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There is No Quantum Regression Theorem
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The Onsager regression hypothesis states that the regression of fluctuations is govern
macroscopic equations describing the approach to equilibrium. It is here asserted that this hyp
fails in the quantum case. This is shown first by explicit calculation for the example of quan
Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem
is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-diss
theorem. [S0031-9007(96)00679-5]

PACS numbers: 03.65.Ca, 05.30.–d, 05.40.+j
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The regression hypothesis.—The regression theorem
(or, more properly, hypothesis) of Onsager states
“…the average regression of fluctuations will obey t
same laws as the corresponding macroscopic irrevers
process” [1]. Thus, for example, the correlation
temperature fluctuations in a gas satisfies the Fou
equation of thermal diffusion [2]. The purpose of th
Letter is to point out that, contrary to the number
assertions appearing in the literature [3–6], there is
quantum regression theorem in the sense of Onsa
Similar observations have been made in special ca
(see, e.g., [7,8]), but here we investigate this ques
more generally. The essential point is made in o
Eq. (25) below, which expresses the fact that the pro
quantum generalization of the Onsager hypothesis is
fluctuation-dissipation theorem, not the so-called quan
regression theorem.

As a simple example, which is also that discussed m
often in the literature, we first discuss the case of quan
Brownian motion of a harmonically bound particle (osc
lator). This will allow an explicit demonstration of th
nature and origin of the failure of the Onsager hypothe
in the quantum case. Then, in order to put the rema
in a general context, we quote the fluctuation-dissipat
theorem of Callen and Welton in the form involving th
relaxation function. This enables us to present a g
eral analysis that is independent of the quantum Lange
equation. But, more important, this analysis applies
any quantum system (oscillator, two level atom, etc.).
a result, we shall see in general why the Onsager hyp
esis fails in the quantum case.

Quantum Brownian motion.—The quantum Brownian
motion of the oscillator is described by the quantu
Langevin equation [9],

mẍ 1 z Ùx 1 Kx ­ Fstd, (1)

where x is the displacement operator andFstd is an
operator random force, a Gaussian operator with expe
value zero and correlation
0031-9007y96y77(5)y798(4)$10.00
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kFstdFst 0 d 1 Fst0 dFstdl ­
2z

p

Z `

0
dv

h̄v

2
coth

√
h̄v

2kT

!
3 cosfvst 2 t0 dg. (2)

The commutator of the random force, which will not b
used in the following discussion, but which is needed
consistency, is

fFstd, Fst0 dg ­
z

ip

Z `

0
dv h̄v sinfvst 2 t0 dg. (3)

The parameters appearing in the quantum Langevin eq
tion (1) arem, the oscillator mass,K, the spring constant
and z , the dissipative force constant. Note that the ra
dom force is independent of the oscillator parametersm
andK . It depends only on the absolute temperatureT and
the constantz , which is a measure of the strength of th
coupling to the random environment (in general, a field

The stationary solution of the quantum Langevin equ
tion is

xstd ­
1
m

Z t

2`

dt0 e2gst2t0 dy2 sinv1st 2 t0 d
v1

Fst0 d, (4)

where we have introduced

g ­ z ym, v1 ­
q

Kym 2 g2y4 . (5)

The correlation of the displacement is defined to be

Cst 2 t0 d ­
1
2 kxstdxst0 d 1 xst0 dxstdl. (6)

With the force correlation given in Eq. (2), it is
straightforward matter to obtain the following expressi
for this correlation,

Cstd ­
2z

p

Z `

0
dv

sh̄vy2d cothsh̄vy2kT d
sK 2 mv2d2 1 z 2v2

cossvtd. (7)

Since the integrand is an even function ofv, we can also
write

Cstd ­
z

p

Z `

2`
dv

sh̄vy2d cothsh̄vy2kT d
sK 2 mv2d2 1 z 2v2

e2ivt . (8)
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The equation describing the approach of a giv
mean displacement to its equilibrium value of zero
obtained by forming the expectation value of the quant
Langevin equation,

mkẍl 1 z k Ùxl 1 Kkxl ­ 0 . (9)

The Onsager hypothesis would state that fort . 0 the
correlationCstd satisfies this same equation. But, usin
the expression (8) forCstd, we see that

mC̈ 1 z ÙC 1 KC ­
z

p

Z `

2`
dv

sh̄vy2d cothsh̄vy2kTd
K 2 mv2 1 izv

3 e2ivt . (10)

For t . 0 we can complete the contour with a large arc
the lower half plane, where the integrand vanishes. T
denominator in the integrand has zeros only in the up
half plane, while the numerator has poles atv ­ 2inV,
wheren is a positive integer and

V ­
2pkT

h̄
. (11)

The integral is therefore equal to22pi times the sum of
the residues at these poles. The result is

mC̈ 1 z ÙC 1 KC ­ 22zkT
X̀
n­1

nVe2nVt

mn2V2 1 z nV 1 K
.

