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Universal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices
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Using a histogram Monte Carlo method and nonuniversal metric factors of a recent Letter
[Phys. Rev. Lett.75, 193 (1995)], we find that the probability for the appearance ofn, n ­ 1, 2, . . . ,
top to bottom percolating clusters on finite square, planar triangular, and honeycomb lattice
falls on the same universal scaling functions, which show interesting behavior as the aspec
ratio of the lattice increases. Our results suggest many interesting problems for further researc
[S0031-9007(96)00574-1]
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Percolation is an active research subject in recent y
and is related to many interesting problems [1]. Perco
tion models have been used to clarify or formulate ma
important ideas and useful algorithms, e.g., correction
scaling [2,3], universality of critical existence probabili
[2–4], histogram Monte Carlo methods [5,6], cell-to-c
renormalization group method [7–10], universal scal
functions and nonuniversal metric factors [11,12], etc.
this Letter, we use a histogram Monte Carlo simulat
method (HMCSM) [5] to study an interesting and not w
studied quantity: the probabilityWn for the appearance o
n, n ­ 1, 2, . . . , top to bottom percolating clusters on fini
lattices. We find thatWn has very good finite-size sca
ing behavior near the critical probabilitypc [13]. Using
nonuniversal metric factors [14] of a recent Letter [11],
find thatWn for bond and site percolations on finite squa
(sq), planar triangular (pt), and honeycomb (hc) latti
fall on the same universal scaling functions. The sca
functions show interesting behavior as the aspect rati
the lattice increases. Our results suggest many intere
theoretical and experimental problems for further resea
including conformal theory [15], critical phenomena
lattice models [16,17] and hard disks or spheres [1
transport of fluid and current through random medium
quantum Hall effects [19], etc.

Important quantities in traditional studies of a perco
tion problem on a latticeG of linear dimensionsL include
the existence probabilityEpsG, pd and the percolation
probabilityPsG, pd with p being the bond or site occupa
tion probability. HereEpsG, pd is the probability [5–9]
that the system percolates andPsG, pd is the probability
that a given lattice site belongs to a percolating cluster.
the free boundary conditions and in the limitL ! `, it has
been found that for site and bond percolation on theL 3 L
sq lattice,EpsG, pcd ­ 0.5 [2–4] and it has been propose
by Langlands, Pichet, Pouliot, and Saint-Aubin (LPPS)
that for bond and site percolation on the pt and hc latti
with aspect ratios

p
3y2 and

p
3, respectively,EpsG, pcd is

also equal to 0.5. Using a HMCSM [5] and the aspect
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tios of LPPS [4], Hu, Lin, and Chen (HLC) have found th
all scaled data ofEp andP as a function of scaling variable
x fall on the same universal scaling functionsFsxd and
Ssxd, respectively, wherex ­ D1sp 2 pcdL1yn with D1

being a model dependent nonuniversal metric factor ann

being a correlation length exponent. HLC also found th
D1 is independent of the boundary conditions [11] and t
extra factor multiplied on aspect ratios of all lattices [12
In this Letter, we first use the HMCSM [5,13] to evalu
ate the probabilityWnsL1, L2, pd for the appearance ofn
top-to-bottom percolating clusters of bond percolation
finite L1 3 L2 sq [20] lattices with a linear dimensionL1

in the horizontal direction and a linear dimensionL2 in the
vertical direction. When we plotWn as a function of the
scaling variablez ­ sp 2 pcdL1yn , all data of the same
aspect ratioL1yL2 fall on the same scaling function. Us
ing the nonuniversal metric factorD1 of [11], we then show
thatWn for bond and site percolations on sq, pt, and hc l
tices with aspect ratiosL1yL2,

p
3 L1y2L2, and

p
3 L1yL2

have universal scaling functions when they are plotted
functions ofx, wherex ­ D1z.

