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Partial Dynamical Symmetry in Deformed Nuclei
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We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit
forms of Hamiltonians with partial S@3) symmetry are presented in the framework of the interacting
boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions
demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed
nuclei. [S0031-9007(96)00782-X]

PACS numbers: 21.60.Fw, 21.10.Re, 21.60.Ev, 27.70.+q

Recent years, in particular since the introduction of The starting point for the IBM description of axially
the interacting boson model of nuclei (IBM) [1], have deformed nuclei is the S@) dynamical symmetry, corre-
witnessed substantial progress in developing algebraisponding to the chain @) D SU(3) D O(3). The basis
symmetry-based models, which are now part of the stanstates are labeled 4N ] (A, w)KLM), whereN is the to-
dard lexicon of nuclear structure [2]. A characteristic andtal number of monopolést) and quadrupolédt) bosons,
attractive feature in these models is the occurrence of dyt the angular momentuni), ) denote the S(B) irre-
namical symmetries. This corresponds to a situation irducible representations (irreps), aid is an additional
which the Hamiltonian is written in terms of Casimir oper- label needed for complete classification and corresponds
ators of a chain of nested groups. A dynamical symmetrgeometrically to the projection of the angular momentum
provides considerable insight since it allows all propertieon the symmetry axis. The Hamiltonian in this case in-
of the system to be calculated in closed form. The labelsolves a linear combination of the Casimir operators of
of irreducible representations (irreps) of the groups in theSU(3) and Q3). The corresponding eigenstates are ar-
chain serve as quantum numbers to classify members ofranged in SWB) multiplets. The lowest SQ) irrep is
complete basis in which the Hamiltonian is diagonal. The2N, 0), which describes the ground bagfk = 0) of an
group-theoretical classification scheme inherent to the dyaxially deformed nucleus. The first excited SWirrep
namical symmetry basis facilitates the numerical treatmen@2N — 4,2) contains both the3(K = 0) and y(K = 2)
and interpretation of the general Hamiltonian. bands. Consequently, states in these bands with the same

The merits of having a (dynamical) symmetry are self-angular momentum are degenerate. T#Hy degeneracy
evident. However, in detailed applications of group the-is a characteristic feature of the &) limit of the IBM
oretical schemes to the spectroscopy of nuclei, one oftewhich, however, is not commonly observed [5]. In most
finds that the assumed symmetry is not obeyed uniformlygdeformed nuclei thg8 band lies above the band as is
i.e., some levels fulfill the symmetry while other levels evident from the experimental spectrum'8fEr shown in
do not. Exact symmetries impose severe constraints on
the corresponding spectrum (e.g., particular band degen-

eracies) which are rarely observed in real nuclei. These EXP SU(3) PDS wcD
observations motivate one to consider a particular sym- . . =

. . - . . —2 —12 -2 —8
metry breaking that would result in mixing of irreps in gl N E A,
some part of the spectrum while retaining a good symme- — — e E .

. . B . et et —8" —6
try to specific eigenstates. We refer to such a situation [ N " o7 —a® ,_7.
as partial (dynamical) symmetry. Within such symmetry & —10':; e e —s e o - o
construction only a subset of eigenstates are pure and pre= — B —s — — =5
serve the desired features of a dynamical symmetry. IBM* 01 _.—4 —s LTV | e T —' T4 B
Hamiltonians withF-spin partial symmetry were shown in a P 'R T
[3]. The mathematical aspects and algorithm for partial ;[ —¢ - P |- —s
dynamical symmetries (pds) were presented in [4]. The — - _4 —
purpose of the present work is to show that pds are not . - , .
just a formal mathematical notion but rather are actually *°[ g° ra r ra

realized in nuclei and thus may serve as a useful tool in
realistic applications of algebraic methods to nuclear sped=IG. 1. Spectra of ®®Er. Experimental energies (EXP) are
troscopy. In this Letter we consid&®Er as a typical ex- compared with an IBM calculation in an exact SUdynamical

