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Dynamics of Brittle Fracture with Variable Elasticity

Farid F. Abraham
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120
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Simulations show that brittle cracks approach six-tenths the Rayleigh speed and follow the h
surface energy path. Using an interatomic potential recently developed by J. P. Sethna, we fi
the crack’s limiting speed now approaches the theoretical prediction of the Rayleigh speed, b
crack path is still associated with greatest elastic stiffness and surface energy. We conclu
the crack’s dynamics is governed by the anisotropic mean-field elasticity associated with large
($7%). [S0031-9007(96)00740-5]

PACS numbers: 62.20.Mk
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With the advent of scalable parallel computers, class
molecular dynamics has become a very powerful tool
providing immediate insights into the nature of fractu
dynamics [1,2]. We have studied rapid brittle fractu
of two-dimensional notched solids under tension us
106 atom systems. Similar to recent experiments [3], o
initial interest was to study the instability dynamics
failure under “mode one” loading. From the comput
simulations [1], an explanation for the limiting spee
of the crack being significantly less than the theoreti
limit became apparent. Also many microscopic proces
governing the fracture process were identified, such
the presence of dislocation emission when the cra
becomes unstable.

However, we also learned from simulations using t
simple Lennard-Jones potential that the crack favor
path along the highest surface energy face [4]; the surf
energy for a given crystal face (a line for a 2D soli
is calculated by counting the number of broken bon
per unit length for the relaxed, zero temperature so
along a chosen direction. This is contrary to conventio
wisdom which would identify the lowest energy surfac
as the cleavage direction. Because the elastic const
are profoundly anisotropic for large strains, we question
whether this elastic anisotropy was the reason. Set
has recently modified the Lennard-Jones potential wh
gives an isotropic modulus with an anomalous increa
up to very large strains (,6%), though still short of the
maximum tip strain [5]. We find similar path behavio
for the brittle fracture, but with an enhanced limitin
crack velocity approximating the Rayleigh speed. W
propose an explanation for crack speed approach
the theoretical limit based on the anisotropic mean-fi
elasticity associated with large strains ($7%) and the role
of elastic fluctuations in the anisotropic medium. W
now discuss the interatomic potentials, their elasticity,
model system for the fracture simulations, the simulat
results, and our conclusions.

The interatomic forces are treated as central forc
modeled as a combination of a Lennard-Jones (LJ) 1
with a spline cutoff [6]. The LJ 12:6 part is simply
0031-9007y96y77(5)y869(4)$10.00
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wheree is the LJ well depth ands is where the potential
goes through zero. We express quantities in terms
reduced units; lengths are scaled bys, energies bye.
As discussed previously [6], this model potential can
used to represent a “brittle” material. In Fig. 1(a), w
present the Young’s modulus for a 2D triangular latti
of Lennard-Jones atoms for two orthogonal directio
of the applied strain. The modulus is calculated
expanding the crystal uniformly in a chosen directio
and relaxing it in the orthogonal direction by an amou
which minimizes the total potential energy (at ze
temperature). The equilibrium contraction determines
Poisson ratio for the applied strain. The resulting str
is calculated using the viral expression for the press
tensor. The stress as a function of strain determines
Young’s modulus. We have strained the 2D solid in tw
orthogonal directions; the “soft” direction correspon
to a row of atoms along that direction being spac
by the lattice constanta, and the “stiff” (orthogonal)
direction is where these same rows are separated in
perpendicular direction by

p
3y2a [see Fig. 1(a)]. Soft

denotes the smallest Young’s modulus, and stiff deno
the largest modulus. The triangular lattice propert
under large deformations are not isotropic: rotating by 9±

will exchange the points with the sides of the hexago
and directional dependences on lattice structure can
reflected in materials’ properties, which is the case
large strains. We also note that the soft direction is
weak direction, failing at a strain of,13% in contrast to
the stiff direction that is the strong direction that has
failing strain of,19%.

