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Results are presented from the first systematic nonlinear gyrokinetic simulation study of the scalin
and parameter dependences of toroidal ion-temperature-gradient-driven (ITG) turbulence and transp
in large magnetic-fusion-relevant tokamaks. Such simulations are made possible by significant advan
in computational physics algorithms which are summarized. The simulated ion-thermal transport rat
have clear “gyroreduced Bohm” scaling and are too low to account for the anomalous transport se
in the outer half of some TFTRL-mode discharges, indicating that additional mechanisms, such as
nonadiabatic-electron effects, are operative. [S0031-9007(96)00511-X]
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We report results from the first systematic nonline
gyrokinetic simulation scaling and parameter studies
tokamak turbulence and transport in large present-
tokamaks. This work treats turbulence driven by
toroidal ion-temperature-gradient-driven (ITG) instabil
[1].

Transport of heat, particles, and momentum in to
maks is often observed to be much larger than predi
by laminar collisional theories [2]. While the cause of th
“anomalous” transport is generally believed to be tur
lence driven by instabilities, quantitative theories with bo
predictive capability and a sound footing in first-principl
physics are still under development, although a recent I
turbulence transport model [3] based on linear gyrokin
and nonlinear “gyrofluid” [4] simulations shows promis

Analytical theories of tokamak transport [1,5–7] eith
rely on unproven assumptions that strongly affect
conclusions or else have a very small parameter-sp
region of true validity and are therefore applied outs
this region of validity. They must therefore be tested
either numerical simulations or by adequately diagno
experiments.

The most sophisticated noncollisional fluid simulatio
use 6-fluid-moment gyrofluid models [3,8], whose nonl
ear validity is not knowna priori. Since the toroidal ITG
mode is a kinetic instability [1], some demonstration
the validity of the fluid representations of thenonlinear-
ities in the gyrofluid models is important. Results fro
4-moment [8,9] and 6-moment [8] gyrofluid simulatio
disagree sufficiently that they fail to show that conv
gence in the gyrofluid hierarchy has been achieved w
6 moments. Thus, nonlinear (gyro)kinetic simulations
main an important test for gyrofluid models.

The gyrokinetic equations are valid nonlinearly, but a
more challenging to simulate. It has taken the com
nation of several advances in computational algorith
namely, nonlinear gyrokinetic simulation methods [1
df algorithms [11,12], the “quasiballooning-coordinat
numerical representation [13], and flux-tube simulat
domains [8,14] to make particle-based kinetic simulatio
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practical tool for direct studies of turbulence and anom
lous transport in tokamaks. This combination is a n
aspect of our work.

The physical model used is electrostatic, with a sin
fully toroidal nonlinear gyrokinetic ion species [15] tha
has equilibrium temperature, density, and velocity gra
ents:

≠dg
≠t

1 yk=kdg 1 Vdr ? ==='dg

 fsvp 2 vdd ? ===' 2 yk=kg
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Ti

fFM , (1a)

Vdr  vd 1 vEB 1 V 0
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Here, dg is the perturbed ion gyrocenter distributio
function, 2e is the electron charge,Ze and mi are the
ion charge and mass,B is the magnetic field strength
b̂ is the unit vector in the magnetic field direction
Vi ; ZeBymic is the ion gyrofrequency,===k ; b̂ ? ===,
yk ; b̂ ? v , y  jvj, v is the particle velocity,V 0

0 is
an externally imposedE 3 B velocity shear,r is the
(gyrocenter) minor radius,LT is the temperature gradien
scale length,hi ; LnyLT , Ln is the density gradient scal
length, ytiyLy is an externally imposed parallel velocit
shear,yti ;

p
Tiymi , andTi is the ion temperature. Also

vd is the sum of the magnetic curvature and===B drifts, and
vEB is the gyroaveragedE 3 B drift of the gyrocenters.
A low-b circular-cross-section model equilibrium is use

Equation (1a) is solved using the partially linearize
df particle method [11,12], with four-point gyroaveragin
[10]. The electrostatic potentialf is obtained from a
gyrokinetic Poisson equation [10]. The electron respo
© 1996 The American Physical Society 71
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is taken to be adiabatic, with a zero response to the fl
surface-averaged potential [16].