; . symmetry [SUW3)], in a broken SW3) symmetry [6] and in a
ample of an axially deformed prolate nucleus in the raresartial dynamical S(8) symmetry (PDS). The latter employs

earth region and show the relevance of($Upds to its  the Hamiltonian of Eq. (6) withk, = 0.008, 7, = 0.004, A =
description. 0.013 MeV.
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Fig. 1. In the IBM framework, with at most two-body in- TABLE I.  B(E2) branching ratios from states in the band
teractions, one is therefore compelled to break3Uh  in 168. The experimental ratios (EXP) and the broken(3U
order to conform with the experimental data. To do so calculation of Warner, Casten, and Davidson (WCD) are taken
th | h has b to include in th i Hamiltoni from Ref. [6]. PDS are the partial dynamical 8Y symmetry

€ usual approach has been 1o Inciude in the Hamiltoniagycy|ation reported in the present work.
terms from other chains so as to lift the undesiged de-
generacy. Such an approach was taken in Ref. [6] wherd” Jf EXP PDS WCDJ” Jf EXP PDS WCD
an Qo) term was addeq to the $8) Hamiltonian yield— 27 0f 540 6427 66067 45 044 089 0.97
|1r6189 a satisfactory description of Fhe spectroscopic datg of* 5+ 100.0 1000 100.0 6+ 38 438 43

Er below 2 MeV, as shown in Fig. 1. However, in & &

+ +
this procedure, the SB8) symmetry is completely broken, 4i 6.8 626 6.0 Si 1.4 079 ~0.73
all eigenstates are mixed, and no analytic solutions ardy 2, 26 270 27 4, 100.0 100.0 100.0
retained. Similar statements apply to the description in 4, 1.7 133 13 5, 69.0 5861 59.0
the consisten® formalism [7]. In contrast, partial SB) 27 100.0 100.0 100.07; 6, 0.74 262 27

symmetry, to be discussed below, corresponds to breaksr 25 1.6 239 25 57 100.0 100.0 100.0
ing SUQ3), butin a very particular way so thaart of the 47 81 852 83 6: 59.0 39.22 39.0
states (but not all) will still be solvable with good symme- 6/ 11 107 10 8 6 18 059 067

try. Ag'such, the virtues of a dynamical symmetry (e.g., >+ 100.0 100.0 1000 et 51 357 35
solvability) are fulfilled but by only a subset of states. Y Y
M 4; 291 415 43 6; 100.0 100.0 100.0

To consider partial S(3) symmetry in the IBM y
framework we examine the following rotational-invariant 6, 36 331 31 7, 135.0 28.64 29.0
Hamiltonian: 37 100.0 100.0 100.0

47 122.0 98.22 98.5

H(ho,hz) = hz[_CSU(B) + ZN(ZN + 3)]
+ (/’l2 — ho)[—4N2 - 6N + g — I”\ltzi
+ 4Nig + 2Coe) — Cos)l, (1)

where hy, h, are arbitrary constants and we use thewhere PQ,M = (—)*Py,—,. The Hamiltonian is seen to
definition of Casimir operators as in Table | of the be constructed from boson pair operators with angular
Appendix in Ref. [8]. Clearly, forhy # h, the above momentumL = 0 and2, which are defined as

Hamiltonian contains a mixture of Casimir operators of

all IBM chains, hence it breaks the &) symmetry. pl=at - at — 2(s?,
However, it respects SB) as a partial symmetry. To t
: : - o : — ot gt T he
confirm this nontrivial statement, it is simpler to consider Py =2std, + Vi(d'd )#)' ©)

the normal order form [8,9] . ] )
3 These boson pair operators satisfy the following proper-
H(ho, hy) = h()P(-)rP() + /’lng - Py, (2) | ties:

Prule;N) =0, [Pru, PLIcs Ny = 8,28,26(2N + 3)|c; N),
[[Pr,.. P12], PI] = 8,26,,24P1,, L =0,2. 4)

