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Nonperturbative Study of Generalized Ladder Graphs in a¢?y Theory
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The Feynman-Schwinger representation is used to construct scalar-scalar bound states for the set of
all ladder and crossed-ladder graphs in%y theory in3 + 1 dimensions. The results are compared to
those of the usual Bethe-Salpeter equation in the ladder approximation and of several quasipotential
equations. Particularly for large couplings, the ladder predictions are seen to underestimate the
binding energy significantly as compared to the generalized ladder case, whereas the solutions of the
guasipotential equations provide a better correspondence. Results for the calculated bound state wave
functions are also presented. [S0031-9007(96)00744-2]
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One of the important issues in the study of a composeontributions are not expected to lead to qualitatively dif-
ite hadronic system at higher energies is the search fderent predictions [13].
practical and reliable schemes to describe its relativistic In this Letter the bound states formed by two scalar
dynamics. Our knowledge about the relativistic two-bodyparticlese, with massn interacting through the exchange
bound state problem in field theory is almost exclusivelyof a third scalar particley with massu, are determined
based on the application of the ladder approximation taising the Feynman-Schwinger representation (FSR) [4,
the Bethe-Salpeter equation (BSE) [1,2]. Unfortunately,13—18]. Starting from the Euclidean action for the above
the general applicability of the ladder theory can be quese? y theory

tioned on physical grounds. In particular, the so-called A s S
one-body limit does not lead to the Klein-Gordon equa- S = f d*x[(9re)” + m™ ¢
tion as it should. Moreover, gauge invariance cannot be
e IR O + 20 + 122 + 20%x] (1)
satisfied within this approximation. In order to recover 200X M X 8¢ Xl

these properties, at least the set of all crossed ladder cofye may reconstruct the bound state of twoparticles
tributions is needed additionally [3—5]. So far, however,yith the set of one-meson exchange and all irreducible
the study of the two-body Green function beyond the ladgrossed-ladder graphs as the driving force by explicitly in-
der theory has not been considered feasible in practicegrating out the fields in the two-body Green funct®@n
With this situation in mind, several quasipotential equa-Details of this procedure can be found in Ref. [4]. Ac-
tions (QPEs) have been proposed and studied as possilgrding to [4], the FSR offers a closed expression for the
candidates fO-r an effective theory. Boththe ladder BSE‘quenched”G (i'e_, neg|ecting the possib|e occurrence of
as well as various QPEs have been used in numerous stuggcuum fluctuationp ¢ loops) in terms of path integrals
ies throughout a wide range of systems, including mesongyer the particle trajectories andz of the two¢ par-
[6-9], small nuclei [10-12], few-electron atoms [1], andticles. Neglecting also the contributions corresponding to
positronium [2]. the self-energy and vertex corrections, it has the form

In constructing the QPEs, one usually chooses the ap- " "
proximations leading to them such that the above men- 5 — f dsf dgf(pz)xy(pz)w
tioned problems are, at least partially, solved. However, 0 0
due to our ignorance of the behavior of thl BSE solu- X exp(—K[z,s] — K[Z,5] + V[z,Z,5,5]), (2)
tions, it is presently unclear which of the possibly infinite .
number of QPEs provides the best effective description\.NhereK andV are given by 1
In this connection it is clearly of interest to have ac- 1 .
tual solutions available for cases where a larger class of Klz,s] = m?s + 4s [0 dr #}(r), (3)
graphs than the ladder series is included in the BSE and 1 1
that do not suffer from the difficulties inherent to the lat- V[z,z,s5,5] = gzsif dr f d7 A(z(7) — z2(7)).
ter approximations. Such solutions may serve as a testing 0 0
ground for the various QPE descriptions. Here we present 4)
results for the case where, in addition, the complete set dDur main objective here will be to compare the predic-
all irreducible crossed-ladder graphs is also included inions obtained from Egs. (2)—(4) to those from the ladder
the kernel of the BSE, being the minimal set that is freeBSE and various QPEs.
from the above problems. Self-energy and vertex correc- The functional integrations are over all possible paths,
tions are not taken into account. The inclusion of thesesubject to the boundary conditiong0) = x, z(1) = y,
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and similarly forz. In 3 + 1 dimensions, the free two- one-body limit. Here we study three particular examples:

point functionA(x) is given by the BSLT equation [19], the equal-time (ET) equation
“ [8,10,11,20], and the Gross equation [5,12], which have
Ax) = T Ki(plxl). (5)  been widely used in the literature.

