VOLUME 77, NUMBER 4 PHYSICAL REVIEW LETTERS 22JLy 1996

Generalized Dynamic Scaling for Critical Relaxations
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The dynamic relaxation process for the two dimensional Potts model at criticality starting from an
initial state with very high temperature and arbitrary magnetization is investigated with Monte Carlo
methods. The results show that there exists universal scaling behavior even in the short-time regime
of the dynamic evolution. In order to describe the dependence of the scaling behavior on the initial
magnetization, a critical characteristic function is introduced. [S0031-9007(96)00651-5]
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For a long time it was believed that no universal possible new ways to determine all the static exponents
behavior would be present in the short-time regime ofas well as the dynamic exponents from the short-time
critical dynamics. However, for the critical relaxation dynamics, either based on the power law behavior of
process starting from an initial state witlery high tem- the observables at the beginning of the time evolution
peratureand small magnetizationit was recently argued [5,8,9], or on the finite size scaling [10,11]. Moreover,
by Janssen, Schaub, and Schmittmann [1] with renormathe universal behavior of the short-time dynamics is found
ization group methods that there exist universality ando be quite general, e.g., in the dynamics beyond model
scaling evenat early times,which sets in right after a A or at the tricritical point [12—14], in connection with
microscopic time scale,;.. For theO(N) vector model ordering dynamics or damage spreading [15,16] and on
with dynamics of model A, the authors derived a dy-the surface critical phenomena [17]. Therefore, thorough
namic scaling relation which is valid up to the macro-understanding of the universality and scaling for the short-
scopic short-time regime, time dynamics is urgent and important.

The scaling relation (1) is valid only under the condi-
tions that the initial state is at very high temperature and
with smallinitial magnetization. Are there some reasons
that the universal behavior emerges only in the critical re-

M®(t,7,mg) = b B MO (b1, bV 7, b%mg), (1)

where M® is the kth moment of the magnetizatioh,is
the dynamic evolution timer is the reduced tempera-

ture, and the parametérrepresents the spatial rescaling
factor. Besides the well known static critical exponent
B, v, and the dynamic exponet a new independent
exponentx, which is the anomalous dimension of the
initial magnetizatiorn is introduced to describe the de-
pendence of the scaling behavior on the initial conditions

S

laxation starting from such a special initial state? If one
believes that the large time correlation length is essen-
tial for the universality, the only background one would
find is that the initial temperatur&, = o« and the ini-

tial magnetizationny, = 0 are the fixed points under the
renormalization group transformation. Therefore one may

é/vonder whether there exists universal behavior in the crit-
ical relaxation process starting from an initial state with
very high temperature but initial magnetization = 1,
sincemy = 1 also corresponds to a fixed point. Actually
the critical relaxation process withhy = 1 for the Ising
model and the Potts model have been investigated with
Monte Carlo simulations [8,11,18,19]. The results show
0 = (xo — B/v)/z. This makes the effect ofiy very that universality and scaling appear to be valid also in the
prominent. early stage of the time evolution.

Numerical simulation supports the above predictions In this Letter we are more ambitious. We study whether
for the critical short-time dynamics. The exponénfor  there exists universal scaling behavior in the short-time
the Ising model was first obtained indirectly through theregime of the critical relaxation from an initial state with
power law decay of the autocorrelation [2,3]. Recentlyvery high temperature aratbitrary magnetization.If the
the initial increase of the magnetization in (2) waslarge time correlation length plays an essential role for the
observed for the Ising model and the Potts model, andniversality in the critical dynamics as it was pointed out
the exponent was directly measured [4,5]. The scaling above, the presentation of the universal behavior should
relation and the universality are confirmed [4,6,7]. Thenot rely on from what initial onditions the critical relaxa-
investigation of the universal behavior of the short-timetion starts, and only the scaling behavior of the initial
dynamics not only enlarges the fundamental knowledge ofonditions should be considered very carefully. Since the
critical phenomena but also, more interestingly, providesrbitrarily valued initial magnetization is no more around

Based on the scaling relation it is predicted that at th

beginning of the time evolution the magnetization sur-

prisingly undergoes aritical initial increase
M(1) ~ mot?,

(2)

where the exponend is related to the exponent, by
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a fixed point, a critical exponent, is not sufficient to q state Potts model is given by

describe the scaling behavior of the initial magnetization.