The main free energy source for instability is th
ion temperature gradient. Self-generated turbule
Reynolds’-stress-driven flows, along with their domina
collisionless damping [17] are included fully and se
consistently in the gyrokinetic model. External shea
parallel, E 3 B, or toroidal flows are also included,
needed.

The simulation domain used is a flux tube of small p
pendicular extent, but which spans one or more polo
circuits in the parallel direction. Ifr is the minor radius,
z is the toroidal angle, andu is a poloidal straight-field-
line coordinate angle, this domain can be expressed
ri ø Dr ø LT , 2pMu # u # pMu, Dz  2pyMz ,
whereri ; ytiyVi is the thermal ion gyroradius, andMu

andMz are integers. The flux tube is taken to the perio
in z , i.e., the periodicity interval is2pyMz .

The field quantities in the code are defined on
quasiballooning-coordinate grid [13]. Suitable quasib
looning coordinates aresr , y, zd, where

y ; 2
r0

q0
fz 2 q̂u 2 V 0

0sr 2 r0dtq0yr0g , (2a)

z ; q0R0u . (2b)

Herer0 is the minor radius at the center of the simulati
domain, q0  qsr0d where qsrd is the magnetic safety
factor, andR0 is the major radius at the minor axis.̂q is
defined by dividing they domain intoNz equally spaced
intervals in the flux tube (Mz Nz in the whole tokamak),
and settingq̂srd  msrdysMz Nz dwhere, at each radia
surface r, msrd is the integer that makeŝq closest to
qsrd. For anyqsrd profile, this choice allows the constan
b grid lines to connect exactly to (generally differen
grid lines across the parallel boundaries of the simulat
domain while maintaining the true physical periodici
[13]. The velocity-shear term in Eq. (2a) minimizes t
motion of particles past grid cells.

The parallel derivative in quasiballooning coordinat
is

=k 
≠

≠z
1 eBsq 2 q̂d

≠

≠y
, (3)

whereeB  r0yR0. Our choice ofq̂ guarantees that th
second term is typically much smaller than=k, so that par-
allel wave number spectrum is uniformly and optima
packed for all values ofr. The component of the per
pendicular derivative within a flux surface is=y  ≠y≠y.
The elongation of the fluctuations along the magnetic fi
renders terms resulting from the nonorthogonality ofy and
z negligible. The radial differences, interpolation, dep
sition, and smoothing are formed using shapes inconfig-
uration space (not ballooning-coordinate space) that
independent of poloidal location [13]. This choice pr
vents grid collapse and resolution loss in the presenc
magnetic and velocity shear, and is necessary to allo
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smooth implementation of the toroidal periodicity cond
tion across the parallel boundary.

Profile relaxation [16] is prevented by making th
simulation volume periodic inr at fixed y, generalizing
Kotschenreuther’s twist-shift radial periodicity conditio
[12] to give a seamless radial connection even in
presence of external velocity shear.

Using a Pade approximation for the Bessel functio
[4], we have derived an accurate (to within 5% f
k'ri , 3, wherek' is the perpendicular wave numbe
and easily solved approximation (given for the ca
of equal electron and ion temperatures in Ref. [18])
the gyrokinetic Poisson equation of Ref. [16]. A dire
Fourier-in-y, tridiagonal-in-r elliptic solver that takes into
account the twisting of the quasiballooning coordina
is used to solve the resulting second-order elliptic PD
Further grid-based smoothing is applied tof.

