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Phonons in Glasses: Numerical Simulations and Phenomenological Theory
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The phonon spectruma (k) of a model glass is investigated by classical molecular dynamics. While
the longitudinal branch looks like one of a crystal, the transverse branch saturates at ankalmost
independent characteristic frequensy, which tends to zero at the glass transition temperature. These
results confirm an earlier picture in which a glass is a solid containing liquid “pockets” of finite sizes.
Forw > w., the transverse phonons are absorbed by the resonant modes of the finite clusters, the latter
being responsible for the “boson peak.” [S0031-9007(96)00752-1]

PACS numbers: 63.50.+Xx, 61.43.Bn, 64.70.Pf

In the last two decades, most of the studies devotedo simplify the calculations the potential was cut off at
to glasses were focusing on the anomalies of the low/o = 3, and A and B were chosen so that both the
frequency modes, namely, the “quasielastic light scatterpotential and the force are zero at the cutoff. In order
ing excess” (QLSE) at very low frequencies {00 GHz), to give some physical meaning to the simulations, we
and the strong broad line located around 1 THz called thehoose fore and o the Lennard-Jones (LJ) values of
“boson peak” (BP). While the QLSE turns out to be quiteargon: e = 0.0103 eV, o = 3.405 A. The mass of the
well explained by the two-level tunneling theories [1] andparticles was determined using the standard LJ unit of time
their recent “soft modes” generalizations [2], the BP ist = (mo2/€)'/? and is equal to 40 amu [9], whereas the
still the subject of a theoretical controversy. As it appeardime stepisA+ = 0.0047. The simulations are considering
in both light and neutron scattering experiments [3], it iSN = 1000 atoms in a cube of edgé, with periodic
now believed that it is due to a mode excess in the densitgoundary conditions (PBC) at a density/L*)o> = 1,
of vibrational stateg(w), but different theoretical expla- but we have checked on a few larger systems that the
nations have been proposed: frequency resonance of finitesults are almost insensitive to the size. The glass con-
clusters [4] or localization of phonons by disorder [5].  figurations were obtained by quenching a well-equilibrated

In order to explain these features we present, for thénitial liquid sample obtained by melting a simple cubic
first time, a classical molecular dynamics calculation of thecrystal using constant energy-molecular dynamics at a
phonon spectrum for a model argon glass, which, despiteemperature of about 50 K well above the melting tem-
disorder, exhibits well-definea (k) branches. While the perature which is known to be about 25 K [8]. After full
longitudinal branch behaves like in a solid up to a maxi-equilibration of the liquid (during 1000 iterations) the
mum wave vector, which is the half of the locatigp of  system was cooled down t6 = 0 K at a quench rate
the so-called first sharp diffraction peak (FSDP) [6], theof 10'?> K/s (lasting 15000 iterations). Configurations
transverse branch saturates at a characteristic frequenduring the quenching process were saved every 1000 itera-
w., which tends to zero at the glass transition. We intertions and used as input for preparing samples of various
pret these results in terms of the Thorpe model [7], whichemperatures. The temperature was determined after a
describes a glass like a solid containing finite liquid clus-elaxation time of 5000 time steps, after which it was
ters. We suggest that the transverse phonons are absorb@userved to be reasonably constant.
for frequencies larger than the smallest eigenfrequency of After that relaxation period, relevant physical quantities
the largest cluster. Therefore for the first time a satisfyingvere calculated. The results for the two-point correlation
picture of the classical low frequency modes of glasses isurve and its Fourier transforn§(g), as well as for
given. We confirm the earlier ideas that the BP is due tdhe diffusion constant, will be reported elsewhere. We
resonant modes of finite clusters [4], but we make this arfound thatS(g) presents a sharp maximum a},o =
gument much more precise by invoking the resonant sca.5 roughly independent orf’. The behavior of the
tering of transverse phonons only. Furthermore, on theliffusion constant permits us to locate the glass transition
basis of this approach, we can make some conjectures aemperature between 10 and 15 K. Here we report on the
the shape of the BP and its behavior at the glass transitiophonon spectrum that we have determined by calculating

We performed computer simulations on a system othe following quantities:

