq. (3)
and solid lines in Fig. 3]. In particular, the data for th
triangular lattice fit excellently with the stable distributio
These values ofg and d were fixed using the eye, b
choosing the best looking fit withFa . Some quantitative
measure of the quality of the fits, and especially of
consistency of the theory, can be gained by noting t
the universality ofFa implies the universality of the

FIG. 2. The extrapolation ofD2 for the (a) square, (b)
triangular lattice, by plotting the minima ofD2 versusL21y2

max .
The insets show the “U”-shaped rawD2 plotted versus
1yL for Lmax ­ 250, 1000, 8000 (from top to bottom).
879
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FIG. 3. The scaled distributionsgqd1yaNqssd, a ­ D 2 d 1
1, measured from the percolation cluster atpc on the (a)
square, (b) triangular, and (c) 3D simple cubic lattice. Mark
denote different values ofq: q ­ 3, 5, . . . , 19 in (a), (b), and
q ­ 3, 4, . . . , 11 in (c). Note also different scales in (a), (b
and (c). The dashed lines show the asymptotic behavior for
scaling function: the right-hand side line has slope2a 2 1,
and the line on the left represents Eq. (5). The solid line is
stable distribution of Eq. (3).

coefficient C. Indeed, the values ofC for the square
(C ­ 1.43) and triangular (C ­ 1.37) lattices are within
4% of each other. Furthermore, these values are
close to the exact value for Lévy flights,C ­ 1.452.

Our simple cubic lattice results yield similar da
collapse forNqssd, as depicted in Fig. 3(c). The qualit
of the data collapse is less good than in 2D, because
had to use relatively small system sizes (Lmax # 512).
This may also be the reason for the worse agreem
with the stable distribution asymptotics. Despite the
apparent finite size effects the observed data colla
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for 3D percolation, as well as the fit with the stab
distribution, seems consistent with Eqs. (2) and (3).

In conclusion, we find that linear cuts of two and thr
dimensional critical percolation clusters have almost ind
pendent gaps, hence may be described using the same
versal class as positive Lévy dusts, with the correspond
stable distribution, Eqs. (1)–(4). This suggests that the
cunarity of percolation cluster is very closely neutral.
would be interesting to check the conjecture that this n
trality is, in fact, exact. We hope that similar methods c
be used to calculate other percolation properties, and
this Letter will stimulate similar studies on other fract
structures, and more numerical and theoretical work
rected to understanding the origin of this independence
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