Here we briefly review the HMCSM for calculating
WnsL1, L2, pd of the bond percolation on sq lattices [5,13
The extension to other lattices and site percolation
straightforward. In the bond percolation on aL1 3 L2

sq [20] latticeG of N sites andE bonds,N ­ L1 3 L2,
each bond ofG is occupied with a probabilityp, where
0 # p # 1. The latticeG has free and periodic bound
ary conditions in the vertical and horizontal directions, r
spectively. A cluster which extends from the top row
G to the bottom row is a percolating cluster. The su
graph which contains at least one percolating cluster
percolating subgraph and denoted byG0

p; otherwise it is a
nonpercolating subgraph. The percolating subgraph w
n percolating clusters is denoted byG0

n. Now we have the
definition

WnsL1, L2, pd ­
X

G0
n#G

pbsG0
nds1 2 pdE2bsG0

nd, (1)
© 1996 The American Physical Society
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wherebsG0
nd is the number of occupied bonds inG0

n. The
summation in (1) is over all subgraphsG0

n of G. In the
HMCSM, we choosew different values ofp. For a given
p ­ pj , 1 # j # w, we generateNR different subgraphs
G0. The data obtained from thewNR differentG0 are then
used to construct arrays of numbers with elementsNpsbd,
Nfsbd, and Nnsbd, 0 # b # E, which are, respectively
the total numbers of percolating subgraphs withb occupied
bonds, nonpercolating subgraphs withb occupied bonds
and the number of percolating subgraphs withb occupied
bonds andn percolating clusters. In the large numb
of simulations, the probabilityWn at any value of the
bond occupation probabilityp can then be calculate
approximately from the following equation [5,13]:

WnsL1, L2, pd ­
EX

b­0

pbs1 2 pdE2bCE
b

Nnsbd
Npsbd 1 Nfsbd

,

(2)

where CE
b ­ E!ysE 2 bd! b!. It is obvious thatEp ­P`

n­1 Wn.
We first use (2) to evaluateWn for bond percolation

on 128 3 32, 256 3 64, and512 3 128 sq [20] lattices.
The results are shown in Fig. 1(a), whereW0 ­ 1 2 Ep .
Using the exact values ofn andpc [1], we obtainWn as
a function ofz ­ sp 2 pcdL1yn. The results are show
in Fig. 1(b), where very good scaling behavior ofWn is
observed and the corresponding scaling function is den
by FnsR, zd with R ­ L1yL2. Figure 1(b) shows tha
FnsR, zd for n $ 2 is a symmetric function ofz.

In [11], HLC studied bond and site percolations
a 512 3 512 sq lattice, a433 3 500 pt lattice, and a
433 3 250 hc lattice to obtain universal scaling functio
and nonuniversal metric factors, e.g.,D1, which means
that HLC used 433y500 and 433y250 to approximate
respectively,

p
3y2 and

p
3 considered by LPPS [4]. Now

we calculateWnsL1, L2, pd for bond and site percolation
on a512 3 128 sq lattice, an866 3 250 pt lattice, and an
866 3 125 hc lattice, which means that aspect ratios of
lattices of [11] are multiplied by 4. When the calculat
Wn for all lattices, shown in Fig. 2(a), are plotted as
function of x ­ D1sp 2 pcdL1yn with D1 taken from
[11], all calculated results for eachn fall nicely on the same
universal scaling functions,Unsxd, shown in Fig. 2(b).
This is additional evidence thatD1 is independent of the
extra factor for aspect ratios, which is 4 in this case. T
universality of scaling functions forWnsL1, L2, pd means
that the results obtained from sq lattices, e.g., those t
shown below, may be applied to corresponding pt and
lattices.

We have also calculatedFnsR, zd for sq lattices for
various values ofR, which are shown in Figs. 3(a) an
3(b) for n ­ 1 and 2, respectively.FnsR, 0d as a function
of R for n ­ 0, 1, . . . , 6 is shown in Fig. 4(a). Figure 4(a
shows that whenR increases,FnsR, 0d for n . 0 first
increases to a certain maximum, then begins to decre
Figure 3 shows that whenFn begins to decrease it als
r

ted

ll

a

e

be
hc

se.