For the BSLT equation, one assumes that the pole
In [4] it was shown that, for unequal masses, Eq. (2)structure of the two-body propagator can be approximated
satisfies the correct one-body limit. In addition, it wasvia a dispersion relation. Similar to the BSLT case, in
proven that, combined with Eq. (4), it effectively sums upthe ET prescription, the interaction is usually supposed to
all ladder and, due to the absence of any ordering in thee independent of the relative time, i.e., also neglecting
interaction kernel, also all crossed-ladder contributions toetardation effects. An additional term is supplied in
G. Each graph of this set is UV finite, so that no short-order to include some of the crossed-box contributions.
distance regularization is required. In doing so, the correct one-body limit is obtained in this
The bound state spectrum can be determined by studwpproach. Finally, in the Gross formalism, one puts one
ing the behavior ofG with respect to variations of its of the two particles on its mass shell by hand. These
initial points (x,x) and final pointgy,y). Considering, in  procedures lead to the following forms 8§€q):

particular, large timelike separatiof$= 5(ys +y, — BSLT 1 1
x4 — X4), we infer from the spectral decomposition Sqre(q) "= 2775(0’)\/(12 — \/q2 T
o 1
G = Z c, exp(—m,T) = coexp(—moT), (6) (10)
n=0 1
that asymptotically the Green function is dominated by = 2775(“’)\/ p— T
the ground state contribution. 1 " \/‘l2 +m? = gs
Notice that the path integrals in Eq. (2) are quantum s
mechanical ones. This amounts to a considerable reduc- X <2 A2 + m)> (11)
tion in the number of degrees of freedom as compared
to, for example, putting the field action (1) on a discrete Gross 278(w + %\/E - Jq? + m?)
four-dimensional lattice. As a result, accurate calculations
can also be carried out with this approach for very large % 1 1 _
timesT. 45 \Jq? + m? \/q2 +m?— L5
Let us now briefly discuss the traditional Bethe-Salpeter 2 (12)

approach [1,2] to the two-body bound state problem. . e
PP [1,2] y b For all cases the delta function allows for the elimina-

In the ladder approximation the wave functioh in , , X .
momentum space obeys the following integral equation: ton of the relative energy variable from the descrip-
tion. The ladder BSE and three-dimensional QPEs were
4 1 o / solved by performing a standard partial wave decomposi-

f ¢qVla =), @) tion, thereby factorizing the angular variables.

The FSR solutions were obtained by discretizing the
functional integrals according to
2N N—1

SN g)¥(q) = T

where ¢ is the relative momentum between the two
¢ particles. After a Wick rotation, the free two-body

propagatorS and the bare interactio’v assume the _)( N > f 4
following form in the center of mass frame: (D2)sy 4ars ll:! 4’z (13)
_ 1 The normalization in Eqg. (13) was chosen such that, when
S(q) = i : 8 : : :
(@ + w2 + m? — 75)? + sw? expanded in the coupling?, the Green function correctly
reproduces the Feynman perturbation series. In terms of
Vig — ¢') = 1 9) the discretized variables the function&sandV assume
(q—q)2+ (0w — o)+ p?’ the following form:
with the relative momentuny = (q, ). In the bound 5 N Y 5
state region, Eq. (7) supports solutions only for values of ~ Klz.s]— m"s + 7= Z(Zi = zi-1), (14)
the invariant energy/s that corresponds to bound states. S i=1
Since for unequal masses Eqg. (7) in the ladder approXi,r_ = . < 8°ss
X " V]z,Z,5,5] — >
mation does not possess the correct one-body limit, N
several modifications to it have been proposed. Generally, N .
they reduce the description from a four-dimensional to a X > AG +zio1 — 2, — Zj-1). (15)
three-dimensional one by making an ansatz for one of the ij=1

