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Liouville Theory as a Model for Prelocalized States in Disordered Conductors
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It is established that the distribution of the zero energy eigenfunctions of (2 1 1)-dimensional Dirac
electrons in a random gauge potential is described by the Liouville model. This model has a line
of critical points parametrized by the strength of disorder and the scaling dimensions of the inverse
participation ratios coincide with the dimensions obtained in the conventional localization theory. From
this fact we conclude that the renormalization group trajectory of the latter theory lies in the vicinity of
the line of critical points of the Liouville model. [S0031-9007(96)00728-4]
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Among the problems of localization theory there is o
which, until recently, had attracted less attention than it
serves. This is the problem of spatial correlations of wa
functions at distances much smaller than the localiza
lengthLc (see Refs. [1,2]). This problem is well unde
stood only for extended states, i.e., in the limit of sm
wave function amplitudest ­ jcsxdj2. Since extended
states explore the entire sample, one can neglect their
tial variations and treat the Hamiltonian as a random m
trix. The distribution functionPstd derived by the methods
of random matrix theory depends only on the global sy
metry of the random ensemble and has an approxima
Gaussian form (the Porter-Thomas distribution; see, for
ample, [3]). This approach fails for largert’s since the tails
of the distribution function are determined by rare sp
tially inhomogeneous configurations with high local am
plitudes. The first calculation for the asymptotic form
Pstd in small two-dimensional samples (L ø Lc) was per-
formed by Altshuler, Kravtsov, and Lerner [2] using th
renormalization group and replicas. The nonperturba
approach based on the supersymmetrics model had not
been used in this context until Muzykantskii and Khm
nitskii [4] pointed out that in order to describe exception
events most affected by the disorder one should look
a saddle point of the supersymmetrics model. This idea
has then been exploited by Fal’ko and Efetov [5] who ha
derived a reduceds model adapted to the studies of pro
erties of a single quantum state in the discrete spect
of a confined system and found that the reduceds model
has a nontrivial vacuum. They have calculatedPstd in two
loops (the saddle point approximation with Gaussian fl
tuations around it).

Below we discuss only two-dimensional systems.
two dimensions the conventional localization theory
unitary ensemble represents a special case since the
loop localization correction to the conductivity vanish
and the localization length is therefore very large:Lc ,
expsG2

0 d, whereG0 is the bare conductance (we assum
thatG0 ¿ 1). Meanwhile the behavior of wave function
becomes nontrivial at much smaller length scalesL .

expsG0d. In this case the results of Altshuleret al. and
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Fal’ko and Efetov suggest that the renormalization flo
for Pstd, yet eventually turning to the strong couplin
(localization), spends a lot of “time” in the vicinity of
some critical line where the asymptotics ofPstd is given
by the log-normal distribution. It is difficult, however, to
identify this critical line within the replica approach. Th
supersymmetric saddle point calculations provide a be
insight since they give the Liouville equation as thes

model’s saddle point condition.
In this Letter we describe a model of disorder where t

line of critical points discovered in Refs. [2,5] is stabl
This is the theory of (2 1 1)-dimensional Dirac fermions
in a random gauge potential (FRGP model). We sh
that the distribution function of the prelocalized stat
in this model is described by the Liouville field theor
(LFT). This theory was introduced by Polyakov [6] i
the context of string theory and has been extensiv
studied. We are going to use this accumulated knowled
for the theory of localization. One important property o
LFT is that it does have a stable line of critical poin
which seems to describe the prelocalized states in
conventional theory of localization. As we shall sho
later, this line is parametrized by the strength of disorde

Until the present time only two critical disordered sy
tems have been studied: the model of a half-filled Land
level (see, for example, [7], and references therein) and
model of (2 1 1)-dimensional Dirac fermions in a random
gauge potential (FRGP model) [8–11]. The latter mod
has an unbounded energy spectrum, but the spectrum
Ĥ2 is bounded from below (E2

n $ 0). Since the conduc-
tivity of the FRGP model at zero frequency is finite and t
wave functions withE ­ 0 have multifractal properties
(see Ludwiget al. [8]), we suggest that the mobility edg
of this model coincides with the boundary of the spectru
generating operator̂H2. This conjecture does not gene
ally hold in more complex critical disordered systems (e.
2D symplectic and 3D).