A systematic study of the scalings and parameter dep
dence of toroidal ITG turbulence and transport has b
completed using our code. The parameter values were
ied one at a time from a base simulation case which re
sents conditions in a TFTRL-mode discharge (TFTR sho
#41309) atr  0.5a, wherea is the minor radius of the las
closed flux surface. These parameter values arehi  4,
q0  2.4, ŝ ; sr0yq0ddqydr  1.6, eT ; LT yR0  0.1,
eB  0.2057, and t  TeyTi  1. Typical numer-
ical parameters are time stepdt  0.2LT ycs, where
cs ;

p
Teymi , particle numberNp  4 3 106, perpendic-

ular grid sizesDx  Dy  0.8rs, and grid cell numbers
Nx  Ny  128, and Nz  32. The spatial smooth-
ing represents an effective Fourier-space form fac
expf2saykyDyd4gyhf1 1 saxkxDxd4g f1 1 sazkzDzd4gj,
typically with ax  ay  1.25, and az  1. The radial
(x) smoothing is in the physically radials===rd direction,
and not along a line of constanty andz.

The linear phase of the simulation shows radia
elongated structures with a perpendicular wave num
characteristic of the fastest growing mode The structu
seen in the nonlinear phase have comparable radial
poloidal correlation lengths at scales (kyrs , 0.1 for the
base case) characteristically longer than the wavelengt
the most unstable mode. The thermal flux typically h
small relatives,10%d fluctuations on time scales of th
order of the growth rate of the most unstable mode ab
a clear mean. We average over many such fluctuation
the results discussed below.

Convergence has been checked extensively and app
to be adequate with respect to particle number, grid
particle sizes in all three directions, the timestep, and
number of poloidal circuits traversed by the flux tub
(Additional checks simultaneously changing more than o
numerical parameter at a time are still highly desirab
and will become possible with a massively parallel vers
of our code that is presently under development.)
summary of results showing convergence with respec
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case
the parallel resolution, the number of poloidal circu
traversed by the flux tube, and the box size is shown
Fig. 1. The thermal diffusivity is defined as

xi 
2LT

3

X
j

y
2
j

c2
s

Vdr ? x̂ , (4)

whereyj is the velocity of particlej and the sum is ove
all of the simulation particles. (Note that a conductivit
equal to1.5xi , is also commonly used, e.g., Ref. [19]
For sufficiently large box sizes, which are still significant
shorter than typical profile scale lengths,xiyxGB, where
xGB ; r2

s csyLT , is finite and becomes independent of t
box size. The transport therefore has a clear gyroBo
scaling, irrespective of the magnetic shear.

Self-generated perpendicular flux-surface-avera
E 3 B flows form in the nonlinear phase, and evolve
similar time scales and radial spatial scales to those of
turbulence. Their time scales are much more rapid t
the ion bounce time and typical ion collision frequencie
The associated flow shear regulates the turbulence le
and transport rates. For the base-case parameter
zeroing out the self-generated flows gives a satura
state withxi . 6xGB, or roughly 7 times larger than with
the self-generated flows. Thus, the transport rate can
affected strongly not only by the instability physics, b
also by additional flow damping mechanisms.

For a small number of simulation runs in whic
we have diagnosed them, including the base case,
relative fluctuations levels of the fluid field quantitie
are observed typically to have the ratiosT̃i'yTi , 3 2

4T̃ikyTi , 1.5ñyn0 , 1.5 2 2ỹikycs. The smallness of
ỹik is consistent with the toroidal ITG drive mechanis
which is not mediated by parallel flow.

From the results of many simulation runs in which t
physical parameters were varied individually about
base case parameter set, the thermal diffusivity is m

FIG. 1. Dependence of the normalized thermal diffusivity
the perpendicular box size, for various values ofhi , andŝ. The
physical parameters are as for the base case with the pos
exception of one parameter, as given in the legend. Additio
convergence results are also shown;Mu  2 refers to a run
using a flux tube that spans two poloidal circuits. This a
the Nz  64 (for which az  1) run had the same physica
parameters and simulation particle per grid cell density as
base case.
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simply normalized as

xi . 9
r2

s cs

R0
x̂sqyeT , hi , LsyLT , t, eT , eB, V 0

z LT ycsd ,

(5)

whereLs  qR0yŝ is the magnetic shear length, andV 0
z

is thetoroidal velocity shear.
The dependence of̂x on each ofqyeT , hi , LxyLT , and

