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Stick-Slip Motion and Force Fluctuations in a Driven Two-Wave Potential
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A model of a particle interacting with two periodic potentials, one of which is externally dri
is analyzed. Three regimes are identified in the motion of the driven plate: (a) stick-slip m
(b) intermittent stick slip characterized by force fluctuations, and (c) sliding which occurs abo
critical driving velocity yc. In the vicinity of yc the power spectra of the force obey av22 law
and the force fluctuations decrease assyc 2 yd1y2 for y , yc. Our calculations suggest that stic
slip dynamics is characterized by chaotic behavior of the top plate and the embedded mo
system. An equation is derived which provides a coarse-grained description of the plate motio
yc. [S0031-9007(96)00727-2]

PACS numbers: 68.15.+e, 05.40.+j, 05.45.+b, 46.30.Pa
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Stick-slip motion has been a subject of active resea
related to a broad range of phenomena from friction
nanoscale liquid films [1,2] to geophysics and earthqu
faults [3,4]. In recent experiments on friction, in partic
lar on confined molecular systems under shear, stick-
motion has been carefully analyzed [5,6]. Attention h
been paid to the deterministic features of friction and a
to force fluctuations in terms of their power spectra.
has been observed [1,2,5,6] that stick-slip behavior is
lowed by an intermittent stick slip and then by sliding
the shear rate increases. Different models have been
posed to account for this type of motion, including sprin
block models [3] and chain or layer motion on a substr
[7,8]. Stick-slip behavior has also been seen in dir
molecular dynamical simulations [9–11]. However, t
microscopic origin of stick-slip dynamics is still not we
understood.

In this Letter we introduce a model of a sing
particle which interacts with two corrugated plates, one
which is externally driven. We demonstrate that vario
properties typical of thin liquids under shear are alrea
observed in the framework of our single-particle syste
The model can be related to various problems in nonlin
dynamics [12–14].

Consider a one-dimensional model which includes t
rigid plates and a single particle of massm embedded
between them. The interaction between the particle
each of the plates is described by the periodic poten
Usxd  2U0 coss2pxybd. There is no direct interactio
between the plates. The top plate of massM is pulled by
a linear spring with force constantK connected to a stag

FIG. 1. Schematic sketch of a model geometry.
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moving with a velocityy (see Fig. 1 for the sketch of the
model geometry).

The coupled equations of motion for the top plate a
the particle can be written in a dimensionless form as

Ÿ 1 egs ÙY 2 Ùyd 1 a2sY 2 ytd2

e

2p
sinf2ps y 2 Ydg  0 , (1a)

ÿ 1 gs2Ùy 2 ÙYd 1
1

2p
sins2pyd1

1
2p

sinf2ps y 2 Y dg  0 , (1b)

where y and Y are the coordinates of the particle an
plate, respectively, in units of the period of the potentialb,
t  vt is the dimensionless time,v  s2pybd

p
U0ym

is the frequency of the small oscillations of the particle
the minima of potentialUsxd, g is a dimensionless friction
constant which accounts for dissipation due to phono
and/or other excitations,e  myM is the ratio of particle
and plate masses, anda  Vyv is the ratio of frequencies
of the free oscillations of the top plate and the partic
V 

p
KyM. The second terms in Eqs. (1a) and (1

describe the dissipative forces between the particle and
plates and are proportional to their relative velocities. T
third term in Eq. (1a) is the driving force due to the sta
which moves with the constant velocityy. Equations (1a)
and (1b) relate to the problem of friction in lubricatin
films [6,7,10], and, in the limita ! `, reduce to the
problems of a particle in a two-wave potential [12,1
and of a parametric oscillator [14], actively studied in th
theory of nonlinear dynamical systems.

We focus on the dynamical behavior of the top pla
and of the particle as the driving velocity of the stage
varied. Our simulations demonstrate that, within veloc
values of interest, there are three different dynami
regimes: (a) At low velocities we observed a regul
stick-slip motion of the plate; (b) as the stage veloc
increases, the top plate ceases to stop (time interv
© 1996 The American Physical Society 683
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between rare stop events increase rapidly withy), and
stick-slip motion becomes more erratic and intermitte
(c) smooth sliding occurs when the stage velocity
above the critical velocityyc. Figure 2 illustrates thes
phenomena showing the time dependence of the sp
force which acts on the top plate. In the calculatio
reported below we use the following values of t
parameters:a  0.02, g  0.1, e  0.125 for which the
system is underdamped. Other ranges of parameter va
are discussed elsewhere [15].