In this Letter we study the statistics ofE ­ 0 wave
functions of the Abelian FRGP model in two dimension
[12]. In the gauge whereAm ­ emn≠nF the Dirac
equation has one obvious solution withE ­ 0, which we
© 1996 The American Physical Society 707
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write down in the normalized form

cssxd ­ s1 6 s3ds,s 0

e2s0Fsxd

f
R

d2x0e22Fsx0dg1y2
. (1)

This solution is unique on a closed sphere if the to
flux is less than 2. For greater fluxes the index theor
predicts the existence of other solutions withE ­ 0 [13].

We shall consider=F as a random variable with the
Gaussian distribution

PfFg ­ Z21
0 exp

Ω
2

1
4pb2

Z
d2xf=Fsxdg2

æ
. (2)

Without loss of generality we can chooses ­ 1 in
Eq. (1) and study the moments of the distribution functi
of the first component of the wave function defined by

Gs1, . . . , Nd ­
Z

DFPfFgc2
1 sx1d · · · c2

1 sxN d . (3)

Notice that all these quantities are invariant under
shift F ! F 1 c by an arbitrary real constantc. The
N-point moment ofnormalizablewave function squares
can always be rewritten as follows:

Gs1, . . . , Nd ­
Z `

0

dm expf2amgmN21

sN 2 1d!

3
Z

DF

NY
i­1

e22Fsxide2Sm , (4)

where the actionSm is given by

Sm ­
Z

d2x

∑
1

4pb2
s=Fd2 1 me22F

∏
, (5)

and the exponent expf2amg is introduced to make the
integral overm convergent. Thus the multipoint momen
(3) is now expressed in terms of thereduciblemultipoint
correlation function of LFT.

Now we shall recall several facts about LFT that w
are going to use. They can be found, for examp
in Refs. [14,15]. To conform to the notations accept
among the field theorists, we rescale the fieldF ­ 2bf.
We also impose the following boundary conditions on t
Liouville field:

fsxd ­ 2Q lnjxj2, jxj °! `, Q ­ b 1
1
b

.

(6)

Thus we are considering only ground state wave functio
that decay algebraically at infinity. These are thepre-
localized states. If boundary conditions are not chose
properly, the correlation functions of LFT vanish. In th
semiclassical saddle point calculations [5,14,15], this f
ture emerges as a condition for the existence of the sa
point. The boundary condition (6) can be formulated a
condition that the total flux through the system is equal
Qb. Uniqueness of the wave functions (1) is not violat
providedQb , 2 [16].

There are different ways to implement the bounda
condition (6). One can consider the LFT on a large d
G of radiusR ! ` and add to the local LFT action (5)
708
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boundary term:

Sm,Q ­
1

4p

Z
G

d2x fs=fd2 1 4pme2bfg

1
Q

pR

Z
≠G

f dl . (7)

It is more convenient, however, to contract the bound
into the point, thereby transforming the disk into a sphe
The boundary condition is then equivalent to the insert
of the Liouville exponentiale22QfsRd sR ! `d into all
correlation functions [17]. Form ­ 0 one can express
correlation functions of the fieldse2af in the LFT with
boundary conditions in terms of correlation functions
the conventional Gaussian modeløY

i

e2aifsxid
¿

Q
­

Y
i,j

jxi 2 xj j
24aiaj

3 de

µX
i

ai 2 Q

∂
R22Q2

,

desxd ­
1
p

e

e2 1 x2
, (8)

wheree is a small parameter introduced for regularizati
and the subscriptQ means that the function on th
left-hand side is the correlation function calculated w
action (7). Provided theneutrality condition

P
i ai ­ Q

is satisfied, all correlation functions are proportional
the same factorR22Q2

. We shall see that this factor i
compensated by the integral overm. Calculating two-
point correlation functions in LFT, we conclude that t
conformal dimension of the Liouville exponential is

Dse2afd ­ asQ 2 ad , (9)

and this is true form fi 0 also [18–20]. Note thatQ
has been chosen such that the exponential operato
the Liouville action is marginal, i.e.,Dse2bfd ­ 1, thus
preserving the criticality of the theory.