By a suitable choice of the interatomic potential, o
can make the long-wavelength behavior substantia
more isotropic by forcing the first few nonlinear elast
coefficients to be isotropic [5]. It should be mentione
that the simple harmonic potential does not give elas
isotropy beyond a very modest strain of 1%. The analy
is quite simple if one assumes only nearest-neigh
forces. Equating the energy for equivalent strains alo
© 1996 The American Physical Society 869
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FIG. 1. (a) Dependence of Young’s modulus on mode I str
for a 2D LJ crystal, and (b) for a 2D “modified” LJ crysta
where the triangular lattice is stretched in the soft and s
directions, respectively. The lattice clusters inserted in
depict the lattice orientation giving soft and stiff moduli fo
an imposed horizontal strain.

the xx andxy directions to third order in the strains lead
to the constraint

V 000sad ­ s3yadV 00sad.
There is one more independent third-order nonlin
elastic constant for a hexagonal material than for
isotropic material, so this constraint is the only one: a
pair potential satisfying this will be isotropic to thir
order. Similarly, to fourth order the constraint

V 0000sad ­ s3yad V 00sad
produces an isotropic potential. The cubic and quadr
terms are added to the Lennard-Jones pair potentia
satisfy these two constraints,
870
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This potential reaches a maximum at 1.354 96, wh
(coincidentally) its value is quite close to zer
s20.001 227 15d. The potential is cut off at this ra
dius, which is below the second-neighbor distance. Fr
Fig. 1(b), we see that the new modified pair potent
gives an isotropic elastic solid for strains up to 6%, e
panding the strain range for isotropy significantly. Als
the modulus increases in this region, meaning that
solid becomes stiffer upon expansion. However, beyo
a strain ofemax , 6%, the moduli for the two orthogona
directions separate and retain their original orientatio
dependence for being stiff and soft. Similar to the
solid, the soft direction fails at a strain of,14%, and the
stiff direction fails at,19%. However, the magnitudes
of the moduli in the anisotropic region for the LJ sol
and the modified LJ (MLJ) solid have entirely differen
dependences; e.g., at the failure points for the soft dir
tion of the two solids, the stiff modulus for the LJ soli
is very small, while the stiff modulus for the modifie
LJ solid is approximately at its maximum. These a
features that we will return to when we discuss the resu
of the simulation experiments. Also, the surface ene
for the LJ solid and the MLJ solid are equal for a chos
crystal direction since the two potentials are identical
zero strain.

We now consider the fracture simulation model usi
these potentials. The system is a 2D rectangular s
of atoms withL atoms on a side whereL ­ 1424 for
the ,2 3 106 atom system. The slab is initialized at
reduced temperature of 0.000 01. A notch of 60 latt
spacings is cut midway along the lower horizontal sl
boundary, and an outward strain rateÙ́x is imposed on
the outermost columns of atoms defining the oppos
vertical faces of the slab. A linear velocity gradient
established across the slab, and an increasing lateral s
with time occurs in the solid slab with an applied stra
rate of Ù́x ­ 0.0001. With this choice, the solid fails
at the notch tip when the solid has been stretched
,1.5%. At the onset of crack motion, the imposed stra
rate remains constant (experiment 1) or is set to z
(experiment 2), and the simulation is continued until t
growing crack has traversed the total length of the sl
Both experiments give the same dynamical behavior,
we choose to report on the first type of experiment.

As mentioned in the introduction, we have learned th
the overall features of the fracture simulations on the
LJ solid depended on the crystal orientation (Fig. 2).
our earliest experiments [1], the notch is pointed in t
stiff direction. We observed that the crack’s net moti
remains in that direction, with oscillations about th
direction. We also did the same fracture simulation b
rotated the notch by 90± from the original orientation,
or in the soft direction. This direction is termed th
cleavage plane (line) since the created surface by frac
has the lowest energy and is believed to be the favo
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FIG. 2. Past simulations using the original LJ potential (see Ref. [4]); a black and white rendering is used to show t
evolution of the propagating crack through the solid slab. The time sequence goes from left to right. The top row is for th
initially moving in the stiff direction, and the bottom row is for the crack initially moving in the soft direction. The syste
,5 3 105 atoms.
in this
n, then
,
for all
direction for fracture. As a function of crystal direction, the surface energy changes by 15%. However,
orientation, the crack does not proceed along this cleavage line, but turns toward the orthogonal directio
branches. Because of the hexagonal crystal symmetry, this branched direction, which is 30± from the cleavage direction
corresponds to a stiff axis; that is to say, the crack path favors the stiff direction. The anisotropy in the elasticity
tential.
sions
ird images
ms by
FIG. 3. Black and white rendering of the time evolution of the propagating crack using the modified LJ interatomic po
The time sequence goes from left to right. The top row is for initial motion in the stiff direction and for a slab with dimen
1233 atoms by 1644 atoms. The time interval between the first and second images is 72 and between the second and th
is 43.2 (reduced units). The bottom row is for initial motion in the soft direction and for a slab with dimensions 1424 ato
1424 atoms. The time interval between the each consecutive image is 72.
871
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strains [Fig. 1(a)] led us to suspect that this was the orig
for this particular fracture behavior. This is consiste
with a continuum analysis of Gao [7].

