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There is No Quantum Regression Theorem
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The Onsager regression hypothesis states that the regression of fluctuations is governed by
macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis
fails in the quantum case. This is shown first by explicit calculation for the example of quantum
Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It
is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation
theorem. [S0031-9007(96)00679-5]
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The regression hypothesis.The regression theorem 1 ; / _ 2 (7 he how
(or, more properly, hypothesis) of Onsager states theﬁ<F(l)F(t )+ F@)FQ@) = ?j; do == tr(ﬁ)
“...the average regression of'fluctuations W'i|| _obey the X codw(t — )] )
same laws as the corresponding macroscopic irreversible
process” [1]. Thus, for example, the correlation of The commutator of the random force, which will not be
temperature fluctuations in a gas satisfies the Fouriessed in the following discussion, but which is needed for
equation of thermal diffusion [2]. The purpose of this consistency, is
Letter is to point out that, contrary to the number of F ([
assertions appearing in the literature [3—6], there is no [F(r), F(:')] = f do hwsine( — 1")]. ()
quantum regression theorem in the sense of Onsager. 0
Similar observations have been made in special caséhe parameters appearing in the quantum Langevin equa-
(see, e.g., [7,8]), but here we investigate this questiotion (1) arem, the oscillator massk, the spring constant,
more generally. The essential point is made in oumand{, the dissipative force constant. Note that the ran-
Eg. (25) below, which expresses the fact that the propeslom force is independent of the oscillator parameters
guantum generalization of the Onsager hypothesis is thendK. It depends only on the absolute temperaiignd
fluctuation-dissipation theorem, not the so-called quanturthe constant’, which is a measure of the strength of the
regression theorem. coupling to the random environment (in general, a field).
As a simple example, which is also that discussed most The stationary solution of the quantum Langevin equa-
often in the literature, we first discuss the case of quanturtion is

i

Brownian motion of a harmonically bound particle (oscil- t ", Sine (2 — 1)
lator). This will allow an explicit demonstration of the  x(r) = —j di e =2 2200 TR, (4)
nature and origin of the failure of the Onsager hypothesis mJ —e @1

in the quantum case. Then, in order to put the remarks/here we have introduced

in a general context, we quote the fluctuation-dissipation . . _

theorem of Callen and Welton in the form involving the y={/m o= K/m = /4. )
relaxation function. This enables us to present a genthe correlation of the displacement is defined to be
eral analysis that is independent of the quantum Langevin oy L , /

equation. But, more important, this analysis applies to Cle = 1) = 2xr(0x(e)) + x()x(0)). (6)
any quantum system (oscillator, two level atom, etc.). AsWith the force correlation given in Eq. (2), it is a
a result, we shall see in general why the Onsager hypotrstraightforward matter to obtain the following expression

esis fails in the quantum case. for this correlation,

Quantum Brownian motior—The quantum Brownian 5 o e /2) coth iw /2T
motion of the oscillator is described by the quantumcC(r) = —{f dw( wi) ;(2 w/2 2) codwt). (7)
Langevin equation [9], m Jo (K = ma?)? + o

mi + ¢x + Kx = F(1) 1) Since the integrand is an even function®fwe can also
’ write

where x is the displacement operator arfdz) is an "
operator random force, a Gaussian operator with expectedc(y) — i[ do (i /2) cothliw /2kT) e it (8)
value zero and correlation ) (K= mw?)?+ Pw?
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The equation describing the approach of a givermay then be approximated by an integral. The result is
mean displacement to its equilibrium value of zero is ) W [* e
obtained by forming the expectation value of the quantum mC + {C + KC = —— y zy—
Langevin equation, m Jo my= + {y + K(l4)

m(x) + {(x) + K(x) = 0. 9 o .
This integral can be expressed in terms of the error
The Onsager hypothesis would state that for 0 the integral function [10], but it will be sufficient for our
correlationC(r) satisfies this same equation. But, usingpurpose to exhibit the short and long time behavior, which
the expression (8) fo€ (1), we see that correspond, respectively, to the large and smalehavior
of the integrand. The result is

