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The dynamic relaxation process for the two dimensional Potts model at criticality starting fro
initial state with very high temperature and arbitrary magnetization is investigated with Monte C
methods. The results show that there exists universal scaling behavior even in the short-time
of the dynamic evolution. In order to describe the dependence of the scaling behavior on the
magnetization, a critical characteristic function is introduced. [S0031-9007(96)00651-5]
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For a long time it was believed that no univers
behavior would be present in the short-time regime
critical dynamics. However, for the critical relaxatio
process starting from an initial state withvery high tem-
peratureandsmall magnetization,it was recently argued
by Janssen, Schaub, and Schmittmann [1] with renorm
ization group methods that there exist universality a
scaling evenat early times,which sets in right after a
microscopic time scaletmic. For theO(N) vector model
with dynamics of model A, the authors derived a d
namic scaling relation which is valid up to the macr
scopic short-time regime,

Mskdst, t, m0d ­ b2kbynMskdsb2zt, b1ynt, bx0 m0d , (1)

whereMskd is the kth moment of the magnetization,t is
the dynamic evolution time,t is the reduced tempera
ture, and the parameterb represents the spatial rescalin
factor. Besides the well known static critical exponen
b, n, and the dynamic exponentz, a new independen
exponentx0 which is the anomalous dimension of th
initial magnetizationm0 is introduced to describe the de
pendence of the scaling behavior on the initial conditio
Based on the scaling relation it is predicted that at
beginning of the time evolution the magnetization s
prisingly undergoes acritical initial increase

Mstd , m0tu , (2)

where the exponentu is related to the exponentx0 by
u ­ sx0 2 byndyz. This makes the effect ofm0 very
prominent.

Numerical simulation supports the above predictio
for the critical short-time dynamics. The exponentu for
the Ising model was first obtained indirectly through t
power law decay of the autocorrelation [2,3]. Recen
the initial increase of the magnetization in (2) w
observed for the Ising model and the Potts model,
the exponentu was directly measured [4,5]. The scalin
relation and the universality are confirmed [4,6,7]. T
investigation of the universal behavior of the short-tim
dynamics not only enlarges the fundamental knowledg
critical phenomena but also, more interestingly, provid
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possible new ways to determine all the static expone
as well as the dynamic exponents from the short-tim
dynamics, either based on the power law behavior
the observables at the beginning of the time evoluti
[5,8,9], or on the finite size scaling [10,11]. Moreove
the universal behavior of the short-time dynamics is fou
to be quite general, e.g., in the dynamics beyond mo
A or at the tricritical point [12–14], in connection with
ordering dynamics or damage spreading [15,16] and
the surface critical phenomena [17]. Therefore, thorou
understanding of the universality and scaling for the sho
time dynamics is urgent and important.

The scaling relation (1) is valid only under the cond
tions that the initial state is at very high temperature a
with small initial magnetization. Are there some reason
that the universal behavior emerges only in the critical r
laxation starting from such a special initial state? If on
believes that the large time correlation length is esse
tial for the universality, the only background one woul
find is that the initial temperatureT0 ­ ` and the ini-
tial magnetizationm0 ­ 0 are the fixed points under the
renormalization group transformation. Therefore one m
wonder whether there exists universal behavior in the c
ical relaxation process starting from an initial state wi
very high temperature but initial magnetizationm0 . 1,
sincem0 ­ 1 also corresponds to a fixed point. Actuall
the critical relaxation process withm0 ­ 1 for the Ising
model and the Potts model have been investigated w
Monte Carlo simulations [8,11,18,19]. The results sho
that universality and scaling appear to be valid also in t
early stage of the time evolution.

In this Letter we are more ambitious. We study wheth
there exists universal scaling behavior in the short-tim
regime of the critical relaxation from an initial state wit
very high temperature andarbitrary magnetization.If the
large time correlation length plays an essential role for t
universality in the critical dynamics as it was pointed o
above, the presentation of the universal behavior sho
not rely on from what initial conditions the critical relaxa-
tion starts, and only the scaling behavior of the initi
conditions should be considered very carefully. Since t
arbitrarily valued initial magnetization is no more aroun
© 1996 The American Physical Society 679
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a fixed point, a critical exponentx0 is not sufficient to
describe the scaling behavior of the initial magnetizati
In the language of the renormalization group meth
the effective dimension of the initial magnetization w
in general depend on the initial magnetization itself.
order to describe this phenomena, we introduce acritical
characteristic functionrather than a critical exponen
For thekth moment of the magnetization, the generaliz
scaling relation may be written as

Mskdst, t, L, m0d ­

b2kbynMskdsssb2zt, b1ynt, b21L, xsb, m0dddd . (3)