N soft spheres interacting via an inverse sixth power

potential [8]: Va(k,t) = Zua'vi cogk-r;), 2)
6 L
Ur) = E(i) + A+ B (1) Wher(_e_r,- and v; are the time dependent positi_ons' and
r velocities, respectively, for thigh atom. The polarization
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vectors are defined such as = k/k in the longitudinal liquid case) the longitudinal branch looks like the one of
case, whileu, andu; form a direct orthogonalized basis a crystal, saturating aj,,/2, confirming that the system
with u; in the transverse case. Note that (2) is not a trués pseudoperiodic, even & = 30 K. The transverse
spatial Fourier transform, as the plane wavesikxqy  branch, which disappears in the liquid phase, appears to be
are not orthogonal. However, they satisfy the pseudohighly anomalous in the glass case. In an ordinary solid,
orthogonalization relation: it should roughly go like the longitudinal branch divided
by /3. Here w(k) saturates at a characteristic value
Zexp(—ik-ri)exr(ik’-r,-) « S(k —k'|). (3) w., which vanishes at the glass transition. Correlatively,
i the width Aw(k) does not stay almost constant (as in
As the S(¢g) peak is quite sharp, the glass can be considthe longitudinal case) but increases with We have
ered as pseudoperiodic on quite large distances [6]. Thigerformed other calculations at various temperatures. The
is why we can speak of phonons in glasses. variation with T of some characteristic features of the
During 2000 time steps we have calculated the timespectrum, namely, the slopes of the branches estimated at
Fourier transformsV, (k, w) of the V,(k,?)'s that we k = 0,V andVr, as well asv., are shown inFig. 2. One
have averaged over the direction bffor a givenk =  sees that, whil¢/, is roughly independent ofi, both V7
|k|, assuming isotropy. They generally exhibit a broadandw., which are very small in the liquid phase, vary in a
maximum at ane value that defineso(k) with some very limited region of temperature arouffd and saturate
half-width Aw (k). The determination of botw (k) and inthe glass phase. The typical leng#Vr/w. built with
Aw(k) has been done for several valueskaip tog,, /2, these saturation values is about 10 A consistent with the
and some typical results are shown in Figs. 1(a) angrevious estimations for the resonant clusters size [4].
1(b) for T = 0.30 and 30 K, below and above the glass The results obtained fo' > T, correspond to what
temperature, respectively. Even if the results are quités usually known for a liquid, namely, that the longitu-
scattered, some general features can be observed in thefipal modes can propagate (with attenuation), while the
figures. Despite the width due to disorder (larger in thetransverse modes cannot. This is due to the existence of
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FIG. 1. Numerical results fow (k) (top) andAw (k) (bottom) forT = 0.30 K (a) andT = 30 K (b). Closed and open circles
correspond to transverse and longitudinal modes, respectively. The arrow indicates, /2.
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8.0 . 1 2.0 gualitative features can be found from textbooks and/or by
transposing the FA results by replacing electron energies
by squared frequencies. Imagine there would be only one
o . single resonant state at frequerféyand a band of itinerant
transverse phonons with density of statggv). The
coupling (due to the viscosity) would produce a resonance
broadening traduced by a Lorentzian shapef for the
density of states of the localized state (which becomes a
“virtual bound state” [11]) with a width proportional tg?
® and tog(Q)). Correlatively, the density of states of the
¢ ° 105 itinerant transverse phonons should be depressed -at
B Q) due to the absorption. As, in our case, there are more
° *f and more localized states available @sncreases above
%000 50 100 150 200 250 3050 w, the density of states of the phonons vanishes and the
T [K] bound states becc_)mes less br_oadene(_:i. A rough picture of
the resulting density of states is given in Fig. 3. Globally,
FIG. 2. Plot of the slopes at the origin of the transversewhen comparing with a regular solid, modes from the top
(closed circles) and longitudinal (open circles) phonon branchesf the transverse phonon band are transferred to lower
andw, (squares) as a function @f. frequencies and get localized. This mechanism provides
a simple explanation of the mode excess observed in most
glasses, evidenced by the BP when plotti{@)/w? vs
a nonzero viscosity; in the liquid phase. A transverse w. From the above reasoning, one can explain why the
phonon of frequencys and wave vectok would create BP is strongly asymmetric. Its abruptnessvatshould be
a shear force per unit volunfe= —nk?v, where the rate related to the viscosity of the corresponding liquid, while
of displacement of mattev is perpendicular here thk.  on its largee side its shape is related with the mass size
Therefore, from the first principle of dynamids= iwuv  distribution of the pockets and the characteristics of their
(where u is the volumic mass), one gets the well-knownresonance spectrum which extends upwi, top of the
dispersion relationw = —(n/u)k?, leading to a pure transverse phonon band.
imaginary frequency (relaxation mod&)w = (n/u)k>. Let us push further the Thorpe model by assuming
If one forgets a&-independent width that we can attribute that the glass transition corresponds to the percolation
to disorder this relation turns out to be quite well verifiedthreshold for the pockets as, wh&nincreases, one needs
by our numerical results and leads#o= 5 X 107* P, a  the formation of a macroscopic liquid pocket to permit the
reasonable value for a model liquid argon [10]. Note thatvhole system to flow. In that case one can calculate the
apparentlyAw increases also witl in the longitudinal  shape of the boson peakZt assuming, like in percolation
case. This might be explained by some coupling betweetheory [12], that the pockets are fractals with spectral
longitudinal and transverse modes due to disorder, whicimensiond, and are distributed in mass according to
can hardly be neglected in the liquid case. a power lawm™" [12,13]. The density of states can
The results in the glass phase € T,) can be simply
explained using the Thorpe model [7], which considers a
glass like a solid containing liquid pockets of limited sizes.
We can reasonably assume that the vibrational eigenmode:
of these pockets form a quasicontinuum starting from
the lowest frequency of the largest cluster that we call
w.. If a transverse phonon has a frequency larger than —~
w., it is able to excite the resonances of some pockets, =
via the shear force mentioned above. Therefore such a ®®
phonon should be strongly absorbed, and this explains
why w(k) after a short linear regime saturates af,
while Aw roughly exhibits the samé? behavior as in
the liquid case. Such an effect is analogous, in the
case of phonons, to the resonant scattering mechanisn
introduced almost 40 years ago by Friedel and Anderson W, Oy v