It follows immediately from Eq. (9) that the conforma
dimensionsDsqd (q real) of the composite operator
:c

2q
1 sxd: , expf2qbfsxdg (the sign:· · ·: denotes norma

ordering) are equal to

Dsqd ­ q
°
1 1 b2 2 b2q

¢
. (10)

These dimensions depend on the continuous parameb
which represents the disorder strength. The LFT mo
remains critical for any values ofb with the central charge
given by

C ­ 1 1 6Q2 ­ 1 1 6sb 1 1ybd2. (11)

However, atb22 ­ M, whereM ­ 1, 2, . . . , the theory
possesses an additional hidden SL(2,R) symmetry (see,
for example, [14]). It is also known [15] that three poi
correlation functions have resonances at these valuesb.

Equation (10) reproduces the dimensions obtained
FRGP in Ref. [8] by the replica trick and also the d
mensions obtained for the conventional localization t
ory [2,5] (in the notation of Ref. [5]b22 ­ 8p2bnD).
Needless to say that in the conventional localization t
ory the parameterb undergoes renormalization toward
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strong coupling and therefore the described equivale
holds only in the crossover regime. As we have me
tioned earlier, an extended crossover region exists o
for the unitary ensemble (b ­ 2).

An important application of (10) is to the calculation
the scaling with respect toR of the inverse participation
ratiosøZ

G
d2xc

2q
1 sxd

¿
~ R2tsqd, tsqd ­ 2s1 2 b2qd sq 2 1d .

(12)

The applicability of this scaling for largeq has been
discussed in Refs. [5,10,21]. It was established thattsqd
must be a monotonously increasing function ofq. This
means that Eq. (12) is at most valid forq # s1 1 b22dy2.
This condition selects operators exps2qbfd with qb #

sb 1 1ybdy2 ­ Qy2. Let us note that in the wea
disorder limit b ø 1, these exponents can still be us
for the description of very high participation ratios.

This selection resembles the following well-known fa
from the LFT. Namely, there is a difference between op
ators exps2afd with a , Qy2 anda . Qy2 [14]: Only
the first ones (so-calledmicroscopicoperators) correspon
to local states whereas the latter (so-calledmacroscopic
operators) create finite holes on the random surface.
LFT the field exps2bfd is interpreted as a metric of
two-dimensional surface. In the semiclassical limitb ø 1
correlation functions of microscopic operators can be
tained by the saddle point approximation. The solution
classical equations of motion describes a surface span
on a disk with radiusR ! `. This surface has constan
negative curvature metric with spikes (integrable pow
law singularities of the metric fieldgzz , jzj2h , h , 2)
at the points of insertion of operators witha , Qy2 (for
a ­ Qy2 we have punctures, i.e.,jzj22 singularities). For
macroscopic operators there is no classical solution
responding to a surface with a single boundary at in
ity which means that each insertion creates a hole o
finite size. Since the exponents withq . s1 1 b22dy2
correspond to macroscopic operators, it is not correct
our opinion, to use them for description of higher ord
participation ratios. It is important to mention, howeve
that macroscopic operators appear in fusion of microsco
ones.
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The authors of Ref. [5] have stressed the importa
of the nonuniversal prefactor on the right-hand side
(12) to assess the self-consistency of the scaling anal
This prefactor is controlled by the dependency onm of the
correlation functions of the LFT. Let us note that abo
we discussed the results which were independent ofm, so
one can putm ­ 0. Now we have to study the effec
which arise in the full theory with nonzerom.

It is easy to find the scale (m) dependence of an
correlation function in Liouville theory [18–20]:

G̃s1, . . . , Nd ­

ø NY
i­1

e2aifsxid
¿

Q

­ spmdsQ2
PN

i­1
aidybFa1···aN sx1, . . . , xN d .

(13)

HereFa1···aN
sx1, . . . , xN d must be calculated in the Liou

ville theory with m ­ 1 and the answer for the gener
correlation function is unknown. For three- and fou
point functions the answer was found in [15,22] f
any b. However, for the special case when the fac
sQ 2

P
i aidyb is an integer, i.e., when the correlatio

function (13) is proportional to an integer power ofm, all
multipoint correlation functions can be obtained explici
by expanding exps2Sm,Qd [cf. (7)] in powers ofm.