FIG. 1. (a)WnsL1, L2, pd for bond percolation on128 3 32,
256 3 64, and 512 3 128 lattices, which are represented b
dotted, dashed, and solid lines, respectively. (b) The d
of (a) are plotted as a function ofz ­ sp 2 pcdL1yn. The
scaling function for WnsL1, L2, pd is denoted byFnsR, zd,
whereR ­ L1yL2. The monotonic decreasing function is fo
F0sR, zd. The S shaped curve is forF1sR, zd. The bell shaped
curves from top to bottom are forFnsR, zd with n being 2, 3,
and 4, respectively.

begins to develop a valley with a minimum atz ­ 0.
WhenR continues to decrease, the valley becomes dee
and deeper. FromFnsR, zd, we may calculate the averag
number of percolating clustersCsR, zd via CsR, zd ­P`

n­1 FnsR, zdn. CsR, 0d as a function ofR is shown by a
solid line in Fig. 4(b). We have extended all of the abo
calculations to sq lattices with free boundary conditions
both horizontal and vertical directions. NowFn for n $ 2
is not a symmetric function ofz, the maximum or the
minimum of Fn moves toz . 0. CsR, 0d as a function
of R in this case is shown by a dotted line in Fig. 4(b
Figure 4(b) shows that, for largeR, CsR, 0d increases
linearly with R for both periodic and free boundar
conditions in the horizontal direction and two cases ha
the same slope. It is of interest to know that for a giv
9
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FIG. 2. (a) Wn for bond and site percolations on866 3
250 pt, 512 3 128 sq, and866 3 125 hc lattices. (b) The
data of (a) are plotted as a function ofx ­ D1sp 2 pcdL1yn .
The universal scaling function forWn is denoted byUnsxd.

largeR, CsR, 0d for the free boundary condition is large
thanCsR, 0d for the periodic boundary condition and suc
an effect persists even for very largeR.

Many results presented above may be understood f
the general theory of critical phenomena and finite-s
scaling. The arguments used to obtain the universality
finite-size scaling functions forEp [3] may be extended
to arrive at the universality of finite-size scaling functio
for Wn. At the critical pointpc, the correlation length
goes tò ; therefore a finite system atpc will feel strongly
the effects of boundary and different boundary conditio
give quite differentCsR, 0d, which is similar to the case
discussed in [8]. For largeR, each percolating cluste
has a fixed average linear dimension in the horizon
direction; thusCsR, 0d increases linearly withR.

We expect that the scaling behavior ofWn found in this
Letter may be extended to higher dimensions and co
lated and continuum percolation problems [16–18]. O
results suggest many interesting problems for further
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FIG. 3. FnsR, zd for R ­ L1yL2 ­ 1, 2, 3, . . . , 10. (a) n ­ 1,
(b) n ­ 2.

search, including (1) scaling behavior ofFnsR, 0d for large
values ofn, (2) calculation ofFnsR, 0d by conformal the-
ory [15], (3) calculation ofFnsR, zd for correlated percola-
tion models corresponding to Ising-type spin models [1
and hard-core particle models [17,18], which is useful
understanding the magnetic susceptibility in finite syste
[16], (4) connection betweenFnsR, zd and transport of fluid
and current through random mediums, and (5) quan
Hall effects [19] to be discussed in the next paragraph

In a recent paper [19], Ruzin, Cooper, and Halpe
(RCH) proposed thatsmax

xx in the quantum Hall effects is
proportional to the numberk of percolating clusters in the
sample. The nice scaling behavior ofWnsL1, L2, pd sug-
gests thatFnsR, zd obtained from small systems may b
applied to large systems. This is a good starting point
the effort to compare simulation results with experimen
data. To do such a comparison, one should pay attentio
the following points: (a) By a conformal transformatio
our L1 3 L2 system with free and periodic boundary co
ditions in vertical and horizontal directions, respective
may be mapped into a Corbino disk, the geometry for
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FIG. 4. (a)FnsR, 0d as a function ofR ­ L1yL2 for a number
of percolating clusters (npc) runs from 0 to 6. Here the lattic
have horizontal periodic boundary conditions. (b)CsR, 0d
as a function of R ­ L1yL2 for the periodic (solid line)
and free (dotted line) boundary conditions in the horizon
direction.

