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Phase Diagram for a Magnetic Thin Film with Dipolar Interactions and Magnetic Surface
Anisotropy
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The phase diagram of a model thin film with long-range dipole-dipole interactions and magnetic
surface anisotropy is determined as a function of temperature and the surface anisotropy. We show
that the model studied here exhibits a reorientation transition in the absence of an exchange interaction.
Further we show that, unexpectedly, the transition is from an in-plane phase to an out-of-plane phase
with increasing temperature, which is the opposite of the ferromagnetic case. The implications of this
study for the full phase diagram of a model which includes both the dipolar and exchange interactions
are discussed. [S0031-9007(96)00552-2]
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Recent advances in experimental techniques
creating and studying magnetic thin films have l
to a great deal of interest in the critical prope
ties of magnetic monolayers and thin films [1–3
Much of the theoretical work has focused on the pro
erties of two-dimensional, ferromagnetic systems with
dominant short-range exchange interaction and magn
surface anisotropy (MSA), as well as, a much weak
long-range dipolar interaction [4–6]. The gene
Hamiltonian for such a system is

H ­ 2J
X

k$r,$r 0 l

$Ss$rd ? $Ss$r 0 d

1 g
X
$r,$r 0

Sas$rdGabs$r 2 $r 0dSbs$r 0 d

2 K
X

$r

fSzs$rdg2, (1)

whereJ is the exchange parameter,g is the strength of
the dipolar interaction, andK is the magnetic surface
anisotropy. Gabs$r 2 $r 0 d is the dipolar interaction given
by

Gabs$r 2 $r 0 d ­
dab

j$r 2 $r 0 j3
2 3

sr 0a 2 rad sr 0b 2 rbd
j$r 2 $r 0 j5

,

(2)

and $Ss$rd defines the magnetic dipole moment at$r.
Repeated indices imply a summation over compone
This model is expected to apply to systems such as
on the Cu(100) surface studied recently by Allenspa
and Bischof [2]. Experimentally this system exhibi
a reorientation transition in which the magnetizati
0031-9007y96y77(4)y739(4)$10.00
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changes direction from perpendicular to the plane (
of plane) at low temperature to parallel to the film (
plane) at higher temperature. A similar transition h
been observed in several other systems [1,3,7]. While
reorientation transition has been studied analytically us
mean field theory [4,8,9], renormalization group analy
[5,6,10], and Monte Carlo simulation [6,11,12], there a
a number of aspects of the reorientation transition that
poorly understood.

In this Letter we study the reorientation transition f
the case of a dipolar interaction and magnetic surf
anisotropy, but no exchange interaction (J ­ 0). Our rea-
soning for excluding the exchange interaction is that wh
the dipolar interaction is generally much weaker than
exchange interaction in real systems, it plays a cru
role in determining the phase behavior and morpholo
of the magnetic ordering. In the case of the planar s
tem (K ! 2`), the anisotropic character of the dipol
interaction serves to stabilize the magnetic order at
nite temperature [13,14]. In the case of the Ising syst
(K ! 1`), the competition between the antiferroma
netic character of the long-range, dipolar interaction a
the ferromagnetic, short-range exchange interaction g
rise to striped phases [15–17]. These phases have
observed experimentally [2] and are the subject of con
erable theoretical interest. In addition, there are a num
of quasi-two-dimensional magnetic systems in which
exchange interaction is of comparable magnitude to
dipolar interaction [18] and which can exhibit a relative
weak magnetic anisotropy [19]. The pure dipolar mo
is of obvious relevance to such systems.

