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Liouville Theory as a Model for Prelocalized States in Disordered Conductors
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It is established that the distribution of the zero energy eigenfunction® &f [)-dimensional Dirac
electrons in a random gauge potential is described by the Liouville model. This model has a line
of critical points parametrized by the strength of disorder and the scaling dimensions of the inverse
participation ratios coincide with the dimensions obtained in the conventional localization theory. From
this fact we conclude that the renormalization group trajectory of the latter theory lies in the vicinity of
the line of critical points of the Liouville model. [S0031-9007(96)00728-4]

PACS numbers: 71.23.An, 05.45.+b, 03.65.Sq, 05.60.+w

Among the problems of localization theory there is oneFal’ko and Efetov suggest that the renormalization flow
which, until recently, had attracted less attention than it defor P(z), yet eventually turning to the strong coupling
serves. This is the problem of spatial correlations of wavélocalization), spends a lot of “time” in the vicinity of
functions at distances much smaller than the localizatiosome critical line where the asymptotics Bfr) is given
length L. (see Refs. [1,2]). This problem is well under- by the log-normal distribution. It is difficult, however, to
stood only for extended states, i.e., in the limit of smallidentify this critical line within the replica approach. The
wave function amplitudes = |¢(x)|?>. Since extended supersymmetric saddle point calculations provide a better
states explore the entire sample, one can neglect their spasight since they give the Liouville equation as the
tial variations and treat the Hamiltonian as a random mamodel’s saddle point condition.
trix. The distribution functiorP () derived by the methods In this Letter we describe a model of disorder where the
of random matrix theory depends only on the global sym{ine of critical points discovered in Refs. [2,5] is stable.
metry of the random ensemble and has an approximatelyhis is the theory ofZ + 1)-dimensional Dirac fermions
Gaussian form (the Porter-Thomas distribution; see, for exin a random gauge potential (FRGP model). We show
ample, [3]). This approach fails for larges since the tails that the distribution function of the prelocalized states
of the distribution function are determined by rare spadin this model is described by the Liouville field theory
tially inhomogeneous configurations with high local am-(LFT). This theory was introduced by Polyakov [6] in
plitudes. The first calculation for the asymptotic form of the context of string theory and has been extensively
P(r) in small two-dimensional samples (« L.) was per- studied. We are going to use this accumulated knowledge
formed by Altshuler, Kravtsov, and Lerner [2] using the for the theory of localization. One important property of
renormalization group and replicas. The nonperturbative FT is that it does have a stable line of critical points
approach based on the supersymmatricnodel had not which seems to describe the prelocalized states in the
been used in this context until Muzykantskii and Khmel-conventional theory of localization. As we shall show
nitskii [4] pointed out that in order to describe exceptionallater, this line is parametrized by the strength of disorder.
events most affected by the disorder one should look for Until the present time only two critical disordered sys-
a saddle point of the supersymmetaicmodel. This idea tems have been studied: the model of a half-filled Landau
has then been exploited by Fal’ko and Efetov [5] who havdevel (see, for example, [7], and references therein) and the
derived a reduced model adapted to the studies of prop- model of ¢ + 1)-dimensional Dirac fermions in a random
erties of a single quantum state in the discrete spectrumauge potential (FRGP model) [8—11]. The latter model
of a confined system and found that the redugechodel  has an unbounded energy spectrum, but the spectrum of
has a nontrivial vacuum. They have calculaiéd) intwo A2 is bounded from belowK? = 0). Since the conduc-
loops (the saddle point approximation with Gaussian fluctivity of the FRGP model at zero frequency is finite and the
tuations around it). wave functions withE = 0 have multifractal properties

Below we discuss only two-dimensional systems. In(see Ludwiget al. [8]), we suggest that the mobility edge
two dimensions the conventional localization theory ofof this model coincides with the boundary of the spectrum
unitary ensemble represents a special case since the figgnerating operatali>. This conjecture does not gener-
loop localization correction to the conductivity vanishesally hold in more complex critical disordered systems (e.g.,
and the localization length is therefore very large; ~ 2D symplectic and 3D).
exp(G3), where G, is the bare conductance (we assume In this Letter we study the statistics @& = 0 wave
thatG, > 1). Meanwhile the behavior of wave functions functions of the Abelian FRGP model in two dimensions
becomes nontrivial at much smaller length scales> [12]. In the gauge whered, = €,,9,® the Dirac
exp(Go). In this case the results of Altshulet al.and equation has one obvious solution with= 0, which we
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write down in the normalized form boundary term:
) _ 1 f 2 2 2beb
— 3 e Suo=—— | dx[(Vop)" + dmpe”?]
bl = (1% N @ o= 4 ),
. o . + 2 sa. @)
This solution is unique on a closed sphere if the total 7R Jir
flux is less than 2. For greater fluxes the index theorenp is more convenient, however, to contract the boundary
predicts the existence of other solutions with= 0 [13]. ~into the point, thereby transforming the disk into a sphere.
We shall consideV® as a random variable with the The boundary condition is then equivalent to the insertion
Gaussian distribution of the Liouville exponentiale~22¢(®) (R — o) into all

