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Polymer Translocation through a Pore in a Membrane
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We construct a new statistical physical model of polymer translocation through a pore in a mem
treated as the diffusion process across a free energy barrier. We determine the translocation
terms of chain flexibility yielding an entropic barrier, as well as in terms of the driving mechan
such as transmembrane chemical potential difference and Brownian ratchets. It turns out that, w
chemical potential differences induce pronounced effects on translocation due to the long-chain
of the polymer, the ratchets suppress this effect and chain flexibility. [S0031-9007(96)00631-X]

PACS numbers: 87.22.Fy, 05.40.+ j, 83.10.Nn, 87.22.–q
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The process of polymer translocation into or acro
biomebranes is a problem of considerable importan
to a multitude of biological functions. Proteins a
transported across a cellular membrane and endoplas
reticulum, while RNAs are transported across a nucl
membrane after their synthesis [1,2]. There are sim
macromolecular transport mechanisms in drug delive
as well as in biotechnology of gene transfer [3] whe
it is fundamental to understand how DNAs can
incorporated into cells. It is a highly complex proce
with specificity involving conformational changes of th
translocating polymers that can occur in bothcis andtrans
sides as well as inside of the membrane.

Although the translocation apparatus have been s
gested and examined empirically in a great variety [
only recently have there been a few efforts to inves
gate quantitatively the driving force of translocation o
physical grounds [5,6]. Baumgärtner and Skolnick [
studied via simulation the translocation of polymer d
rectly through lipid bilayer, driven by the concentratio
imbalance of lipids that exists at high-curvature regio
in membrane. On the other hand, Simon, Peskin, a
Oster (SPO) [6] considered protein translocation throug
translocation channel or pore, and postulated that its d
ing force is random thermal motion rectified by “ratch
ets” which give rise to directional diffusion. The origi
of these so-called Brownian ratchets (BRs) is a chem
asymmetry, i.e., if specific predetermined segments of
protein cross the membrane, chemicals such as chaper
bind on the segments to prevent their backward diffus
to thecis side of the membrane.

SPO considered rigid proteins, leaving out the
fects of three-dimensional chain conformations and
associated flexibility and entropy. In this Letter we inco
porate these important effects by considering the flexib
polymer model. Along with the BR mechanism, w
also incorporate the more ubiquitous kind of asymm
try due to transmembrane chemical potential differen
which naturally exists in biomembranes, due to, e.
electrochemical gradients, membrane potentials, and
tein conformational changes. We aim at an analy
quantitative theory on the basis of statistical physics
0031-9007y96y77(4)y783(4)$10.00
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polymer and stochastic processes. To highlight th
flexibility and asymmetry effects on translocation, w
consider a simple, but tenable model for the membra
a rigid wall of negligible thickness with a pore, whic
is assumed to be small enough to allow only a sin
segment passage. The interaction of polymer segm
with membrane is considered to be only of steric orig
i.e., the segments cannot cross membrane except thro
the pore. We describe the translocation dynamics a
stochastic process crossing the free energy barrier ca
lated from the chain configuration partition function. Th
translocation time, given as the mean first passage t
for this barrier crossing, is obtained from the Fokke
Planck equation that we formulate below. The initial ta
geting of a nascent chain to the pore is regarded a
separate process and is excluded in this study. The c
troversies [2,7] over chain conformations and chapero
functions go beyond this investigation, which is main
concerned with finding some nonspecific physical prin
ples behind translocation.

Free energy barrier of polymer translocation.—The
conformation of a flexible polymer during its transloc
tion is significantly affected by steric interaction wit
the membrane, leading to a reduction of the polym
entropy and increase of its free energy. We adopt,
our model, an ideal chain withN s¿ 1d Kuhn segments
each with lengthb. First consider a chain withn Kuhn
segments with the initial segment anchored on a ri
wall introduced inyz plane. With the boundary condition
(BC) that the other segments do not cross the surfa
the probability of finding the end segment atr, given
the initial one atr0 on surfaceGsr, r0; nd, is obtained
using the image method [8]; it is given as the prob
bility for all configurations in free space, the Gaussi
distribution G0sr, r0; nd ­ s2pnb2y3d23y2 expf23sr 2

r0d2y2nb2g, minus the probability for the chain crossin
the surfaceG0sr, 2r0; nd,

