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Universal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices
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Using a histogram Monte Carlo method and nonuniversal metric factors of a recent Letter
[Phys. Rev. Lett75, 193 (1995)], we find that the probability for the appearancei,0f = 1,2,...,
top to bottom percolating clusters on finite square, planar triangular, and honeycomb lattices
falls on the same universal scaling functions, which show interesting behavior as the aspect
ratio of the lattice increases. Our results suggest many interesting problems for further research.
[S0031-9007(96)00574-1]

PACS numbers: 05.50.+q, 75.10.-b

Percolation is an active research subject in recent yeat®s of LPPS [4], Hu, Lin, and Chen (HLC) have found that
and is related to many interesting problems [1]. Percolaall scaled data of, andP as a function of scaling variable
tion models have been used to clarify or formulate many fall on the same universal scaling functiofR$x) and
important ideas and useful algorithms, e.g., corrections t§(x), respectively, where = D,(p — p.)L'/” with D,
scaling [2,3], universality of critical existence probability being a model dependent nonuniversal metric factor:and
[2—4], histogram Monte Carlo methods [5,6], cell-to-cell being a correlation length exponent. HLC also found that
renormalization group method [7-10], universal scalingD; is independent of the boundary conditions [11] and the
functions and nonuniversal metric factors [11,12], etc. Inextra factor multiplied on aspect ratios of all lattices [12].
this Letter, we use a histogram Monte Carlo simulationin this Letter, we first use the HMCSM [5,13] to evalu-
method (HMCSM) [5] to study an interesting and not well ate the probabilityw,, (L, L,, p) for the appearance of
studied quantity: the probability,, for the appearance of top-to-bottom percolating clusters of bond percolation on
n,n = 1,2,...,topto bottom percolating clusters on finite finite L; X L, sq [20] lattices with a linear dimensiamy
lattices. We find thaW,, has very good finite-size scal- in the horizontal direction and a linear dimensibnin the
ing behavior near the critical probability. [13]. Using vertical direction. When we pld#, as a function of the
nonuniversal metric factors [14] of a recent Letter [11], wescaling variablez = (p — p.)L'/*, all data of the same
find thatw, for bond and site percolations on finite squareaspect ratid., /L, fall on the same scaling function. Us-
(sq), planar triangular (pt), and honeycomb (hc) latticesng the nonuniversal metric factér, of [11], we then show
fall on the same universal scaling functions. The scalinghatW, for bond and site percolations on sq, pt, and hc lat-
functions show interesting behavior as the aspect ratio dices with aspect ratios,/L», v/3L1/2L», and~/3L,/L,
the lattice increases. Our results suggest many interestirigave universal scaling functions when they are plotted as
theoretical and experimental problems for further researchunctions ofx, wherex = D,z.
including conformal theory [15], critical phenomena of Here we briefly review the HMCSM for calculating
lattice models [16,17] and hard disks or spheres [18]W,(L, L,, p) of the bond percolation on sq lattices [5,13].
transport of fluid and current through random mediums;The extension to other lattices and site percolation is
quantum Hall effects [19], etc. straightforward. In the bond percolation onla X L,

Important quantities in traditional studies of a percola-sq [20] latticeG of N sites andE bonds,N = L; X L,
tion problem on a lattic& of linear dimensiond. include  each bond ofG is occupied with a probabilityy, where
the existence probability,(G, p) and the percolation 0 = p = 1. The latticeG has free and periodic bound-
probability P(G, p) with p being the bond or site occupa- ary conditions in the vertical and horizontal directions, re-
tion probability. HereE, (G, p) is the probability [5-9] spectively. A cluster which extends from the top row of
that the system percolates aR@G, p) is the probability G to the bottom row is a percolating cluster. The sub-
that a given lattice site belongs to a percolating cluster. Igraph which contains at least one percolating cluster is a
the free boundary conditions and in the limhit— =, ithas  percolating subgraph and denoted@y; otherwise it is a
been found that for site and bond percolation onithe . nonpercolating subgraph. The percolating subgraph with
sq lattice £, (G, p.) = 0.5[2—4] and it has been proposed n percolating clusters is denoted &Y,. Now we have the
by Langlands, Pichet, Pouliot, and Saint-Aubin (LPPS) [4]definition
that for bond and site percolation on the pt and hc lattices
with aspect ratios/3/2 and+/3, respectivelyE, (G, p.) is WaLi, Lo, p) = > pP@)(1 — p)Eb@) (1)
also equal to 0.5. Using a HMCSM [5] and the aspect ra- G,CG
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whereb(G)) is the number of occupied bonds@},. The 1.0
summation in (1) is over all subgraplig, of G. In the 09 b
HMCSM, we choosev different values ofp. For a given