For the convenience of later discussion, finite systems h
been considered here andL is the lattice size. The scalin
behavior of the initial magnetizationm0 is specified by
the critical characteristic functionxsb, m0d, which in the
limit m0 ! 0 tends to the simple formbx0 m0, but is in
general different. Such a generalized scaling form is i
similar spirit as that in the correction to the scaling, whe
nonlinear effects of an off-fixed point are considered. H
only our initial magnetization is a relevant operator a
can be far away from the fixed point. The ansatz t
the exponentsb, n, and z do not depend on the initia
magnetizationm0 is based on the assumption that t
initial conditions should not enter the renormalization
the critical system in equilibrium and near equilibrium
In other words, if there is a scaling form in the sho
time regime of the dynamic relaxation process, the sca
form should smoothly cross over to that in the long-tim
regime. This greatly simplifies the short-time behav
of the critical dynamics. In the neighborhood ofm0 ­ 1
the critical characteristic functionxsb, m0d may also be
characterized by a critical exponent. One can also rea
that in the limit of b ­ 0, xsb, m0d ! 0, and whenb
approaches infinity,xsb, m0d ! 1. In this Letter we are
interested in the more general case; i.e.,m0 is between 0
and 1, andb is a reasonable finite number. The limitin
cases will be discussed in detail elsewhere.

Here we stress that the scaling relation in (3) is n
trivial, even though the critical characteristic functio
xsb, m0d looks not so “simple” as a critical exponent. The
scaling relation relates the time evolution of the obse
ables with different initial magnetizations to each oth
and represents theself-similarityof the dynamic systems
All the physical observables as functions of t,t, and L
should be described by the same critical characteris
functionxsb, m0d. Besides this, the physical observabl
are universal functions of the variablest, t, andL up to a
nonuniversal scaling constant, and the dependence o
observables as well asxsb, m0d on m0 is expected to be
universal up to a rescaling of the initial magnetizationm0.

As a concrete example, we consider the two dim
sional Potts model, for which a quite accurate dynam
exponentz has been obtained from the universal behav
of the short-time dynamics [5,7]. The Hamiltonian for th
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q state Potts model is given by

H ­ K
X
kijl

dsisj , si ­ 1, . . . , q , (4)

wherekijl represents nearest neighbors. In our notati
the inverse temperature is already absorbed into
coupling K. It is known that the critical points locate
at Kc ­ logs1 1

p
qd. In this paper the three statesq ­

3d case will be investigated. In generating the rando
initial configurations, we have sharply prepared the initi
magnetization in order to avoid extra finite size effec
from the fluctuation ofm0 in the finite systems. After
the preparation of the initial configurations the system
released to evolve according to the heat-bath algorithm

For simplicity, we take t ­ 0, and therefore the
exponentn will not enter the calculation. The exact valu
of the static exponentsbyn ­ 2y15 and the dynamic
exponentz ­ 2.196 obtained from the power law decay
of the autocorrelations [5,7] will be taken as inpu
To verify the scaling relation (3) and determine th
critical characteristic functionxsb, m0d, we perform the
simulation for a pair of lattice sizesL1 and L2 and
measure the time evolution of the magnetization and
second moment defined as

Mskdst, m0d ­

ø∑
3

2N

X
i

fdsistd,1 2
1
3 g

∏k¿
, k ­ 1, 2 ,

(5)

where the average is taken over independent init
configurations and the random forces. In order to redu
extra errors fromMskdst, 1d, especially whenm0 becomes
bigger, we introduce a magnetization difference

Mdst, m0d ­ Ms1dst, 1d 2 Ms1dst, m0d (6)

and a Binder-type cumulant

Udst, m0d ­
Ms2dst, 1d 2 Ms2dst, m0d

fMdst, m0dg2
. (7)

From the scaling collapse ofMdst, m0d or Udst, m0d for
two lattices with suitable initial magnetizations, we ca
estimate the values of the functionxsb, m0d atb ­ L2yL1
for differentm0.

In Fig. 1 the scaling plot for the magnetization is dis
played for the latticeL2 ­ 144 with initial magnetization
m02 ­ 0.14 and the latticeL1 ­ 72 with suitably cor-
responding initial magnetizationsm01. The stars repre-
sent the time evolution of the magnetization of the latti
L2 ­ 144. The crosses are the same data but rescale
time and multiplied by an overall factor2byn. If one
can find a m01 for lattice L1 ­ 72 such that its time
evolution of the magnetization fits to the crosses, t
scaling is valid, and from the scaling relation (3) on
getsxs2, m02d ­ m01. Practically we have performed the
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FIG. 1. The scaling plot for the magnetization withsL1, L2d ­
s72, 144d.

simulation for L1 ­ 72 with two different initial mag-
netizationsm0 ­ 0.175 and m0 ­ 0.185, for which the
magnetizations have been plotted by the lower and
per solid lines in Fig. 1. By linear extrapolation, we o
tain the time evolution of the magnetization with initi
values between these two values. Then we can estim
m01. The solid line laying on the crosses in Fig. 1
the time evolution of the magnetization forL ­ 72 with
an initial magnetizationm0 ­ 0.1800s4d which has the
best fit to the crosses, i.e.,xs2, 0.14d ­ 0.1800s4d. From
the previous numerical simulations for the short-time
namics [4,5,7], we know that the microscopic time sc
tmic is negligibly small for the heat-bath algorithm,
least for the measurement of the dynamic exponentu or
the exponentx0. In our calculation we have carried o
the fitting procedure in a time interval of [10,200] in th
time scale of latticeL ­ 72. From Fig. 1 one can als
see clearly that the scaling relation is valid starting fr
the very early stage of the time evolution.