Gsr, r0; nd ­ G0sr, r0; nd 2 G0sr, 2r0; nd

­

∑
2pnb2

3

∏23y2 6xe

nb2
exp

µ
2

3r2

2nb2

∂
, (1)
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FIG. 1. Schematic figure of the configuration of a transloc
ing polymer.

where r0 ­ se, 0, 0d and e is an arbitrarily small dis-
tance of the anchored segment from the surface.
steric constraint factor of a chain, given asZSsnd ­R

x.0 Gsr, r0; nd dr , 1, scales asn21y2. In the ab-
sence of the constraint the partition function is giv
by ZBsnd , exps2bnmd, where b ­ 1ykBT and m is
the chemical potential per segment defined bym ­
f≠Fsndy≠ngT in the limit n ! `. Fsnd is the free energy
given from the full partition function,Fsnd ­ 2kBT 3

lnfZSsndZBsndg ­
1
2 kBT ln n 1 mn 1 const, where the

constant term is independent ofn.
The whole chain during translocation can be deco

posed into two independent end-anchored chains eac
the opposite half spaces. For the decomposition intn
andN 2 n segments as shown in Fig. 1, the total free e
ergy is

F snd ­ Fsnd 1 FsN 2 nd (2)

­
1
2 kBT lnfnsN 2 ndg 1 nDm 1 const, (3)

where Dm is the excess chemical potential per segm
of the trans side relative to that of thecis side. The free
energy withDm ­ 0 has a symmetric barrier of entrop
origin which, for a long chain, is nearly flat except ne
n ­ 1 or n ­ N 2 1 (B of Fig. 2). As also shown in
Fig. 2, for a very long chain, a minute chemical potent
difference (e.g.,Dm ­ 1022kBT ) can break the barrie
shape symmetry, and its contribution can dominate

FIG. 2. Free energyF snd as a function of translocation
coordinaten. (N ­ 1026, A: bDm ­ 10yN , B: bDm ­ 0,
C: bDm ­ 210yN .)
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free energy. This contribution, which does not appear
a polymer in homogeneous media, can yield pronounc
effects on a translocating polymer we shall see below.

Stochastic model for translocation dynamics.—For the
long-time scale behavior of translocation, we constru
a coarse-grained description in terms of the transloca
segment number (translocation coordinate)n adopted as a
relevant stochastic variable and in terms of the associa
free energy barrier. It can be treated as a diffusive rand
process, which is described by a Fokker-Planck equat
for Psn, td, the probability distribution ofn,

≠

≠t
Psn, td ­ LFPsndPsn, td , (4)

where LFPsnd is the operator,LFP snd ­ s1yb2d s≠y
≠ndDsnd expf2bF sndg s≠y≠nd expfbF sndg. Here,Dsnd
is the chain diffusivity during translocation. In the cas
that theD remains constant, it is given byD ­ kBTy
G , N2n , whereG is the chain friction proportional to
Nn. The exponentn is 1 if the hydrodynamic interaction
between the segments is neglected (as in the Ro
model), and is1y2 if it is included (as in the Zimm
model) [9].

The mean first passage timetsn, n0d, which is defined
as the time for diffusion from the coordinaten0 to n, is
obtained by solving the equation [10]L

y
FP sn0dtsn,

n0d ­ 21, where L
y

FPsn0d ­ s1yb2d expfbF sn0dg s≠y
≠n0dDsn0d expf2bF sn0dg≠y≠n0. To obtain the
translocation time for the case that only the fro
segment in thetrans side is ratcheted, we assign th
reflecting and absorbing BCs, respectively, atn ­ 1 and
n ­ N 2 1: Jsn ­ 1, td ­ 2hfDsndybg s≠y≠n 1 b≠F y
≠ndPsn, tdjn­1 ­ 0, and Psn ­ N 2 1, td ­ 0. Un-
der these BCs, the translocation time, defined byt ;
tsN 2 1, 1d, is integrated to be

t ­ b2
Z N21

1
dn

1
Dsnd

ebF snd
Z n

1
dn0e2bF sn0d . (5)