The state|c;N) « [(st + \/Ed(;r)]"’ |0) in Eq. (4) is al in these representations. The statés are deformed
condensate ofl bosons, which serves as an intrinsic stateand serve as intrinsic states representjfgbands with
[10] for the SU3) ground band. For arbitraryig, i, ~ angular momentum projectiork(= 2k) along the sym-
coefficients the Hamiltoniarf (o, h,) is not an SW3)  metry axis [11]. In particular|k = 0) represents the
scalar. Nevertheless, it has a subset of eigenstates wiground-state bandk{ = 0) and |k = 1) is the y band
good SU3) character. This follows from relations (4) (K = 2). The intrinsic states break the(¥) symmetry

which imply that the sequence of states but since the Hamiltonian in Eq. (2) is an(3) scalar,
the projected states are also eigenstated @, /,) with
k) o (p;f’z)k le; N — 2k) (5) energy E; and with good S(B) symmetry. For the

ground bandk = 0) the projected states span the entire
are eigenstates of H(hg,h,) with eigenvalues SU(3) irrep (2N,0). For excited banddk # 0), the
E;, = 6h[2N + 1 — 2kJk. These energies are the projected states span only part of the correspondin@SU
SU(3) eigenvalues o (hy = hy) and identify the states irreps. There are other states originally in these irreps
|k) to be in the S B) irreps(2N — 4k,2k) with2k = N.  (as well as in other irreps) which do not preserve the
It can be further shown that they are lowest weight stateSU(3) symmetry and therefore get mixed. In particular,
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the ground(g) and y bands retain their S@3) character lation was to investigate the validity of the &) pds.

(2N,0) and 2N — 4,2), respectively, but thg8 band is  Clearly, the SW3) pds spectrum is an improvement over

mixed. This situation corresponds precisely to that ofthe schematic, exact $8) dynamical symmetry descrip-

partial SU3) symmetry. A HamiltoniarH (ho, h2) which  tion since theB-y degeneracy is lifted. The good &)

is not an SW3) scalar has a subset sblvableeigenstates character,(32,0) for the ground band an®8,2) for y

which continue to have good $8) symmetry. All of band, is retained in the pds calculation, while hidand

the above discussion is applicable also to the case whaontains10% (26,0) and3% (24,4) admixtures into the

we add to the Hamiltonian (2) the Casimir operator ofdominant(28,2) irrep. The quality of the calculated pds

0(3) (Co(3)), and by doing so convert the partial 8)  spectrum is similar to that obtained in the broken(®U

symmetry into partial dynamical SB) symmetry. The calculation [6] also shown in Fig. 1.

additional rotational term contributes just diL + 1) Electromagnetic transitions are a more sensitive probe

splitting but does not affect the wave functions. to the structure of states, hence they are an important
The experimental spectra [6] of the groung,(8, and indicator for verifying the relevance of partial &)

v bands in'®®Er is shown in Fig. 1. We now attempt a symmetry. To calculate such observables we need to

description in terms of an IBM Hamiltonian with partial specify the wave functions of the initial and final states

dynamical SW3) symmetry as well as the operator that induces the transition. For
the Hamiltonian in Eq. (6), with partial dynamical 8)
H = H(ho,hy) + ACog). (6) symmetry, the solvable states are those projected from

the intrinsic states|k) = |(y)* QN — 4k,2k)K = 2k)
According to the previous discussion, the spectrum of thef Eq. (5), and are simply selected members of the

ground andy bands is given by Elliott basis ¢g((A, w)KLM) [12]. In particular,
the states belonging to the ground andbands are
E (L) = AL(L + 1), the Elliott states¢z((2N,0)K =0,LM) and ¢x((2N —

4,2)K = 2,LM), respectively. Their wave func-
tions can be expressed in terms of the Vergados basis
(Vv (A, w)yLM) [13], which is the usual (but not unique)
choice for orthonormal S@3) basis. The most general
IBM one-bodyE2 operator may be written as

E,(L) = 6h,2N — 1) + AL(L + 1). @)