In Fig. 2 a scaling plot is shown for the latticeL2 ­ 144
with m02 ­ 0.14 andL1 ­ 36. From a fitting in a time in-
terval of [10,80] we obtainedxs4, 0.14d ­ 0.2328s9d. In a
similar way,xsb, m0d may be independently obtained fro
the scaling collapse of the Binder-type cumulantUdst, m0d.
Altogether we have performed the simulation form02 ­
0.14, 0.22, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 1.00.
In Table I, the results for two typical valuesm02 ­ 0.14
and 0.40 are given. We can see thatxsb, m0d estimated
from both Mdst, m0d and Udst, m0d are very consistent
In order to see the finite size effect, we have also p
formed the calculation for other pairs of lattices as, e
(36, 72). In Table I, we can see that the finite size effect
the lattice pairsL1, L2d ­ s36, 72d is already quite small
In the simulations, the statistics ofL ­ 36, L ­ 72, and
L ­ 144 are, respectively, 80 000, 40 000, and 8000.
Table I, errors are estimated by dividing the data into f
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FIG. 2. The scaling plot for the magnetization withsL1, L2d ­
s36, 144d.

groups. In principle the measurements from the magn
zation are more reliable than those from the Binder-ty
cumulants where higher moments are involved, at le
when the static exponentbyn is known. The magnetiza-
tion is self-averaging, but the Binder-type cumulant is n
Whenm0 is getting bigger,Udst, m0d is more fluctuating.

In order to get a more direct understanding of the f
critical characteristic functionxsb, m0d, we define an ef-
fective dimensionxsb, m0d of the initial magnetization
m0 by xsb, m0d ­ bxsb,m0dm0. By the definition naturally
xsb, 0d ­ x0. From the values ofxsb, m0d, we can calcu-
late xsb, m0d. Taking the results from the magnetizatio
difference with the lattice pairsL1, L2d ­ s36, 144d and
s72, 144d, the corresponding effective dimensionsxsb, m0d
are plotted in Fig. 3. It clearly shows thatxsb, m0d is a
nontrivial function. For example, the valuesxs2, 0.14d ­
0.363s3d andxs2, 0.40d ­ 0.408s2d apparently differ from
x0 ­ 0.298s6d [7]. Whenm0 varies from zero to one, the
effective dimensionxsb, m0d first increases and then de
creases to zero. However, whenm0 [or xsb, m0d] is ap-
proachingm0 [or xsb, m0dg ­ 1 it is not the best choice
to determinexsb, m0d directly in the way discussed in this
Letter since the dependence of the physical observable
m0 becomes weaker and we face big statistical fluctuatio

Finally, let us have some more understanding of t
dynamic system discussed above. Supposingm0 is also
a “coupling” of the system, in the “K-m0” plane of the
couplings there exists a critical lineK ­ Kc in the sense
that the time correlation is divergent. In the neighborho
of this critical line, the time correlation length depend
only on the couplingK, and its scaling behavior is
characterized by the exponentnz. If the critical line is
a line of the fixed points, the exponentn together withz
andb is sufficient to describe the critical dynamic system
However, in our case the critical line isnot a line of the
fixed points. Therefore a critical characteristic functio
681
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TABLE I. xsb, m0d measured from the magnetization and the Binder-type cumulant

m0 0.14 0.40

sL1, L2d Md Ud Md Ud

s36, 72d xs2, m0d 0.1807(05) 0.1804(08) 0.5298(06) 0.5300(3
s72, 144d 0.1800(04) 0.1798(04) 0.5307(06) 0.5302(4

s36, 144d xs4, m0d 0.2328(09) 0.2324(11) 0.6918(28) 0.6910(7
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should in general be introduced to describe the sca
behavior. It is actually interesting to see what happe
for a system in the equilibrium where a critical line exis
but the line is not a line of fixed points.

In conclusion, we have numerically simulated the u
versal short-time behavior of the dynamic relaxati
process for the two dimensional critical Potts model sta
ing from an initial state with very high temperature an
arbitrary magnetization. The results show that the tra
tional scaling relation should be generalized. A critic
characteristic function is introduced to describe the sc
ing behavior of the initial magnetization. We demonstra
how to determine numerically the critical characteris
function. The study of the short-time dynamics is n
only conceptually interesting but also practically impo
tant since it is possible to obtain the static exponentsb,
n, and the dynamic exponentz of the critical systems far
before the dynamic process reaches the equilibrium. I
challenging to derive analytically the generalized scali
relation in (3) as well as the critical characteristic functio
xsb, m0d. The application to thedynamicfield theory,

FIG. 3. The effective dimension obtained from the magne
zation with sL1, L2d ­ s72, 144d and s36, 144d. Circles are of
xs2, m0d, and stars are ofxs4, m0d. The lines are drawn to guide
the eyes.
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e.g., the stochastic quantization of the field theory, is
tractive since such a knowledge would be important
the numerical simulation of the lattice gauge theory.
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