functions involved. This ansatz is chosen such that th&he discretized boundary conditions afge= x, zy = y,
resulting quasipotential equation does possess the corread similarly forz.
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The integral over all degrees of freedom was performeaoupling constantg?/47m? for the caseu/m = 0.15.
with the Metropolis Monte Carlo algorithm. The ground Since the self-energy contributions have been neglected
state mass can be obtained most efficiently by computingn the FSR calculations, we may directly compare the

the logarithmic derivative of; instead ofG itself predictions to those of the ladder BSE and the various
d _— QPEs. The range of validity of the ladder theory is seen
L(T) = —— In[G(T)] — my. (16)  to be restricted to the region of small couplings, Gener-

dT

ally speaking, for stronger couplings all approximations
|ntrOdUCing the shorthand notatioA for the full set tend to underbind the System as Compared to the FSR re-
of degrees of freedom and puttin§(Z] = K[z,s] +  sults. All QPEs generate more binding energy than the
K[z,5] = Vlz,Z,5,5], we may writeL(T) as ladder BSE, and their results are generally closer to the
FSR ones. For the Gross equation we also performed a
L(T) = j fDZS'[Z]eS[Z]/f Dze 7, (17) calculation where the retardation in the interaction was ne-
glected, i.e., we simply pub = o’ = 0 in the potential
where the prime denotes an analytical differentiation of(9). From Fig. 1 we see that in this case the retardation
the functionals with respect to the end pdiht According  leads to additional attraction. The ET approximation par-
to Eq. (17) the ground state mass is obtained by averaginticularly is seen to give results that relatively provide the
S’[Z] over an ensemble generated by the actfj@]|  best correspondence with the FSR ones.
for sufficiently largeT. The FSR ground state wave We remark that, due to the energy dependence in the
function ¥ can be found readily by performing an two-body propagator, the Gross equation allows for a sec-
additional integration ofG in Eq. (2) over the spatial ond, unphysical solution that starts.#& = 0 for g =
relative components =y — y of the final point and and for which,/s grows with increasing?. This feature
incorporating this coordinate in the sBt By keeping is an artifact of this particular approximation and has also
track of the distribution ofir|'s when computingL(T), been observed in other, but similar, dynamical equations
ther dependence o¥ can be determined. [6,21]. Inclusion of negative energy propagation effects
The convergence itV was studied, and the mass of was seen to cure this pathological effect. Both the physi-
the bound state was found to become independe of cal and unphysical solutions are shown in the inset of
at typical values otV = 35-40. FurthermoremT = 40  Fig. 1, and it is seen that they “annihilate” each other at
usually sufficed foi.(T) to become independent 8fand  g?/47m? = 5.1, for which /s = 1.4m.
to reach its asymptotic estimate (16). Since the integrals In order to compare the FSR ground state wave function
overs ands in Eq. (2) formally diverge for large values, to those of the ladder BSE and the various QPEs, we
a cutoff smax had to be introduced in order to render theadjust the coupling constants such that the same value
functional integrals finite. No dependence on the value obf the ground state mass is found. In Fig. 2 we show
smax Was observed. the ladder BSE and FSR wave functions for relative time
In Fig. 1 we present calculations of the ground state = 0 and compare them to the QPE wave functions.
mass as a function of the conventional (dimensionlesdyor convenience, the FSR wave function is normalized
according to the standard nonrelativistic one. The mass
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FIG. 1. Ground state mass, of the ¢2y theory as a function
of the dimensionless coupling constag/4mm? for u/m = FIG. 2. Equal-time FSR and ladder BSE Euclidean wave
0.15. The inset shows the evolution of the Gross ground statéunction compared to those of the various QPEs. All solutions
and its unphysical branch over a larger range of couplings.  correspond to a bound staterag = 1.882m.
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T Ty to study this further. In this paper we have presented for
i BSE,t=0 ] the scalar case the first calculations of bound state proper-
&3EN e BSE,t=4 ] ties beyond the ladder approximation using the Feynman-
————. BSE t=8 | Schwinger representation. When comparing our results
OFSR’ o ] to th_ose .of the Bgthe—SaIpeter equation in the Iadde_r ap-
oz b ’ p_rox_lr_nat|on, we fln(_j that the crossed ladders contribute
vn  FPoo . OFSR,t=4 significantly to the binding energy.
f---.. o It is a pleasure to thank Yu. A. Simonov for many valu-
b 600 able and illuminating discussions concerning this work.
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