The same two simulations with the modified LJ pote
tial are presented in Fig. 3. Similar path behavior e
ists between the LJ and modified LJ solids (Figs. 2 a
3), even though the solids are elastically quite differe
(Fig. 1). Considering0 # e # 6%, the LJ modulus is
anisotropic and a monotonically decreasing function
strain while the MLJ modulus is isotropic and increase
Hence, we conclude that the elasticity of the solids wi
strains up to6% does not play a governing role for the
crack path in brittle fracture. For6% # e # 20%, the
common feature of the LJ and MLJ elastic moduli is the
failure points: the soft moduli fail at,13%, and the stiff
moduli fail at ,19%. This suggests a simple picture fo
the crack path behavior; the crack path follows the st
direction because the bonds fail at a much lower strain.
the crack is initially moving in the stiff direction, it will
“stay” in that direction. Otherwise, a crack initialized in
the soft direction will eventually “branch” by630±, the
branch can be a single crack or a multicrack with a vert
at the point of branching. If the branch is a single crac
the material will “tear” in the symmetrically opposite sid
because of the created mixed mode (mode I and mode
asymmetry. This is vividly seen in Fig. 2.

The anisotropic elasticity plays a major role in th
direction of the crack path, and it also plays a ve
important role in the fluctuation dynamics of the crac
tip moving along the stiff direction. For the Lennard
Jones solid, the maximum tip speed is approximate
six-tenths of the theoretically predicted limit, or th
Rayleigh speed. From Fig. 2(a) [1] for the LJ solid
we see the onset of a crack instability beginning as
roughening of the created surfaces which quickly grow
into a pronounced zigzag or wavy tip motion. Th
oscillating zigzag motion of the crack tip results i
the apparent “forward” crack speed being significant
less than theoretical prediction (for details see Ref. [1
However, for the MLJ solid, the maximum tip velocity
approaches the theoretically predicted limit; i.e., it
about 0.9 times the Rayleigh sound speed. This is beca
the crack tip is not dramatically zigzagging about th
forward, and its “apparent” forward speed is its actu
forward speed. Why are there significant direction
deviations about the forward motion for the LJ soli
and not for the MLJ solid? We recall from Fig. 1 tha
at the failure points for the soft direction of the tw
solids, the stiff modulus for the LJ solid is very smal
while the stiff modulus for the modified LJ solid is almos
a maximum. Hence, for the LJ solid, asymmetrical stra
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fluctuations about the forward direction of motion cou
lead to failure along the stiff direction because of th
significant elastic softening in that direction. Such
not the case for the MLJ solid; while failing in one
direction, it is near its highest strength at the next near
lattice symmetry direction given by a 30± rotation from
the forward direction. However, there is still a surfac
roughening of the MLJ solid that begins at about on
third of the Rayleigh speed.

In summary, we have found that there are two distin
directions in a triangular LJ solid, a stiff direction alon
which the yield strain is large and a soft direction alon
which the yield strain is smaller. A crack propagates mo
stably along the stiff direction even though it creates
surface of higher energy. In other words, the crack do
not dynamically choose the low-energy cleavage directi
as is generally supposed in conventional fracture theo
While maintaining the same surface energy, the M
potential substantially increases the difference betwe
stiff and soft directions at large strains in such a wa
as to enhance the stability of cracks moving in the st
direction. Hence, it is the detailed stresses near the cr
tip, rather than the surface energy, that control direction
stability of fracture.
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