(FA) [11] in order 1o explain the electronic properties FIG. 3. Sketch of the density of states for the transverse

of d impurities in's metals. ,_’-\ny analytical calculation phonons (solid line) compared with their density of states in
would need some modelization of the pocket structurea regular solid (dashed curve). The mode excess (responsible

and this is not our purpose here. However, some generér the boson peak) is shown by the dashed region.
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be obtained by multiplying the density of states for oneSeong Gon Kim and David Toméanek for their collabora-
pocket ¢ w® 1) by the number of pockets of mass largertion in the development of the original computer code.
than a mass proportional @ 4. This reasoning gives
g(w)/w? = o ® with a« =3 — dyr. Considering the
percolation values = 2.2 andd; = 1.3, this givesa =
0.14, a much lower value than the exponent of order 1 [1] P.W. Anderson, B.I. Halperin, and C.M. Varma, Philos.
experimentally observed on the right side of the BP [14].  Mag. 25 1 (1972); W. A. Philips, J. Low Temp. Phyg,
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- . . [2] V.G. Karpov, M. . Klinger, and F. N. Ignat'ev, Sov. Phys.
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range of frequenciesd, < o < wy), and it is more Parshin, Sov. Phys. JETB5, 439 (1987); V. L. Gurevich,
reasonable to consider= 2 andd, = 1.1, as itis known D.A. Parshin, J. Pelous, and H.R. Shober, Phys. Rev. B
from the statistics of clusters (“animals” [12,13]) below the 48, 16318 (1993).
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[15] but only for transverse phonons. [4] J.C. Phillips, J. Non-Cryst. Solid$31, 37 (1981); E. Du-
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cal interpretation is that it conciliates the previous contra- by R.W. Cahn, P. Haasen, and E.J. Kramer (1991),

dictory approaches, based either on cluster resonance [4] Vol. 9, p. 175.

or on phonon localization [5], by adding some new key [7] M.F. Thorpe, J. Non-Cryst. Solids7, 355 (1983); Y. Cai
ingredients which are the liquid character of the clusters  and M.F. Thorpe, Phys. Rev. 40, 10535 (1989).

and the special role played by the transverse phonons. [t8] B-B. Laird and H.R. Shober, Phys. Rev. Le@6, 636
might also be consistent with the “mode coupling” theo- ~ (1991); H.R. Schober and B.B. Laird, Phys. Rev4B
ries [16] of the glass transition, as, like in these theories, 6746 (1991).

we have slow modes strongly varying with temperature (9] gél(ga(zlggg)and R.G. Della Valle, J. Chem. Phya9,

(transverse phonons) CO_UpI_Ed’ via disorder, to fBst [10] R.C. Weast,Handbook of Chemistry and Physi¢(SGRC
independent modes (longitudinal phonons). Note also that * press, Boca Raton, Florida, 1985).

the liquid pockets can be viewed as unstable regions whefg1] J. Friedel, Can. J. Phy84, 1190 (1956); P.W. Anderson,
the atoms can diffuse locally by hopping over potential Phys. Rev124 41 (1961).

barriers. Therefore our picture is not different from the[12] D. Stauffer, Introduction to Percolation TheoryTaylor
one used in the two-level and soft-mode theories, except and Francis, London, 1985); J. Fedéractals (Plenum,
that we are not considering the quantum aspects (tunnel- New York, 1988); J.F. GouyetPhysique et Structures
ing) which appear at lower frequencies. We are presently _ Fractales(Masson, Paris, 1992).

pursuing our numerical calculations to explore further thd13] T- Nakayama, K. Yakubo, and R. Orbach, Rev. Mod.
implications of our model and to estimate the size distri- Phys.66, 381 (1994).

. . . - . [14] U. Buchenau, C. Shonfeld, D. Richter, T. Kanaya, K. Kaji,
bution of the liquid pockets and its variation with quench and R. Wehrmann, Phys. Rev. Leff3, 2344 (1994):

rate and glass history. . . . F. Terki, C. Levelut, J. L. Prat, M. Boissier, and J. Pelous
We would like to acknowledge very interesting discus- (to be published).

sions with Jacques Pelous. Numerical calculations wergs] s. Alexander and R. Orbach, J. Phys. (Paris) L48.
done at CNUSC (Centre Universitaire Sud de Calcul),  L625 (1982).
Montpellier, France. One of us (P.J.) would like to thank[16] W. Goétze and L. Sjogren, Rep. Prog. Phs, 241 (1992).

678