Let us first assume, for simplicity, thatD does not
change in the course of translocation. In the case
the rigid chain without chemical potential differenc
Dm, F snd ­ const, the translocation time is simply re
duced to t ­ L2y2D , L21n, the result for the one-
dimensional diffusion of a single Brownian particle. He
L ­ Nb is the length of the whole chain. To incorpo
rate the chain flexibility effect, the free energy functio
in Eq. (3) should be included in Eq. (5), resulting in, fo
Dm ­ 0,

tsDm ­ 0d ­
p2

8
L2

2D
, L21n . (6)

While the length scaling behavior of the translocatio
time of flexible chain is the same as that of the rig
chain, the prefactor ofp2y8 indicates that the chain
flexibility retards translocation by 23%. This trend
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opposite to what SPO obtained, due to the entropy ef
associated with the three-dimensional chain conforma
which they did not include [6]. The translocation tim
is proportional toN21n and, remarkably, withn ­ 1 this
scaling behavior is identical to that of chain reptation tim
in entangled polymer systems [9,11].

If there is a nonvanishing chemical potential differen
the translocation time can be calculated, having
analytical expressions for limiting cases,

tsmpd ­

8>>>>>>><>>>>>>>:

p2

8
L2

2D

µ
1 1

32
9p2 mp

∂
, jmpj ø 1 ,

L2

2D
2

jmpj
, mp ø 21 ,

L2

2D
2

mp2
expsmpd, mp ¿ 1 ,

(7a)

(7b)

(7c)

where mp ; NbDm. When the chemical potential pe
segment is reduced on thetrans side, the translocation
time as given by Eqs. (7a) and (7b) encounters a cross
in the scaling behavior fromt , N21n , L21n to t ,
N11n , L11n , as shown in Fig. 3. This crossover occu
aroundmp ­ 1 corresponding toDm ­ kBTyN, a very
minute chemical potential difference for a long cha
This remarkable sensitivity of translocation to chemic
potential asymmetry is even enhanced for the oppo
case of higher chemical potential on thetrans side.
Consider, for example, a chain withN ­ 103 andjDmj ­
1022kBT , then jmpj ­ 10. While this small chemical
potential difference with a negative sign speeds up
polymer translocation by a factortsmp ­ 210dytsmp ­
0d ­ 0.18, the one with positive sign slows it dow
by a factor of 1191. Regardless of chain flexibilit
this extreme sensitivity, already implied in Fig. 2, is
cooperative phenomenon arising from chain connectiv
the segments respond all hand in hand [involving
scaling variablemp ­ NbDm in Eq. (7)] rather than as

FIG. 3. Translocation time (in units ofb2y2D0, D0 ­ ND)
versus chain lengthN for n ­ 1. (A: bDm ­ 0, B: bDm ­
21024, C: bDm ­ 21023, D: bDm ­ 21022, E: bDm ­
21021, F: bDm ­ 21.0, G: bDm ­ 210.) The crossover
behavior fromt , N3 to t , N2 occurs whenN is around
kBTyjDmj.
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individuals (involving bDm) to a driving asymmetry.
This is reminiscent of the cooperative effect of a slig
segmental bias that gives rise to fast protein folding
proposed by Zwanzig, Szabo, and Bagchi [12].

The chain diffusivity can also change during transl
cation. Adopting the Rouse model,Dsnd21 ­ N21 3

fnD21
t 1 sN 2 ndD21

c g, where Dc and Dt are the dif-
fusivities of the whole chain in thecis and trans sides,
respectively. The effect of the change,DD ­ Dt 2 Dc,
on t can be incorporated analytically, but the result do
not affect the dramatic effect ofDm discussed above. The
relative insensitivity oft to DD is obvious since, while
Dm appears exponentially,D is involved inversely in
Eq. (5).