Thus unlike the case of conformal dimensions wh
Eq. (10) holds for anyb, the multipoint correlation func
tions can be easily obtained only for discrete values of
disorder strengthb2 ­ 1yM, M ­ 1, 2, . . . , for which the
expansion overm contains onlyone nonvanishing term
Indeed whenb22 is an integer, the multipoint correla
tion functions of the Liouville theory can be expressed
terms of correlation functions of the free bosonic field (
Dotsenko-Fateev construction [23]). To see this, we re
that for the correlation function (4) allai ­ b. Hence√

Q 2

NX
i­1

ai

! ,
b ­ 1 2 N 1 1yb2. (14)

Providedb22 ­ M with integerM $ N 2 1 the neutral-
ity condition is fulfilled with the term,m12N1M . The re-
sult for theN-point function on the infinite plane follow
immediately:
G̃s1, ..., Nd ­ e21R22Q2 m12N1M

s1 2 N 1 Md!

NY
i,j

1
jzijj4yM

Z 0@12N1MY
l­1

d2jl

1A 0@12N1MY
l­1

NY
i­1

1
jzi 2 jlj4yM

1A 0@12N1MY
m,n

1
jjmnj4yM

1A
(15)
c-
n
ict
on
bu-
(3).
(herez, z̄ ­ x 6 iy are complex coordinates). The ex
pression for a finite system can be obtained by conform
transformation according to the general rules of conform
theory. Substituting Eq. (15) into Eq. (4) we find that a
correlation functions are proportional to the same nonu
versal factor D ­ e21R22Q2 R`

0 dmm1yb2
e2am. We
al
al
l
i-

remark that by regularizing the theory with the introdu
tion of expf2amg, we overestimate the normalizatio
factors of the wave functions. In other words, we restr
the allowed spatial fluctuations of the wave functi
amplitude from above and thereby eliminate the contri
tions from localized states to the statistical average in
709
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Finally, we note that as shown in Ref. [21],b ­ 1 is the
largest value of the disorder strength for which quench
and annealed averages [with respect to the Gaus
distribution (2)] of the normalization

R
d2x expf22Fsxdg

agree. On the other hand,b ­ 1 corresponds to the
minimum of the Liouville central chargeCmin ­ 25. We
recall that whenb ­ 1 the total flux through the system
reaches the value of 2 which corresponds to the (fi
change in the ground state degeneracy.

We conclude with a remark about a difference betwe
even and oddM in Eq. (15). For evenM, the operator with
maximal dimensionDmax ­ 1y2 1 My4 is OMy2sxd ;
expsMbfd. From Eq. (15) we find

kOMy2sz1dOMy2sz2dl ­
D

jz12jM

Z d2j

jz1 2 jj2 jz2 2 jj2

ø
4D

jz12jM12
lnsjz12jyad . (16)

Thus the two-point correlation function of this operat
contains a logarithm. This does not happen whenM
is odd. Indeed, the operator with maximal dimensi
Dmax ­ sM 1 1d2y4M is OsM11dy2sxd and its two-point
correlation function has the conventional form. It may
that, as in other theories with logarithms (see Gurarie [
and Cauxet al. [11]), Eq. (16) indicates the presence
an additional operatorCsxd in the operator algebra of the
theory such that

kCsz1dOMy2sz2dl ­ 2
4D

jz12jM12 ,

kCsz1dCsz2dl ­ 0 . (17)

We are not certain, however, that the same interpreta
is valid for the Liouville theory where there is no one
to-one correspondence between operators and states
one therefore must be careful formulating the opera
expansion. It is also interesting to note that forb ­ M ­
1 we have the Liouville theory with central chargeCmin ­
25 which is known to have logarithmic operators wit
scaling dimensions one [25]. As we discussed earl
when b ­ 1 the total flux through the system reach
the value of 2 which corresponds to the appearance
a second ground state in our model. The relations
between the existence of marginal logarithmic opera
and the change of the ground state degeneracy is
interesting open question.

In more complicated models where the disorder depe
on several fields we expect that the corresponding univ
sality classes will be connected withWn gravities. Another
interesting problem is to find what deformation of the L
ouville theory leads to localization and thus to reprodu
the renormalization group equations obtained by Altshu
et al. [2].
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