(12)

This, being a sum of positive terms, does not vani
Therefore, the correlation does not satisfy the macrosco
equation (9) and the Onsager hypothesis is not satisfie

In the classical limit (̄h ! 0 or, equivalently,V ! `)
the right-hand side of (12) vanishes identically, and t
Onsager hypothesis is satisfied. This same result can
seen directly from the integral on the right-hand side
(10). There the only place the Planck constanth̄ occurs
is in the numerator in the integrand, which is the avera
energy of a quantum oscillator of frequencyv,

usvd ­
h̄v

2
coth

h̄v

2kT
. (13)

In the classical limit this average energy goes to the cl
sical equipartition valuekT , independent of frequency
The integrand is then analytic in the lower half plane a
therefore the integral vanishes fort . 0. Thus, we see
that the failure of the Onsager hypothesis is precisely d
to the deviation of the quantum oscillator energy fro
its classical equipartition value. This deviation has tw
aspects: a high frequency linear divergence due to
quantum zero-point oscillations and a cutoff of the finit
temperature contribution at frequencies of the order ofV.

The effect of the zero-point oscillations is obtained
evaluating the sum on the right-hand side of (12) in t
limit T ! 0. This is easily done if we recognize that i
this limit there will be very many terms in the sum, whic
n
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may then be approximated by an integral. The result i

mC̈ 1 z ÙC 1 KC ­ 2
h̄z

p

Z `

0
dy

ye2yt

my2 1 z y 1 K
.

(14)

This integral can be expressed in terms of the er
integral function [10], but it will be sufficient for our
purpose to exhibit the short and long time behavior, wh
correspond, respectively, to the large and smally behavior
of the integrand. The result is

mC̈ 1 z ÙC 1 KC ­
h̄g

p
3

(
lnsv0td, t ! 0 ,
2

1
sv0td2 , t ! ` , (15)

where v0 ­
p

Kym is the natural frequency of the un
damped oscillator. Thus we see that, far from vani
ing, the right-hand side is logarithmically divergent
short times.

The short time logarithmic divergence remains at fin
temperature, since the above argument replacing the
by an integral requires only that the productVt be small.
On the other hand, at finite temperature the long ti
power-law decay is replaced by an exponential dec
Thus, ifVt ¿ 1, one can replace the sum by its first ter
In this way, we obtain at finite temperature the result

mC̈ 1 z ÙC 1 KC ­
h̄g

p
3

(
lnsVtd, t ! 0 ,

2
e2Vt

11gyV1KymV2 , t ! ` .

(16)

This qualitative change in the long time behavior, fro
a power-law decay atT ­ 0 to an exponential decay a
T . 0, is a typical quantum phenomenon.

The fluctuation-dissipation theorem.—The theorem
deals with a system with HamiltonianH in equilibrium at
temperatureT . The expectation of an operatorO in the
Hilbert space ofH is defined to be

kO l ;
TrhO e2HykT j
Trhe2HykT j

. (17)

We shall also use the notation,

Ostd ; eiHty h̄Oe2iHty h̄. (18)

Here Ostd is the (Heisenberg) operator that evolves
time t from the operatorO .

Consider now a dynamical variabley, i.e., a self-adjoint
operator in the Hilbert space ofH. For convenience
we assume, and it can always be arranged, that
expectation ofy is zero,

k yl ­ 0 . (19)

The correlation function ofy is defined to be

Cst 2 t0 d ­
1
2 k ystdyst0 d 1 yst0 dystdl. (20)

The relaxation function is defined in terms of th
perturbed Hamiltonian,

Hf ­ H 2 fy , (21)
799
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wheref is a realc-number constant. One imagines tha
f is fixed in the distant past and the system is allow
to come to equilibrium at temperatureT . Then att ­ 0,
f is set equal to zero, and the system evolves in tim
according to the HamiltonianH. The expectation value
of y is then

k ystdlf ;
Trhystde2sH2fydykT j

Trhe2sH2fydykT j
. (22)

Hereystd, given by the definition (18), is the Heisenber
operator evolving in time under the unperturbe
Hamiltonian H. Finally, we assumef is small and
expand

k ystdlf ­ Astdf 1 · · · . (23)

The functionAstd thus defined is the relaxation function
(sometimes also called the after-effect function). No
that, according to the definitions (22) and (23), the r
laxation function is defined for both positive and negativ
times. This is adopted as a convention.

We introduce now the time Fourier transform of thes
functions

Ãsvd ­
Z `

2`
dt eivtAstd (24)

and similarly forC̃svd. It can be shown in general tha
these are connected by the relation

C̃svd ­ usvdÃsvd, (25)

whereusvd is the free oscillator energy (13). This is th
fluctuation-dissipation theorem [11,12].