) 5 correlation functions [17]. Fop = 0 one can express
] d“x[V@(x)] } (2)  correlation functions of the fields?*# in the LFT with

P[®] = Z7;! exp{—
47 b2 . ) X .
Without loss of generality we can chooge= 1 in boundary conditions in terms of correlation functions of
the conventional Gaussian model

Eqg. (1) and study the moments of the distribution function

of the first component of the wave function defined by <l_[ e2af¢>(xf>> = l_[ lx; — x|t
i o i<j
G(,...,N) = f DOP[OIYF(x)) - ¥i(xy).  (3) x 56<Zai _ Q)R—ZQZ,
i

Notice that all these quantities are invariant under the S.(x) = 1 N (8)
shift ® — ® + ¢ by an arbitrary real constart The T € + x?
N-point moment ofnormalizablewave function squares wheree is a small parameter introduced for regularization
can always be rewritten as follows: and the subscriptD means that the function on the

Gl N) — *du exd—auluN! left-hand side is the correlation function calculated with

(1,....N) = (N — 1! action (7). Provided theeutrality condition) ; a; = Q

0
N is satisfied, all correlation functions are proportional to
X fDCID e 2PM)e7Su (4)  the same factoR 2¢°. We shall see that this factor is
i=1 compensated by the integral ovar. Calculating two-

where the actior§, is given by point correlation functions in LFT, we conclude that the
1 conformal dimension of the Liouville exponential is
S, = f dzx[ 5 (Vd)* + ,u,em}, (5) P
4mb Ae**?) = a(Q — a), 9)

and the exponent ekpau] is introduced to make the 5.4 this is true foru # 0 also [18—20]. Note thaQ

integral overu convergent. Thus the multipoint moment pag heen chosen such that the exponential operator in
) is now expre_ssed in terms of theduciblemultipoint the Liouville action is marginal, i.eA(e22?) = 1, thus
correlation function of LFT. preserving the criticality of the theory.

Now we shall recall several facts about LFT that we' |; tollows immediately from Eq. (9) that the conformal

are going to use. They can be found, for examplegimensionsA(g) (4 real) of the composite operators
in Refs. [14,15]. To conform to the notations accepted.wzq(x). ~ exg2gbé(x)] (the sign:-- - denotes normal
among the field theorists, we rescale the fidld= —b ¢. 6rtljerin' )are e 3al o CHEN

We also impose the following boundary conditions on the 9 q

Liouville field: A(g) = q(1 + b* — b*q). (10)

d(x) = —0 In|x|%, |x| — oo, 0=5>b+ % These dimensions depend on the continuous pararheter
which represents the disorder strength. The LFT model

(6) remains critical for any values @fwith the central charge
Thus we are considering only ground state wave functiongiven by

that decay algebraically at infinity. These are fhre- 2 2
localized states If boundary conditions are not chosen C=1+60"=1+6(b+1/b)" (11)
properly, the correlation functions of LFT vanish. In the However, ath =2 = M, whereM = 1,2,..., the theory
semiclassical saddle point calculations [5,14,15], this feapossesses an additional hidden SLR),symmetry (see,
ture emerges as a condition for the existence of the saddfer example, [14]). It is also known [15] that three point
point. The boundary condition (6) can be formulated as aorrelation functions have resonances at these valuks of
condition that the total flux through the system is equal to Equation (10) reproduces the dimensions obtained for
Qb. Uniqueness of the wave functions (1) is not violatedFRGP in Ref. [8] by the replica trick and also the di-
providedQb < 2 [16]. mensions obtained for the conventional localization the-
There are different ways to implement the boundaryory [2,5] (in the notation of Ref. [5p 2 = 872BvD).
condition (6). One can consider the LFT on a large diskNeedless to say that in the conventional localization the-
I' of radiusR — = and add to the local LFT action (5) a ory the parameteb undergoes renormalization towards
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strong coupling and therefore the described equivalence The authors of Ref. [5] have stressed the importance
holds only in the crossover regime. As we have menof the nonuniversal prefactor on the right-hand side of
tioned earlier, an extended crossover region exists onl{12) to assess the self-consistency of the scaling analysis.
for the unitary ensembled( = 2). This prefactor is controlled by the dependencyonf the

An important application of (10) is to the calculation of correlation functions of the LFT. Let us note that above
the scaling with respect t8 of the inverse participation we discussed the results which were independept, &fo

ratios one can putw = 0. Now we have to study the effects
2, 2q —(g) a2 _ which arise in the full theory with nonzere.