Our results for this pure dipolar system also provi
an interesting contrast to the case of large finite val
© 1996 The American Physical Society 739
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of Jyg and have important implications for the comple
phase diagram of the Hamiltonian in Eq. (1). Previo
work on systems which interact only via an exchan
interaction (g ­ 0, K ­ 0) show that the spins do no
order for any nonzero temperature [20]. The addit
of the MSA leads to Ising-like ordering forK . 0 as
shown by Bander and Mills [21] using renormalizatio
group (RG) arguments and by Erickson and Mills [2
using Monte Carlo simulation. More recent RG wo
by Pescia and co-workers [5] and Monte Carlo wo
by Hucht, Moschel, and Usadel [11] have treated
combination of dipolar and exchange, but conside
the limit Jyg ¿ 1. Both sets of authors predict th
existence of a reorientation transition from an out-of-pla
ferromagnetic state at low temperature to an in-pla
ferromagnetic state as the temperature increases for s
ratios ofKyg. Unfortunately neither work fully consider
the effect of stripe phases, which have been shown to
integral to any understanding of the perpendicular pha
The limiting casesK ­ 1`, taking into proper accoun
the stripe phases [17], andK ­ 2` [14] have led to a
number of interesting observations, some implications
which will be discussed below.

We study the Hamiltonian in Eq. (1) withJ ­ 0 on a
square lattice as a function of the ratioKyg. We assume
that theẑ direction is perpendicular to the thin film, an
that x̂ and ŷ denote the unit lattice vectors that define t
square lattice of the system. From previous studies
know that the ground state forKyg ­ 0 corresponds to
an antiferromagnetic state in which the spins lie in pla
[14]. For the square lattice this state is highly degene
and defines a continuous manifold of states character
in terms of the orientation of the order parameter defin
as

$Mxy ­
1
N

X
$r

fs21dry

Sxs$rdx̂ 1 s21drx

Sys$rdŷg . (3)

This degeneracy is lifted at finite temperature and the
pendence of the free energy on the orientation of the o
parameter exhibits the fourfold symmetry of the under
ing square lattice [14]. As the anisotropy is increas
the energy of the in-plane phase increases relative to
phase in which the spins order antiferromagnetically p
pendicular to the plane, and atKyg ­ 2.44 6 0.01 the
ground state switches to this out-of-plane phase. T
ground state is characterized by the order parameterMz ,
defined as

Mz ­
1
N

X
$r

s21drx1ry

Szs$rd . (4)

The finite temperature phase diagram, found us
Monte Carlo simulation, is given in Fig. 1. In region I th
magnetic order parameter is characterized by a non
value for the out-of-plane, sublattice magnetization,Mz .
The magnetic order in this phase may be described by
ensemble average of the magnitude ofMz, M' ; kjMz jl.
740
e
s
e

n

]

k
e
d

e
e
me

be
es.

of

e
e

e
te
ed
d

e-
er
-
d

the
r-

is

g

ro

he

FIG. 1. Phase diagram obtained from Monte Carlo simulatio
Region I is ordered out of plane, region II is ordered in plan
and region III is paramagnetic. The dashed line is a gu
to the eye highlighting the line of first-order reorientatio
transitions between the two ordered states. The solid li
are guides to the eye highlighting the two lines of secon
order transitions from the paramagnetic state to one of the
ordered states. Points on each line are coded based on sy
size:N ­ 162 ss, hd, 242 se, nd, 322 sv, pd, and402 sx, 1d.

In region II the magnetic order is characterized by
nonzero value for the in-plane, sublattice magnetizati
$Mxy . The magnetic order may be described by the e

semble average of the magnitude of$Mxy , Mk ; kj $Mxyjl.
The phase boundary separating region I and region

from the high temperature paramagnetic phase, region
is shown in Fig. 1 as a solid line. The nature of th
transition can be seen in Figs. 2 and 3, where we h

FIG. 2. Variation of the order parameters forK ­ 0.50 for
various size systems.
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FIG. 3. Variation of the order parameters forK ­ 3.00 for
various size systems.

plotted both order parameters as a function of tempera
for Kyg ­ 0.5 and Kyg ­ 3.00, respectively. In both
situations the order parameters are effectively zero
high temperature. As the temperature decreases one o
parameter remains zero while the other acquires a non
value at a well defined transition temperature. As t
system size increases we can see that the trans
sharpens in a manner consistent with finite size effe
at a continuous transition. This is consistent with resu
in the limiting cases ofKyg ­ 6`, where a continuous
transition was reported [14,16].