In the Ianguage of .the renorma}li_zation group _methc_)d, H = KZ 8oios i =1,....q, (4)

the effective dimension of the initial magnetization will (ij)

in general depend on the initial magnetization itself. In

order to describe this phenomena, we introdueeitical ~ where(ij) represents nearest neighbors. In our notation
characteristic functionrather than a critical exponent. the inverse temperature is already absorbed into the
For thekth moment of the magnetization, the generalizedcoupling K. It is known that the critical points locate

scaling relation may be written as atk. = log(l + ,/q). In this paper the three statg =
3) case will be investigated. In generating the random
MW, 7, L,mg) = initial configurations, we have sharply prepared the initial

kB g B (=2, 11 v 5 —1 magnetization in order to avoid extra finite size effects
b B MO b1 7 b L X (b, mo)) (3) from the fluctuation ofmg in the finite systems. After
For the convenience of later discussion, finite systems haviée preparation of the initial configurations the system is
been considered here ahds the lattice size. The scaling released to evolve according to the heat-bath algorithm.
behavior of the initial magnetizatiom, is specified by =~ For simplicity, we taker =0, and therefore the
the critical characteristic functiog (b, mo), which in the — exponents will not enter the calculation. The exact value
limit mo — 0 tends to the simple formb*m, but is in ~ of the static exponentg/» = 2/15 and the dynamic
general different. Such a generalized scaling form is in £xponentz = 2.196 obtained from the power law decay
similar spirit as that in the correction to the scaling, whereof the autocorrelations [5,7] will be taken as input.
nonlinear effects of an off-fixed point are considered. Herelo verify the scaling relation (3) and determine the
only our initial magnetization is a relevant operator andcritical characteristic functiory (b, m,), we perform the
can be far away from the fixed point. The ansatz thasimulation for a pair of lattice sized, and L, and
the exponents3, », andz do not depend on the initial measure the time evolution of the magnetization and the
magnetizationm, is based on the assumption that thesecond moment defined as
initial conditions should not enter the renormalization of 3 k
the critical system in equilibrium and near equilibrium. MO (¢, mp) = <[— Z[ém(,),l — %]} > k=12,
In other words, if there is a scaling form in the short- N 5 5)
time regime of the dynamic relaxation process, the scaling
fo”‘." Should.smoothly Cross over to that in _the Iong-timewhere the average is taken over independent initial
regime. ..Th'S greatly simplifies th_e short-time bEh"’“"orconfigurations and the random forces. In order to reduce
of the_qutlcal dynam|§:s_. In the_ neighborhoodmj = 1 extra errors fromv¥(z, 1), especially whemn, becomes
the C”t'c"’}l characterl's'tlc function (b, mo) may also be ._bigger, we introduce a magnetization difference
characterized by a critical exponent. One can also realize
that in the limit of b = 0, y(b,mg) — 0, and whenb
approaches infinityy (b, mg) — 1. In this Letter we are
interested in the more general case; im,is between 0
and 1, andb is a reasonable finite number. The limiting
cases will be discussed in detail elsewhere. M1, 1) — MD(t, my)
Here we stress that the scaling relation in (3) is not Ua(t,my) = [My(t, mo) 2
trivial, even though the critical characteristic function
x (b, mp) looks not so simplée as a critical exponent. The From the scaling collapse aif,(z, my) or Uy(t, mg) for
scaling relation relates the time evolution of the observiwo lattices with suitable initial magnetizations, we can
ables with different initial magnetizations to each otherestimate the values of the functigniv, mg) atb = L,/L,
and represents theelf-similarity of the dynamic systems. for differentm.
All the physical observables as functions ofrf,and L In Fig. 1 the scaling plot for the magnetization is dis-
should be described by the same critical characteristicplayed for the latticd., = 144 with initial magnetization
function x (b, mp). Besides this, the physical observablesmg, = 0.14 and the latticeL; = 72 with suitably cor-
are universal functions of the variables-, andL uptoa responding initial magnetizationa,,. The stars repre-
nonuniversal scaling constant, and the dependence of tlsent the time evolution of the magnetization of the lattice
observables as well gg(b, mo) on my is expected to be L, = 144. The crosses are the same data but rescaled in
universal up to a rescaling of the initial magnetization ~ time and multiplied by an overall factd?/”. If one
As a concrete example, we consider the two dimenean find amg, for lattice L; = 72 such that its time
sional Potts model, for which a quite accurate dynamievolution of the magnetization fits to the crosses, the
exponentz has been obtained from the universal behavioiscaling is valid, and from the scaling relation (3) one
of the short-time dynamics [5,7]. The Hamiltonian for the gets x (2, mpz) = mg;. Practically we have performed the

My(t,mo) = MV(z, 1) — MD(2, mo) (6)

and a Binder-type cumulant

(7)
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FIG. 1. The scaling plot for the magnetization withy, L) = FIG. 2. The scaling plot for the magnetization wity, L,) =
(72,144). (36, 144).