sample used in many experiments of the quantum Hall
fect [19]. Therefore, at the critical point, where conform
invariance is valid, our results for rectangular domains m
be applied to corresponding Corbino disks. (b) In a per
lation problem, we may consider occupied bonds (or sit
to be conducting and nonoccupied bonds (or sites) to
nonconducting. In the general case, we may havenp per-
colating conducting clusters andnn percolating noncon-
ducting clusters in a system. In this Letter we calcula
only np. The number of percolating clusters,k, in the
RCH theory [19] is given byk ­ minsnp , nnd. For the
Corbino disk and the corresponding lattice discussed in
nn ­ np for np $ 2 [21] and the results of this Letter fo
n $ 2 may be used to compare with experimental da
However, fornp ­ 1 it is possible thatnn ­ 0 [22] and
our result fornp ­ 1 is an upper bound of the result fo
k ­ 1. (c) Our results are obtained from random perc
s
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lation models. To compare our results with experimen
data, one should make sure that the experimental sys
may be well represented by a random percolation mod

We are indebted to N. R. Cooper, B. I. Halperin, P. Kl
ban, and Y. Saint-Aubin for useful discussions. This wo
was supported by the National Science Council of the R
public of China (Taiwan) under Grants No. NSC 85-211
M-001-007 Y and No. NSC 85-2112-M-001-045. Th
author thanks the Computing Center of Academia Sin
(Taipei) and the Department of Physics of Harvard Un
versity for providing the computing and research faciliti
through NSF Grant No. DMR 94-16910.

*Electronic address: huck@phys.sinica.edu.tw
[1] D. Stauffer and A. Aharony,Introduction to Percolation

Theory(Taylor and Francis, London, 1992), 2nd ed.
[2] R. M. Ziff, Phys. Rev. Lett.69, 2670 (1992).
[3] A. Aharony and J.-P. Hovi, Phys. Rev. Lett.72, 1941

(1994).
[4] R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Sain

Aubin, J. Stat. Phys.67, 553 (1992).
[5] C.-K. Hu, Phys. Rev. B46, 6592 (1992).
[6] C.-K. Hu, Phys. Rev. Lett.69, 2739 (1992).
[7] P. J. Reynolds, H. E. Stanley, and W. Klein, J. Phys. A11,

L199 (1978).
[8] C.-K. Hu, J. Phys. A27, L813 (1994).
[9] C.-K. Hu, Phys. Rev. B51, 3922 (1995).

[10] C.-K. Hu, C.-N. Chen, and F. Y. Wu, J. Stat. Phys.82,
1199 (1996).

[11] C.-K. Hu, C.-Y. Lin, and J.-A. Chen, Phys. Rev. Lett.75,
193, 2786E (1995).

[12] C.-K. Hu, C.-Y. Lin, and J.-A. Chen, Physica (Amste
dam)221A, 80 (1995).

[13] C.-K. Hu, in Proceedings of the Pacific Conference o
Condensed Matter Theory,edited by J. Ihm (Korean
Physical Society, Seoul, 1996).

[14] V. Privman and M. E. Fisher, Phys. Rev. B30, 322 (1984).
[15] J. L. Cardy, J. Phys. A25, L201 (1992); H. T. Pinson,

J. Stat. Phys.75, 1167 (1994).
[16] C.-K. Hu, Phys. Rev. B29, 5103, 5109 (1984);44, 170

(1991).
[17] C.-K. Hu and S.-K. Mak, Phys. Rev. B39, 2948 (1989);

42, 965 (1990).
[18] K. W. Kratky, J. Stat. Phys.52, 1413 (1988).
[19] I. M. Ruzin, N. R. Cooper, B. I. Halperin, Phys. Rev. B53,

1558 (1996).
[20] Here “square” means a primitive unit cell of the lattice

square rather thanL1 ­ L2.
[21] When n $ 2, two percolating conducting clusters ar

always separated by a percolating nonconducting clus
therefore np ­ nn and FnsR, zd ­ FnsR, 2zd due to
periodic boundary conditions and symmetric with respe
to p ! 1 2 p.

[22] Since it is possible to havenp ­ 1 andnn ­ 0, W1 is not
invariant with respect top ! 1 2 p and we do not have
the symmetryF1sR, zd ­ F1sR, 2zd.
11