. . * (hw/2) cothhw /2kT)
mC+§C+KC=£[ dw K/— 2 / . . iy In(wpt), t—0,
™ _x mw i{w mC + {C + KC = — X S t — © (15)
X e i1 (10) m (wo1)?° ’

Fort > 0 we can complete the contour with a large arc inwhere @0 = K/m is the natural frequency of the un-
gamped oscillator. Thus we see that, far from vanish-

the lower half plane, where the integrand vanishes. Th ! S S .
denominator in the integrand has zeros only in the uppe'lng’ the right-hand side is logarithmically divergent at

half plane, while the numerator has poleswat= —in(}, short times. . . L . -
wheren is a positive integer and The short time logarithmic divergence remains at finite

temperature, since the above argument replacing the sum
27kT by an integral requires only that the prod€t be small.

- TR On the other hand, at finite temperature the long time

power-law decay is replaced by an exponential decay.

The integral is therefore equal te27i times the sum of Thus, ifQ¢ > 1, one can replace the sum by its first term.

Q (11)

the residues at these poles. The resultis In this way, we obtain at finite temperature the result

.. . = nQe . . liy In(Q1), t—0,
mC + ¢C + KC = —20kT . ¢+ ¢C+kC="2x s

¢ 4 ;mn292+§nQ+K " 4 T — TR .

(12) (16)

This, being a sum of positive terms, does not vanishThis qualitative change in the long time behavior, from
Therefore, the correlation does not satisfy the macroscopia power-law decay af = 0 to an exponential decay at
equation (9) and the Onsager hypothesis is not satisfied.7 > 0, is a typical quantum phenomenon.

In the classical limit § — 0 or, equivalently,(} — =) The fluctuation-dissipation theorem.The theorem
the right-hand side of (12) vanishes identically, and thedeals with a system with Hamiltonia in equilibrium at
Onsager hypothesis is satisfied. This same result can hemperaturel’. The expectation of an operatér in the
seen directly from the integral on the right-hand side ofHilbert space of is defined to be

(10). There the only place the Planck constaniccurs THO e H/¥T)
is in the numerator in the integrand, which is the average (0) = Tl HATY - a7
energy of a quantum oscillator of frequeney He }
5 5 We shall also use the notation,
w w . .
ulw) = T3 COthﬁ. (13) 0@) = eiH!/ @0 p—iH/ i (18)

In the classical limit this average energy goes to the clagiere O(1) is the (Heisenberg) operator that evolves in

sical equipartition valugT, independent of frequency. UMe? from the operato®. o .
The integrand is then analytic in the lower half plane and C©Onsider now a dynamical variablei.e., a self-adjoint
therefore the integral vanishes for> 0. Thus, we see °Perator in the Hilbert space off. For convenience
that the failure of the Onsager hypothesis is precisely du¥/® &SSume, a_nd it can always be arranged, that the
to the deviation of the quantum oscillator energy fromEXPectation of is zero,
its classical equipartition value. This deviation has two (y)=0. (19)
aspects: a high frequency linear divergence due to th
quantum zero-point oscillations and a cutoff of the finite-
temperature contribution at frequencies of the orde®of Cit—1t)= %(y(t)y(t’) + y(t")y(1)). (20)
The effect of the zero-point oscillations is obtained by The relaxation function is defined in terms of the
evaluating the sum on the right-hand side of (12) in the
limit T — 0. This is easily done if we recognize that in P
this limit there will be very many terms in the sum, which Hf=H — fy, (22)

he correlation function of is defined to be

erturbed Hamiltonian,
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where f is a realc-number constant. One imagines thatinitial value is

f is fixed in the distant past and the system is allowed f o y

to come to equilibrium at temperatufe Then atr = 0, x(0)y = A Vltl/z[coiwﬂ) sy Slﬂ(mlﬂ)}

f is set equal to zero, and the system evolves in time @1

according to the Hamiltonia/. The expectation value = fA(1). (26)

of y is then The Fourier transform of the relaxation function is there-
Tr{y(t)e H-I/kT} fore