Many-ratchet effect.—The BR mechanism, which was
originally suggested by SPO as a nonspecific drivi
mechanism for biased diffusion, assumes fast chem
binding of chaperones on the chain entering thetrans
side of the membrane [6]. The binding sites are assum
to be uniformly distributed with an interval ofd along
the chain. To incorporate this ratchet mechanism with
our model for the case of instantaneous action of ratch
without dissociation, the whole space of the translocat
coordinate is divided into intervals of lengthd ­ LyM,
where M is the number of binding sites. Then th
range of theith interval issi 2 1da 1 1 , n , ia 1 1,
where i ­ 1, 2, 3, . . . , M, and a ­ NyM is the number
of polymer segments in each interval. The dynamics
now consecutive translocation (unidirectional diffusio
of each interval subject to the free energy therein, as w
as to the BCs at both borders of the interval, reflecti
BC at the left border and the absorbing BC at the rig
These BCs are written asJsssn ­ si 2 1da 1 1, tddd ­ 0
andPsn ­ ia 1 1, td ­ 0 for all intervals.

AssumingD is constant, the translocation time of th
whole polymer is thent ­

PM
i­1 ti , where

ti ­
b2

D

Z ia11

si21da11
dn ebF snd

Z n

si21da11
dn0 e2bF sn0d . (8)

If the chain flexibility andDm are neglected, i.e.,F snd ­
const, it is reduced tot ­ Ldy2D ­ L2y2DM naturally,
the reduction by the factor of1yM compared withtsM ­
1d, as given by SPO. In general, the translocation tim
can be written as

t ­
L2

2DM
Vsmp, Md . (9)

Numerical integration for translocation time give
Vsmp, Md as depicted in Fig. 4, which clearly indicate
that the ratchets suppress the chain flexibility, as w
as the chemical potential differenceregardless of its
sign. Most striking is the approach oft to that of the
rigid chainfVsmp, Md ­ 1g, i.e., solely the ratchet result
when M is very large, even with a large negative valu
of mp; it runs counter to intuition, according to which
785
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FIG. 4. Vsmp, Md as a function ofM for different values
of mp ; Nbm. (N ­ 1026, A: mp ­ 100, B: mp ­ 10.74,
C: mp ­ 0, D: mp ­ 210.74, E: mp ­ 2100.) When M is
sufficiently large,Vsmp, Md goes to 1, the ratchet limit.

the negative chemical potential difference and the ratc
mechanism add up in series in speeding translocation.

This overriding effect of many ratchets can be b
ter understood by considering the Langevin equat
equivalent to the Fokker-Planck equation description,

bG Ùn ­ 2
1
b

≠FRsnd
≠n

1 jstd , (10)

where jstd is the Gaussian, white noise connected toG

via fluctuation-dissipation theorem (FDT),kjstdjs0dl ­
2GkBTdstd. Confining ourselves to the case in whic
the chain is rigid,FRsnd shown in Fig. 5 is the free
energy (ratchet potential) which effectively includes t
BCs due to ratchets. For the reflecting and absorb
BCs we considered, the step heighth is infinity. (But for
general consideration and more realistic ratchet activit
it can be put to be finite. The similarity of this ratch

FIG. 5. The free energy barrier of a rigid chain withM ­ 5
ratchets and with chemical potential differenceDm. Here
a ­ NyM is the number of chain segments per ratchet a
aDm, hs¿aDmd are the barrier heights due to asymmetr
arising from chemical potential difference and from ratch
activity, respectively.
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potential to those employed for ratchet-driven mot
proteins [13] is remarkable.) The FDT assures t
approach to equilibrium, that is, under the potentialFRsnd
of Fig. 5, n undergoes the rectified diffusion to the righ
regardless ofDm. WhenM is very large, so thataDm ­
kBTmpyM, the barrier height due toDm is very small,
the global translocation dynamics becomes independ
of the details of the local potential barriers, yielding thet

of many ratchets,t ­ L2y2DM, or Vsmp, Md ­ 1. A
calculation shows that this result tends to be valid
finite values ofh larger thankBT .

To summarize, we have investigated mechanism affe
ing polymer translocation through a pore in a membra
It is found that, while chain flexibility, due to an en
tropic barrier that results, does retard translocation,
ratchets speed it up, tending to reduce the flexibility a
chemical potential effects to rigid chain behavior. T
transmembrane chemical potential asymmetry, only w
minute magnitude, is found to modulate dramatic chan
in translocation behaviors of long polymers, which is a c
operative behavior arising from their chain connectivity
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