eT , with the other parameters set at the base-case va
are shown in Fig. 2. Thet and eB dependences of̂x
(not shown) are weak. Large excursions in the physi
parameters from the baseline are needed to produce
moderate increases in̂x above 1. Thus, for minor radi
rya . 0.5, the overriding dependence of the simulat
xi on the minor radius is a strong decrease through
r2

s csyR0 factor in Eq. (5).
For the base case, the simulation valuesx̂  1d is a fac-

tor of almost 1.5 lower than the experimental value.
rya  0.8, the disagreement between our simulation a
the experiment is greater than a factor of 8. The disagr
ments inxi have been translated into disagreements inTi

through a simple power-balance analysis. The power fl
allowed by an upper bound to our simulatedxi is bal-
anced with the experimentally measured power flow. T
gives a lower bounds for the predictedTi which lies clearly
above the experimentalTi for rya . 0.6. A similar sit-
uation holds for some other TFTR discharges, includ
someH-mode shots. Thusadditionalphysics beyond what
is contained in the gyrokinetic ITG model, for exampl
electron kinetic destabilization or additional flow dampin
is necessary to account for these experimental results
is important to identify this additional physics. We hav

FIG. 2. Closed points show the dependence ofx̂ as defined
in Eq. (5) diffusivity on (a)qyeT , (b) hi, (c) LsyLT , and (d)
LT yR. On each plot, only the selected parameter in Eq.
is varied, and the other parameters are held at the base-
values. Open points show in (a) the results forq  4.8, eT 
0.1, ŝ  1.5 and in (d) the results forq  2.4, eT  0.05,
ŝ  1.5.
73
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FIG. 3. Dependence of ion thermal conductivity on th
rotation shear. Open diamonds are for purelyE 3 B shear;
other cases are for toroidal rotation shear (i.e.,V 0

keByq 1 V 0
' 

0, whereV 0
k  ytiyLy , andV 0

'  V 0
0).

examined someL-mode discharges for which the lowe
bound predictedTi is consistent with the experiment. I
such cases, a more detailed examination based purel
ITG turbulence may be fruitful.

Results from the gyrofluid simulations of Ref. [3
which agree with experiments, do not agree with our g
rokinetic results. The disagreements in predicted temp
ture profiles become greater with increasing minor radi
corresponding to increasing departure from marginal s
bility. The main difference in the turbulentxi has been
isolated as an overall factor of 2. Additionally, differen
scalings withq at fixedŝ and witheT at fixedhi andq are
observed. However, other gyrofluid simulation results
appear to be consistent with our results. Thus, discrep
cies remain that are not fully understood. To resolve
origin of these discrepancies we are (a) collaborating w
the authors of Ref. [3] to remove the differences in o
numerical representations and to further check numer
convergence, and (b) developing a semiempirical theo
ical criterion for the validity of the gyrofluid equations a
an approximation to the gyrokinetic equations for toroid
ITG turbulence.

Toroidal flow shear is an important ingredient in man
tokamaks, due to the presence of an external tor
from neutral beams, and has different effects in differe
tokamaks [19]. The present code can address toroi
rotation effects in TFTR. The dependence ofx̂ on V 0

z ,
with other parameters as for the base case, is sh
by the circles in Fig. 3. They show that toroidal flo
shear can have a weak net effect on the ion therm
transport, in agreement with TFTR results, even when
E 3 B component alone (diamonds in Fig. 3) is high
stabilizing. This result, however, is strongly depende
on the pitchBuyBz  qyeB of the magnetic field lines.
When BuyBz is increased (crosses), the toroidal flo
shear can become stabilizing. The toroidal moment
diffusivity [xy , defined analogously by Eq. (4)] is foun
74
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to be from 0.4 to 0.7 timesxi . In the experiments [19],
xyyxi . 1 1.5, with xi normalized as in Eq. (4). We
consider this a moderate disparity.

In summary, we have completed a systematic gyro
netic simulation study ITG turbulence with global pa
rameters in the regime of fusion-relevant tokamaks. G
roBohm scaling is observed, and the transport rates
too low to account for some TFTRL-mode discharges.
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