The Hamiltonian in Eq. (6) is specified by three pa-
rameters ¥ = 16 for '®Er according to the usual bo-
son counting). We extract the values bfand 4, from
the experimental energy differenc&$2,) — E(0;) and ) B
E(23) — E(2}), respectively. For an exact $t) dy- T(E2) = a Q@ + 6 (dts + std), 8)
namical symmetry,hg = hp, implying Eg(L) = E, (L)

for even values of. = 2. The corresponding spectrum whereQ? is the quadrupole SQ) generator. The matrix
(shown in Fig. 1) deviates considerably from the experi-elements of such E2 operator in the Vergados basis are
mental data since empirically the and y bands are not known [14,15]. It is therefore possible to obtainalytic
degenerate. On the other hand, when the dynamic&)SU expressions for thE2 rates between the subset of solvable
symmetry is only partial, one can vaky so as to repro- states. For the ground band and for members of the
duce theB bandhead energiz(L = 0). Having deter- y band with L odd, the Vergados and Elliott bases are
mined the parameters, ho, h, from three experimental identical. Accordingly, the correspondir§(E2) values
energies, the prediction for other rotational members oin the two bases are the same. The Elliott states in the
the groundB and y bands is shown in Fig. 1. No fur- y(K = 2) band with even values of are mixtures of
ther attempt to improve the agreement between theory andergados states in thg(y = 0) and y(y = 2) bands.
experiment was made since the philosophy of this CalfuThe correspondin®(E2) value is

Brp(E2;yK = 2,L — gK = 0,L")

[JBV(Ez; YX = 2.L — gx = 0.1)) + xsBy(EZ fy = 0.1 — gy = 0,L)) T 9)

(L)
X22

where the+ (—) sign applies to a transition with’ = I To compare with experimental data dH{(E2) ratios,

L (L'=L *2). In Eg. (9) the notationBy(E2) and we adopt the procedure of Ref. [6] and extract the pa-
Br(E2) stands forB(E2) values calculated in the Ver- rametersa and# of the E2 operator in Eq. (8) from the
gados and Elliott bases, respectively. THE, x'5 are  experimental values d8(E2;0; — 27) andB(E2;0; —
coefficients which appear in the transformation betweer2;). The corresponding ratio fdf®Er is 6/« = 4.261.

the two bases [13]. Analytic expressions®f(E2) val-  As shown in Table I, the resulting $8) pds E2 rates
ues for g — g and y — g transitions have been de- for transitions originating within they band are found

rived [14,15]. to be in excellent agreement with experiment and are
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similar to the calculation by Casten, Warner, and David-symmetries implies that part of the eigenvalues and wave
son [6] [where the S(B) symmetry is broken for all functions can be found analytically but not the entire
states]. In particular, the SB) pds calculation repro- spectrum. As such, pds can overcome the schematic
duces correctly the ratio afy — y)/(y — g) strengths. features of exact dynamical symmetries (e.g., undesired
The only significant discrepancy is that for t&¢ — 7; degeneracies) and simultaneously retain their virtues (i.e.,
transition which is very weak experimentally, with an in- solvability) for some states. We also wish to point out that
tensity error of50% and an unknownM1 component Hamiltonians with partial symmetries are not completely
[6]. For transitions from the3 band the overall agree- integrable and may exhibit chaotic behavior. This makes
ment is good (better fof — y transitions) although not them a useful tool to study mixed systems with coexisting
as precise as for the band. The calculation exhibits regularity and chaos [16]. It will be of great interest to
the observed dominance @ — v over 8 — g tran-  explore the ramifications of partial symmetries both for
sitions. As an example, fozg — J; transitions with  discrete spectroscopy and statistical aspects of nuclei.
Jr= (0;,4;,2;,3;,05) the calculated and experimen- This research was supported by the lIsrael Science
tal B(E2) ratios are(0.42 : 1.44 : 2.59 : 477 : 100.0) and  Foundation administered by the Israel Academy of Sci-
(0.23 : 1.4 : 4.0 : 49 : 100.0), respectively. A compari- ences and Humanities.
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