In the classical limitusvd ! kT , independent of fre-
quency. Therefore, in this limit the fluctuation-dissipatio
theorem states thatCstd and Astd are proportional. But
this is the Onsager hypothesis since, ifk ystdl is a macro-
scopic variable, the relaxation functionAstd will be a solu-
tion of a (linearized) macroscopic equation describing t
approach to equilibrium. Thus, in the classical limit an
for macroscopic variables corresponding to a dynami
variable of the system, the fluctuation-dissipation theore
is a proof of the Onsager regression hypothesis. On
other hand, in the quantum case, whereh̄ is not zero, the
factor usvd is a nontrivial function of frequency. As we
have seen in the case of Brownian motion, this leads t
failure of the Onsager hypothesis. Rather than to speak
failure, we would ourselves prefer to say that the prop
quantum generalization of the Onsager hypothesis is
fluctuation-dissipation theorem.

It would perhaps be of interest to see exactly ho
the results obtained above for quantum Brownian moti
follow from the fluctuation-dissipation theorem. Th
addition of a term 2fx to the Hamiltonian for the
oscillator coupled to the heat reservoir clearly will resu
in a term f on the right-hand side of the macroscop
equation (9). The equilibrium solution with this term
present iskxl ­ fyK. The solution of Eq. (9) with this
800
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initial value is

kxstdlf ­
f
K

e2gjtjy2

"
cossv1td 1

g

2v1
sinsv1jtjd

#
; fAstd. (26)

The Fourier transform of the relaxation function is ther
fore

Ãsvd ­
2z

sK 2 mv2d2 1 z 2v2 . (27)

Putting this in the fluctuation-dissipation theorem (25) a
forming the inverse Fourier transform, we obtain exact
the expression (8) for the correlation function. Note th
this affords a direct calculation of that correlation, withou
reference to the quantum Langevin equation (1) or to t
form (2) of the random force correlation.

Concluding remarks.—One can ask why it is that,
despite the fact that there is no quantum regress
theorem, there seem to be no flagrant errors in
application. The answer, we believe, is that in mo
applications in the field of quantum optics the rando
environment is the radiation field, which is coupled on
weakly to the atomic system. Indeed, for the oscillat
coupled to the radiation fieldz ­ Kte, where te ­
2e2y3mc3 > 6.24 3 10224 sec is a very short time on
the atomic scale [13]. Since the right-hand side of, sa
Eq. (10) is proportional toz , one can argue that in the
weak coupling approximation one makes a small error
neglecting it.

But in the same order of weak coupling in whic
one would neglect the right-hand side of Eq. (10), o
should also neglect the term proportional toz on the left-
hand side. Thus, in fact, what is being considered is t
correlation of the free oscillator, in which the couplin
to the random environment is neglected. While in som
applications this might be a reasonable approximatio
it does not require the formalism and apparatus
quantum dissipation.

In conclusion, we would once again strongly emphas
that the fluctuation-dissipation theorem, either in th
relaxation function form (25) or in the more often usefu
response function form [12], is the correct quantu
generalization of the regression theorem. This is
simple and correct statement of the relation between
correlation of fluctuations and the macroscopic descripti
of the approach to equilibrium. It does not require a we
coupling assumption.

The work of R. F. O. C. was supported in part by th
U.S. Army Research Office under Grant No. DAAH04
94-G-0333.

[1] L. Onsager, Phys. Rev.38, 2265 (1931).
[2] S. R. de Groot and P. Mazur,Non-equilibrium Thermo-

dynamics(North-Holland, Amsterdam, 1962), Chap. VII
Sec. 4.



VOLUME 77, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 1996

-

g

)

v.

n
r
d,

n-
is

n-

n
or
s.
[3] M. Lax, Phys. Rev.129, 2342 (1963).
[4] W. H. Louisell, Quantum Statistical Properties of Radia

tion (Wiley, New York, 1973), Sec. 6.6.
[5] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynber

Atom-Photon Interactions(Wiley, New York, 1992),
Chap. IV, p. 350.

[6] L. Mandel and E. Wolf,Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, 1995
Sec. 17.1.

[7] H. Grabert, Z. Phys. B49, 161 (1982).
[8] P. Talkner, Ann. Phys. (N.Y.)167, 390 (1986).
[9] G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Re

A 38, 4419 (1988).
[10] M. Abramowitz and I. A. Stegun,Handbook of Mathe-

matical Functions(Dover, New York, 1965).
,

,

[11] H. B. Callen and T. A. Welton, Phys. Rev.83, 34 (1951).
[12] Often more useful than this form involving the relaxatio

function is the form involving the response function. Fo
a similar brief statement of the latter form, see G. W. For
J. T. Lewis, and R. F. O’Connell, Ann. Phys. (N.Y.)185,
270 (1988).

[13] The contradiction with our earlier assertion that the ra
dom force is independent of the oscillator parameters
only apparent. The original coupling is frequency depe
dent and of the formz svd ­ 2e2v2y3c3. After mass
renormalization and in the weak coupling approximatio
one obtains the frequency-independent form given. F
details see, e.g., G. W. Ford and R. F. O’Connell, Phy
Lett. A 157, 217 (1991).
801