simulation for L; = 72 with two different initial mag- groups. In principle the measurements from the magneti-
netizationsmy = 0.175 and mo = 0.185, for which the zation are more reliable than those from the Binder-type
magnetizations have been plotted by the lower and upsumulants where higher moments are involved, at least
per solid lines in Fig. 1. By linear extrapolation, we ob- when the static exponeiit/» is known. The magnetiza-
tain the time evolution of the magnetization with initial tion is self-averaging, but the Binder-type cumulant is not.
values between these two values. Then we can estimaWhenm, is getting biggerl,(z, mp) is more fluctuating.
mo1. The solid line laying on the crosses in Fig. 1 is In order to get a more direct understanding of the full
the time evolution of the magnetization far= 72 with  critical characteristic functiory (b, mg), we define an ef-
an initial magnetizationny = 0.1800(4) which has the fective dimensionx(b, my) of the initial magnetization
best fit to the crosses, i.ey(2,0.14) = 0.1800(4). From  mg by x (b, mg) = b*?")m,. By the definition naturally
the previous numerical simulations for the short-time dy-x(b,0) = xy. From the values of (b, m,), we can calcu-
namics [4,5,7], we know that the microscopic time scaldate x(b, mp). Taking the results from the magnetization
fmic is negligibly small for the heat-bath algorithm, at difference with the lattice paifL;,L,) = (36, 144) and
least for the measurement of the dynamic expoent (72, 144), the corresponding effective dimensior($, m)
the exponenty. In our calculation we have carried out are plotted in Fig. 3. It clearly shows thgt(b, my) is a
the fitting procedure in a time interval of [10,200] in the nontrivial function. For example, the value&,0.14) =
time scale of latticel. = 72. From Fig. 1 one can also 0.363(3) andx(2,0.40) = 0.408(2) apparently differ from
see clearly that the scaling relation is valid starting fromx, = 0.298(6) [7]. Whenm, varies from zero to one, the
the very early stage of the time evolution. effective dimensionx(b, mg) first increases and then de-
In Fig. 2 a scaling plotis shown for the lattiée = 144  creases to zero. However, when [or (b, mg)] is ap-
with mp, = 0.14 andL; = 36. From afittinginatimein- proachingm [or x(b,m()] = 1 it is not the best choice
terval of [10,80] we obtainegt(4,0.14) = 0.2328(9). Ina  to determinex(b, my) directly in the way discussed in this
similar way, y (b, mp) may be independently obtained from Letter since the dependence of the physical observables on
the scaling collapse of the Binder-type cumul&liptz, mg).  my becomes weaker and we face big statistical fluctuations.
Altogether we have performed the simulation fag, = Finally, let us have some more understanding of the
0.14, 0.22, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80,and 1.00. dynamic system discussed above. Suppogiggs also
In Table I, the results for two typical valuesy, = 0.14  a “coupling” of the system, in theK-m," plane of the
and 0.40 are given. We can see thdb, m() estimated couplings there exists a critical linf€ = K, in the sense
from both M,(z, myg) and U,(t, my) are very consistent. that the time correlation is divergent. In the neighborhood
In order to see the finite size effect, we have also pereof this critical line, the time correlation length depends
formed the calculation for other pairs of lattices as, e.g.pnly on the couplingK, and its scaling behavior is
(36, 72). InTable I, we can see that the finite size effect focharacterized by the exponent. If the critical line is
the lattice pair(L;, L,) = (36,72) is already quite small. a line of the fixed points, the exponenttogether withz
In the simulations, the statistics &f= 36, L = 72, and andg is sufficient to describe the critical dynamic system.
L = 144 are, respectively, 80000, 40000, and 8000. InHowever, in our case the critical line i®t a line of the
Table |, errors are estimated by dividing the data into fourfixed points. Therefore a critical characteristic function
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TABLE I.  x(b,my) measured from the magnetization and the Binder-type cumulant.
my 0.14 0.40
(L1, L) M, Uq M, Uy
(36,72) x (2, myp) 0.1807(05) 0.1804(08) 0.5298(06) 0.5300(36)
(72, 144) 0.1800(04) 0.1798(04) 0.5307(06) 0.5302(45)
(36, 144) x (4, mp) 0.2328(09) 0.2324(11) 0.6918(28) 0.6910(78)

should in general be introduced to describe the scaling.g., the stochastic quantization of the field theory, is at-

behavior. It is actually interesting to see what happensractive since such a knowledge would be important for

for a system in the equilibrium where a critical line existsthe numerical simulation of the lattice gauge theory.

but the line is not a line of fixed points. The author would like to thank L. Schilke, S. Mar-
In conclusion, we have numerically simulated the uni-culescu, and K. Okano for very helpful discussions and

versal short-time behavior of the dynamic relaxationK. Untch for maintaining the workstations.
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