The phase boundary separating region I and region
is shown in Fig. 1 as a dashed line. Along this line w
have the reorientation transition between the two orde

FIG. 4. Variation of the order parameters forK ­ 1.50 for a
system of sizeN ­ 40 3 40.
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states. The nature of this transition is distinct from th
between the paramagnetic phase and the ordered ph
Figure 4 shows both order parameters, defined above
functions of the temperature for constantKyg ­ 1.50 for
a system of sizeN ­ 40 3 40. At high temperature
the system is paramagnetic and both order parame
are zero. As the temperature is lowered the sys
orders first in the out-of-plane phase, and then a
lower temperature the system switches into the in-pl
phase. In Fig. 5 we have expanded the region of
reorientation transition in Fig. 4 and included results
other system sizes. We can see that the reorienta
transition lacks the finite size effects that one genera
associates with a continuous transition. As well t
Monte Carlo simulations show that there is considera
hysteresis associated with both the order parameter
the average energy at the reorientation transition.
temperature dependence of the specific heat also sh
strong indications that the reorientation transition is a fir
order transition.

This reorientation transition is novel as it is a reorie
tation from an in-plane phase at low temperature to
out-of-plane phase as the temperature is raised. The
of the two phases is reversed from that seen in the s
ies of ferromagnetic systems. To illustrate Fig. 6 sho
schematically the two phase diagrams. For the mo
studied here, shown in Fig. 6(a), the sequence of ph
as temperature is raised is in plane! out of plane!
paramagnetic. For the exchange dominated ferrom
netic systems, the sequence is out of plane! in plane!

paramagnetic, as indicated in Fig. 6(b). Related to
is the slope of the coexistence line,≠Kcy≠T . The slope
is negative for the model discussed here, but posi
in the case of a dominate ferromagnetic exchange

FIG. 5. Variation of the order parameters forK ­ 1.50 for
various size systems, near the reorientation transition. All d
shown were obtained by starting at high temperature and slo
cooling the system.
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FIG. 6. Schematic phase diagram for no exchange interac
(a) and for an exchange dominated ferromagnet (b).

teraction. The question which remains is: What is t
topology of the first-order surface, when one includes
relative strength of the exchange interaction,Jyg, in the
phase diagram? This is not a trivial problem as the lo
est energy state for both the in-plane and out-of-pla
orientations changes as a function of this ratio [16,2
We hope to address this question in future work.

The lines of continuous transitions and the first-ord
line appear to meet at a single point. Such a point is
definition a tricritical point. Within the errors associate
with the finite size of the systems and the statistical err
present, it can be determined that the tricritical point
at T ; Tc ø 0.9 6 0.1 andK ; Kc ø 1.2 6 0.1. This
point is indicated on the phase diagram by a large trian

In summary, the phase diagram for a two-dimensio
magnetic monolayer with a dipolar interaction and
magnetic surface anisotropy has been determined
function of the ratioKyg and temperature. The phas
diagram consists of three phases: a paramagnetic phas
ordered phase with the moments in the plane of the fi
and an ordered phase with the moments perpendic
to the film. The three phases coexist at a tricritic
point. This is the point where the line of first-orde
transitions meets the two lines of second-order transitio
Comparisons of this phase diagram to that predic
for a system with a dominant ferromagnetic exchan
interaction shows some similarities, such as the existe
of a first-order reorientation transition, but there a
interesting differences. In particular, the sign of the slo
of the coexistence line between the two ordered pha
is different; thus, the roles played by the lowest ene
parallel phase and the lowest energy perpendicular ph
in the reorientation transition are reversed. It will b
interesting to see how the phase diagram changes
function of Jyg, when proper consideration of the stripe
phases is included in the analysis. This problem will
the subject of future work.
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