<frd xiy (X)> x« RTT, 1(q)=2(1=b"q)(q — 1). It is easy to find the scaleu) dependence of any

(12)  correlation function in Liouville theory [18—20]:

The applicability of this scaling for largg has been ~ _ il 20, b(x,)

discussed in Refs. [5,10,21]. It was established itia} G(,....N) = ljle 0

must be a monotonously increasing functiongof This "~ ©-5" w)/b

means that Eq. (12) is at most valid fpr< (1 + »~2)/2. = (mp) =1 F gy (X1, XN

This condition selects operators €Xpb¢) with gb = (13)

(b +1/b)/2 = Q/2. Let us note that in the weak

disorder limit > <1, these exponents can still be usednere F,, .., (xi,...,xy) must be calculated in the Liou-

for the description of very high participation ratios. ville theory with » = 1 and the answer for the generic

This selection resembles the following well-known fact cgrrelation function is unknown. For three- and four-

fromthe LFT. Namely, there is a difference between operpoint functions the answer was found in [15,22] for
ators ex2a ¢) with « < 9/2 anda > Q/2[14]: Only  any ). However, for the special case when the factor
the first ones (so-calleshicroscopicoperators) correspond (9" — 3" o;)/b is an integer, i.e., when the correlation
to local states whereas the latter (so-calledcroscopic  fynction (13) is proportional to an integer power of all
operators) create finite holes on the random surface. Ipyltipoint correlation functions can be obtained explicitly
LFT the field exif2b¢) is interpreted as a metric of a py expanding exp-S,.0) [cf. (7)] in powers ofy.
two-dimensional surface. Inthe semiclassical limi< 1 Thus unlike the case of conformal dimensions where
correlation functions of microscopic operators can be obgq, (10) holds for any, the multipoint correlation func-
tained by the saddle point approximation. The solution otjons can be easily obtained only for discrete values of the
classical equations of motion describes a surface spannegkorder strength? = 1/M, M = 1,2, ..., for which the

on a disk with radiust — . This surface has constant expansion ove. contains onlyone nonvanishing term.
negative curvature metric with spikes (integrable poweindeed whenb~2 is an integer, the multipoint correla-
law singularities of the metric fielgz ~ |z[77,7 <2)  tjon functions of the Liouville theory can be expressed in
at the points of insertion of operators with<< Q/2 (for  terms of correlation functions of the free bosonic field (the
a = Q/2we have punctures, i.dz|~* singularities). For  potsenko-Fateev construction [23]). To see this, we recall
macroscopic operators there is no classical solution COkhat for the correlation function (4) alt; = b. Hence
responding to a surface with a single boundary at infin- N

ity which means that each insertion creates a hole of a 0 - Z“) hb=1-N + l/bz. (14)
finite size. Since the exponents with> (1 + b~2)/2 e

correspond to macroscopic operators, it is not correct, in

our opinion, to use them for description of higher orderProvidedbh 2 = M with integerM = N — 1 the neutral-
participation ratios. It is important to mention, however, ity condition is fulfilled with the term~u!' V"™ The re-
that macroscopic operators appear in fusion of microscopisult for the N-point function on the infinite plane follows

ones. immediately:
|
3 . ploNEM N 1 1—ﬁM ) 1—ﬁM N 1 lle_irM 1
G(1,..,N)=€¢ 'R~ f d- & _— _—
(1=N+M)! i<j |Zij|4/M =1 =1 =1 |zi — &I¥/M m<n | pnl*/M

(15)

(herez,z = x *= iy are complex coordinates). The e>|<- remark that by regularizing the theory with the introduc-
pression for a finite system can be obtained by conformaion of exd—au], we overestimate the normalization

transformation according to the general rules of conformafactors of the wave functions. In other words, we restrict
theory. Substituting Eq. (15) into Eq. (4) we find that all the allowed spatial fluctuations of the wave function
correlation functions are proportional to the same nonuniamplitude from above and thereby eliminate the contribu-
versal factor D = e 'R72C" [ duu'/’e~**.  We tions from localized states to the statistical average in (3).
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Finally, we note that as shown in Ref. [2},= 1 is the criticism, and interest for the work. C.M. acknowledges
largest value of the disorder strength for which quenchedinancial support from the Swiss National funds.
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