The motion of the top plate in the first regime is typic
of relaxation oscillations. The top plate is initially
rest, and the spring connecting it to the stage stretc
linearly in time. When the force on the plate excee
the static frictional forceFs, which in our model equals
2pU0yb, the top plate begins to slide. Since the friction
force in this kinetic state is less thanFs, the plate
accelerates. Owing to the inertia, the velocity of t
plate, ÙY , is initially lower than the driving velocityy,
and the spring will continue to extend until finallyÙY .

y. The maximum spring force will therefore be grea
than Fs. When the plate velocity isÙY . y, the spring
force decreases until it reaches some value where
motion stops and then the process repeats. We h
also noticed that at low stage velocities the amplitude
the spring force does not depend ony, and the period
of oscillations decreases with the increase ofy. In this
range of velocities the time averaged velocity and
displacement of the particle are much smaller than
average velocity and the displacement of the top plate

In the second regime the amplitude of the spring fo
strongly depends on the stage velocityy. Here the
frictional force is less than the static friction practica
for all times. As we show below, the nature of t
intermittent behavior in this regime is determined by
effective velocity-dependent friction force. We have a
found that in this case the time averaged velocity a
displacement of the particle are close to half of those
the top plate. The trajectory of the particle shows t
the particle jumps between the two plates. It clings

FIG. 2. The three regimes of top plate motion.
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each of them for times much longer than the characteri
modulation time induced by the stage motion (natu
period), 1yy. We note that windows of sliding motion
appear within the intermittent stick-slip region [15].

A sharp boundary aty  yc is observed between
the intermittent stick slip and sliding regimes. Whe
the velocity approaches the critical velocityyc from
below, the amplitude of oscillations of the spring for
decreases as

p
yc 2 y and sliding sets in. (The sprin

force amplitude exhibits hysteretic behavior aroundyc

[15].) In the sliding regime the spring force perform
“microscopic” oscillations with a period of the order1yy,
and with amplitudes much smaller than in regimes
and (b). The critical velocityyc depends on the mas
of the particle, particle-plate interaction, and the fricti
coefficient g. Within the accuracy of our calculation
we have found no dependence ofyc on the mass of
the top plate and on the spring constant, in contras
previous findings [9,11]. In the sliding regime the partic
does not jump between the two plates but rather cli
to one of them and oscillates within one cell of th
corrugated potentialUsxd. The transition from regular to
intermittent stick slip occurs through a sequence of per
doubling bifurcations and windows of chaotic behav
and depends on the mass of the top plate and the sp
constant.

The trajectories of the top plate and the particle
regimes (a) and (b) demonstrate high sensitivity to ini
conditions, which is a manifestation of the dynamic
chaos in the system. Positive values of the larg
Liapunov exponent have been obtained, which prov
a quantitative measure of the degree of stochasti
of the trajectories. As the stage velocity increases
approachesyc, the largest Liapunov exponent decreas
This concurs with the reductions of the amplitude of t
spring force oscillations. It should be mentioned th
Liapunov exponents can be extracted from experime
data on time dependencies of the spring force or
velocity of the top plate [16].

We have also calculated the power spectra of the sp
force, and of the velocities of the top plate and t
particle. The power spectraSsvd depend on the stag
velocity, and for y , yc show a power law behavio
Ssvd , v22 for frequencies above some cutoff (s
Fig. 3).

It should be emphasized that, although our mo
is a single-particle model, the observed phenomena
stick slip, intermittent stick slip, criticalyc, and v22

power spectra are in qualitative agreement with rec
experiments on sheared nanoscale liquids [1,2,6].

It is possible to give an analytical description
the motion of the top plate connected to the spr
which predicts the transition atyc. We introduce two
assumptions for the top plate dynamics in the vicinity
yc: (a) The characteristic frequency of the large sc
plate motion is much smaller than both the characteri
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FIG. 3. The power spectrum of the spring force fluctuatio
y  0.36, y , yc. The dotted line of slope22 is provided for
reference. The inset shows the power spectrum fory  0.4,
y . yc.

frequency of the particle oscillations and the natu
frequencyy; (b) the mass of the particle is smaller tha
the mass of the top plate, i.e.,e , 1. Hence the top plate
and the particle display “slow” and “fast” motions, an
there is a separation of time scales, namely, the adiab
approximation prevails. Under these assumptions,
solve Eqs. (1a) and (1b). For Eq. (1b) we assume
the plate moves with a constant velocityÙY  V . For the
particle motion we get

ÿ 1 gs2Ùy 2 V d 1
1

2p
sins2pyd1

1
2p

sinf2ps y 2 Vtdg  0 . (2)

Equation (2) has been used to describe a dissipa
parametrically driven pendulum and a dissipative mot
of a particle in two waves. In spite of its appare
simplicity, Eq. (2) is not integrable and predicts a rich s
of phenomena ([12–14], and references therein).

The solutions of Eq. (2)yst, ÙY d depend parametrically
on ÙY . Substitutingyst, ÙY d into Eq. (1a), we get

Ÿ 2 eFst, Y , ÙYd 1 a2sY 2 ytd  0 , (3)

where the particle-plate interaction force

Fst, Y , ÙY d 
1

2p
sinf2ps y 2 Ydg 2 gs ÙY 2 Ùyd (4)

contains fast-oscillating components. Averaging Eqs.
and (4) over the fast oscillations, we obtain an equat
for the slow-oscillating component of the spring leng
Lstd  Y std 2 yt,

L̈ 2 efs ÙL 1 yd 1 a2L  0 , (5)

where the time-averaged forcefs ÙY d  kFst, Y , ÙYdl de-
pends only on the velocity of the plate, and presents
effective friction for the plate motion.