O = T Ty (22) 2

Herey(¢), given by the definition (18), is the Heisenberg (K = mw?)* + o?
operator evolving in time under the unperturbedPUtting this in the fluctuation-dissipation theorem (25) and
Hamiltonian H. Finally, we assumef is small and forming the inverse Fourier transform, we obtain exactly
expand the expression (8) for the correlation function. Note that
this affords a direct calculation of that correlation, without
(@) = ADf + - (23)  reference to the guantum Langevin equation (1) or to the
The functionA(r) thus defined is the relaxation function form (2) of the random force correlation.
(sometimes also called the after-effect function). Note Concluding remarks—One can ask why it is that,
that, according to the definitions (22) and (23), the re-despite the fact that there is no quantum regression
laxation function is defined for both positive and negativetheorem, there seem to be no flagrant errors in its

Alw) = (27)

times. This is adopted as a convention. application. The answer, we believe, is that in most
We introduce now the time Fourier transform of theseapplications in the field of quantum optics the random
functions environment is the radiation field, which is coupled only
w0 weakly to the atomic system. Indeed, for the oscillator
Alw) =f dt e A(r) (24) coupled to the radiation field’ = Kr,, where 7, =

—o 2¢2/3mce? = 6.24 X 10"**sec is a very short time on
and similarly forC(w). It can be shown in general that the atomic scale [13]. Since the right-hand side of, say,

these are connected by the relation Eq. (10) is proportional ta/, one can argue that in the
- - weak coupling approximation one makes a small error in

Co) = u(w)A(w), (25) neglecting it.

whereu(w) is the free oscillator energy (13). This is the But in the same order of weak coupling in which

fluctuation-dissipation theorem [11,12]. one would neglect the right-hand side of Eg. (10), one

In the classical limitu(w) — kT, independent of fre- should also neglect the term proportionalit@n the left-
quency. Therefore, in this limit the fluctuation-dissipationhand side. Thus, in fact, what is being considered is the
theorem states thaf(r) and A(r) are proportional. But correlation of the free oscillator, in which the coupling
this is the Onsager hypothesis since( jfr)) is a macro- to the random environment is neglected. While in some
scopic variable, the relaxation functidir) will be a solu- ~ applications this might be a reasonable approximation,
tion of a (linearized) macroscopic equation describing thét does not require the formalism and apparatus of
approach to equilibrium. Thus, in the classical limit andquantum dissipation.
for macroscopic variables corresponding to a dynamical In conclusion, we would once again strongly emphasize
variable of the system, the fluctuation-dissipation theorenthat the fluctuation-dissipation theorem, either in the
is a proof of the Onsager regression hypothesis. On theelaxation function form (25) or in the more often useful
other hand, in the quantum case, whéris not zero, the response function form [12], is the correct quantum
factor u(w) is a nontrivial function of frequency. As we generalization of the regression theorem. This is a
have seen in the case of Brownian motion, this leads to &imple and correct statement of the relation between the
failure of the Onsager hypothesis. Rather than to speak gforrelation of fluctuations and the macroscopic description
failure, we would ourselves prefer to say that the propepf the approach to equilibrium. It does not require a weak
quantum generalization of the Onsager hypothesis is theoupling assumption.
fluctuation-dissipation theorem. The work of R.F.O.C. was supported in part by the

It would perhaps be of interest to see exactly howU.S. Army Research Office under Grant No. DAAH04-
the results obtained above for quantum Brownian motior®4-G-0333.
follow from the fluctuation-dissipation theorem. The
addition of a term—fx to the Hamiltonian for the
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in a term f on the right-hand side of the macroscopic [2] S.R. de Groot and P. MazuNon-equilibrium Thermo-
equation (9). The equilibrium solution with this term dynamics(North-Holland, Amsterdam, 1962), Chap. VII,
present isx) = f/K. The solution of Eqg. (9) with this Sec. 4.
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