p = pj, 1 =j = w, we generat&Vy different subgraphs 08¢
G'. The data obtained from theNy differentG’ are then 0.7 |
used to construct arrays of numbers with eleméf)&), 206 ¢
Ns(b), and N, (b), 0 = b = E, which are, respectively, &

the total numbers of percolating subgraphs withccupied 0
bonds, nonpercolating subgraphs wittoccupied bonds, = 04 :
and the number of percolating subgraphs witbccupied 03 &
bonds andn percolating clusters. In the large number
of simulations, the probabilityw, at any value of the

bond occupation probabilityp can then be calculated 0.1 ¢

02 ¢

(a) |

approximately from the following equation [5,13]: 0.0 ,
. ) 0.3 0.4 0.6
N
i L ,L , — b 1 — E-b En—,
W( 1 2 P) ;?Z()p ( P) Cb Np(b) +Nf(b)
) 10 ¢
0.9
where C; = E!/(E — b)!b!. It is obvious thatE, = 08
21 W '
We first use (2) to evaluat®, for bond percolation 07 ¢
on 128 X 32, 256 X 64, and512 X 128 sq [20] lattices. 0.6 |
The results are shown in Fig. 1(a), whéig =1 — E,. ;:'*T. 05
Using the exact values of and p. [1], we obtainW, as 7=
a function ofz = (p — p.)LY*. The results are shown 04t
in Fig. 1(b), where very good scaling behavior Wf, is 03 &
observed and the corresponding scaling function is denote
by F,(R,z) with R = L;/L,. Figure 1(b) shows that
F,(R,z) for n = 2 is a symmetric function of. 0.1} (b) |
In [11], HLC studied bond and site percolations on g, , . i
a 512 X 512 sq lattice, a433 X 500 pt lattice, and a 40 -0 20 -0 00 10 20 30 40

433 X 250 hc lattice to obtain universal scaling functions _
and nonuniversal metric factors, e.g;, which means FIG. 1. (a)W,(Li.L,, p) for bond percolation ori28 X 32,
that HLC used 438500 and 432250 to approximate 256 X 64, and 512 X 128 lattices, which are represented by

- . dotted, dashed, and solid lines, respectively. (b) The data
respectivelys/3/2 and+/3 considered by LPPS [4]. Now ¢ (@) are plotted as a function Q,f:p(p - Ii)LS/V). The

we calculateW, (L1, L,, p) for bond and site percolations scaling function for W,(L,,L,, p) is denoted byF,(R,z),
ona512 X 128 sq lattice, ar866 X 250 pt lattice, and an whereR = L,/L,. The monotonic decreasing function is for

866 X 125 hc lattice, which means that aspect ratios of allFo(R.z). The S shaped curve is féf (R, z). The bell shaped
lattices of [11] are multiplied by 4. When the calculated C“[j"is from tct)_p t|° bottom are fdf, (R, z) with » being 2, 3,
W, for all lattices, shown in Fig. 2(a), are plotted as adnd & respectively.
function of x = D;(p — p.)LY* with D, taken from
[11], all calculated results for eaetfall nicely onthe same begins to develop a valley with a minimum at= 0.
universal scaling functionsl/,,(x), shown in Fig. 2(b). WhenR continues to decrease, the valley becomes deeper
This is additional evidence thd; is independent of the and deeper. From,(R,z), we may calculate the average
extra factor for aspect ratios, which is 4 in this case. Thewumber of percolating cluster§(R,z) via C(R,z) =
universality of scaling functions foW, (L, L,, p) means > ._, F,(R,z)n. C(R,0) as a function oR is shown by a
that the results obtained from sq lattices, e.g., those to bsolid line in Fig. 4(b). We have extended all of the above
shown below, may be applied to corresponding pt and hcalculations to sq lattices with free boundary conditions in
lattices. both horizontal and vertical directions. Ndw forn = 2