Before we solve Eq. (5), we discuss the veloc
dependence of the time-averaged force. The effec
,
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FIG. 4. Friction forces acting on the top plate as a function
plate velocity. The lower curve is the dissipative contributio
the upper curve is the net force. The arrows indicate veloci
of the plate corresponding to particle trajectories shown
Fig. 5.

friction fs ÙY d, given by the averaged Eq. (4), contai
two terms. The first one is the potential compone
of the frictional force and the second one describ
the dissipative contribution (see Fig. 4). The structu
in the velocity dependence of the frictional forcefs ÙY d
corresponds to different types of particle trajectories,
shown in Fig. 5. We see that the motion of the parti
has two characteristic behaviors: At low velocitiesV ,

Vp, the average velocity of the particle predominan
equals 1

2 V , except for short windows where the partic
is trapped by one of the plates; forV . Vp, the particle
always clings to one of the plates. This is illustrat
clearly by the dissipative component of the frictional for
presented in Fig. 4.

There are three types of particle trajectories forV ,

Vp: (1) The particle jumps between two plates bei
trapped by each of them for time much longer th
V 21 (curve 2 in Fig. 5); (2) the particle undergoes fa
oscillations with the periodV 21, around the trajectory

FIG. 5. Particle trajectories for selected values of the pl
velocities.
685
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1
2 Vt (curve 3 in Fig. 5); (3) the particle clings to on

of the plates (curve 4 in Fig. 5). In the first two cases
time-averaged velocity of the particle equals1

2 V , and in
the third case it equalsV or 0. The dissipative componen
of the friction (lower curve in Fig. 4) reflects clearly the
features of the motion. The local minima and maxima
the velocity dependence of the net frictional force sho
in Fig. 4 correspond to the trajectories of types (3) a
(4). It should be stressed that for all trajectories in
regionV , Vp (except forV  0.23, which corresponds
to a stable motion of the particle with the velocity1

2 V ) the
fluctuations of the particle velocity are of the order of,
even larger than, the velocity of the top plate. Curve 1
Fig. 5 describes the caseV . Vp.

The velocity-dependent features described above
similar to those discussed within our original model. No
that the transition velocityVp found in the reduced mode
is somewhat smaller than the previously determined c
cal velocityyc. However, motion with small fluctuation
in the particle velocity occurs only forV . yc. In spite
of the particle being trapped by one of the plates in
regionVp , V , yc, the fluctuations of the velocity ar
large, being of the order ofV . The fluctuations decreas
when we approachyc from below. The decay of the
potential component of the frictional force in the regi
Vp , V , yc, which is proportional to the square of th
amplitude of the velocity fluctuations, manifests the tra
sition from erratic to smooth sliding. The sharp decre
of the potential component of the effective friction corr
sponds to the disappearance of global chaos in the dyn
ics of the particle.

In the rangeV . Vp we approximate the effectiv
friction forcefsV d by a cubic polynomial

fs ÙY d  a 1 b ÙY 1 c ÙY 2 1 d ÙY3. (6)

We now return to Eq. (5) which, upon substituting t
approximated force of Eq. (6), is of the Rayleigh-ty
differential equation that describes the stage motion.
stage velocitiesy , yc, Eq. (5) has solutions whic
correspond to an oscillating spring force (limit cycle
For y . yc it has a static solution (fixed point) whic
describes the sliding regime. An analytical solution
Eq. (5) can be obtained using the Bogoliubov-Kryl
technique. One finds that the critical velocity coincid
with the position of the minimum of the effective frictio
force in Eq. (6). The value of the critical velocity foun
from the adiabatic approximation, Eqs. (5) and (6), agr
well with the results of the numerical analysis of Eqs. (1
and (1b). For velocities slightly less thanyc the amplitude
of the force oscillations really scale asL , p

yc 2 y, as
observed numerically.

The above considerations demonstrate that the adia
approach reasonably describes the dynamics of the
plate when the driving velocity is close toyc. Within
this picture, the presence of velocity intervals whe
the friction force decreases with increasing velocity i
686
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crucial condition for the existence of force fluctuation
It should be mentioned that Eq. (5) does not account
chaotic character of motion, but correctly describes
amplitudes of force oscillations.

To summarize, a single-particle model has be
proposed which demonstrates the dynamical featu
observed experimentally and through simulations
nanoscale liquid films under shear. Our calculatio
suggest that the information obtained following t
macroscopic motion of a plate does not allow one to dr
an unambiguous conclusion on the dynamical struct
of a molecular system embedded between the pla
Preliminary results indicate that the general characteris
obtained for a single particle hold when an embedd
chain is considered [15]. For a wide range of syst
parameters we find that the motion is chaotic. Theref
the use of recently proposed chaos-controlling approac
is possible in order to convert chaos into periodic motio
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