We have also calculated,(R,z) for sq lattices for is not a symmetric function of, the maximum or the
various values ofR, which are shown in Figs. 3(a) and minimum of F, moves toz > 0. C(R,0) as a function
3(b) forn = 1 and 2, respectivelyF,(R,0) as a function of R in this case is shown by a dotted line in Fig. 4(b).
of Rforn =0,1,...,6is shownin Fig. 4(a). Figure 4(a) Figure 4(b) shows that, for larg&, C(R,0) increases
shows that wherR increasesF,(R,0) for n > 0 first  linearly with R for both periodic and free boundary
increases to a certain maximum, then begins to decreaseonditions in the horizontal direction and two cases have
Figure 3 shows that wheR, begins to decrease it also the same slope. It is of interest to know that for a given

9



VOLUME 77, NUMBER 1

PHYSICAL

REVIEW LETTERS

1dJdLy 1996

1.0 e T 1.0
Vol
09 [ 09
[
08t Spt 0.8 |
i ----Ssq
07F 1 ——-she 0.7 ¢
o —-— Bpt
o6 ! ——Bsg 06
{ l ——- Bhe ﬁ:
;: 05 H E 05
i o
04 '{" 04 F
i
0.3 ‘":‘. 03 F
iR
02t i 02t
N
0.1 | !,‘!'H 01k
it
S
0.0 Lo L 0.0
0.3 0.4 4.0
1.0 1.0
—— R=l
09 | 0.9 ¢ e
---- R=3
08 | —rnee Spt 866X250 08 | ——- R=4
---- 8sq512x128 —-— R=5
0.7 1 ~—- Shc866x125 0.7 | — R=6
—-— Bpt 866x250 e R2T
0.6 | —— Bsq512x128 06} ---- R=8
= -~~~ Bhc 866x125 N :7—7— gf?o
05| € 05| =
™
04 r 04 ¢
03 r 03t
02 02 ¢
01 | ' ] 01 | ]
\ (b) (b)
0.0 ! i e L . 0.0 . .
40 30 20 -1.0 00 10 20 30 40 40 -30 30 40

X

FIG. 2. (a) W, for bond and site percolations o866 X
250 pt, 512 X 128 sq, and866 X 125 hc lattices. (b) The
data of (a) are plotted as a function of= D,(p — p.)L"".
The universal scaling function fd#, is denoted byU,, (x).

FIG. 3. F,(R,z)forR =L,/L, = 1,2,3,...,10. (@)n = 1,
(b)n = 2.

search, including (1) scaling behavior &f(R, 0) for large
values ofn, (2) calculation ofF,,(R,0) by conformal the-
largeR, C(R,0) for the free boundary condition is larger ory [15], (3) calculation of7, (R, z) for correlated percola-
thanC(R, 0) for the periodic boundary condition and such tion models corresponding to Ising-type spin models [16]
an effect persists even for very large and hard-core particle models [17,18], which is useful for
Many results presented above may be understood fromnderstanding the magnetic susceptibility in finite systems
the general theory of critical phenomena and finite-sizg¢16], (4) connection betweeR, (R, z) and transport of fluid
scaling. The arguments used to obtain the universality oind current through random mediums, and (5) quantum
finite-size scaling functions foE, [3] may be extended Hall effects [19] to be discussed in the next paragraph.
to arrive at the universality of finite-size scaling functions In a recent paper [19], Ruzin, Cooper, and Halperin
for W,. At the critical pointp., the correlation length (RCH) proposed tha#** in the quantum Hall effects is
goes tox; therefore a finite system at. will feel strongly  proportional to the numbér of percolating clusters in the
the effects of boundary and different boundary conditionsample. The nice scaling behavior @f,(L, L,, p) sug-
give quite differentC(R,0), which is similar to the case gests thatF,(R,z) obtained from small systems may be
discussed in [8]. For larg®, each percolating cluster applied to large systems. This is a good starting point for
has a fixed average linear dimension in the horizontathe effort to compare simulation results with experimental
direction; thusC(R, 0) increases linearly wittR. data. Todo such a comparison, one should pay attention to
We expect that the scaling behaviorigf, found in this  the following points: (a) By a conformal transformation,
Letter may be extended to higher dimensions and corresur L; X L, system with free and periodic boundary con-
lated and continuum percolation problems [16—18]. Ouditions in vertical and horizontal directions, respectively,
results suggest many interesting problems for further remay be mapped into a Corbino disk, the geometry for the
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1.0 ‘ , ' lation models. To compare our results with experimental
0.9 oot OF data, one should make sure that the experimental system

&--onpe=2 may be well represented by a random percolation model.
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