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Phonons in Glasses: Numerical Simulations and Phenomenological Theory
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The phonon spectrumvskd of a model glass is investigated by classical molecular dynamics. While
the longitudinal branch looks like one of a crystal, the transverse branch saturates at an almostk-
independent characteristic frequencyvc, which tends to zero at the glass transition temperature. These
results confirm an earlier picture in which a glass is a solid containing liquid “pockets” of finite sizes.
For v . vc, the transverse phonons are absorbed by the resonant modes of the finite clusters, the latter
being responsible for the “boson peak.” [S0031-9007(96)00752-1]

PACS numbers: 63.50.+x, 61.43.Bn, 64.70.Pf
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In the last two decades, most of the studies devo
to glasses were focusing on the anomalies of the l
frequency modes, namely, the “quasielastic light scat
ing excess” (QLSE) at very low frequencies (.100 GHz),
and the strong broad line located around 1 THz called
“boson peak” (BP). While the QLSE turns out to be qu
well explained by the two-level tunneling theories [1] an
their recent “soft modes” generalizations [2], the BP
still the subject of a theoretical controversy. As it appe
in both light and neutron scattering experiments [3], it
now believed that it is due to a mode excess in the den
of vibrational statesgsvd, but different theoretical expla
nations have been proposed: frequency resonance of fi
clusters [4] or localization of phonons by disorder [5].

In order to explain these features we present, for
first time, a classical molecular dynamics calculation of t
phonon spectrum for a model argon glass, which, des
disorder, exhibits well-definedvskd branches. While the
longitudinal branch behaves like in a solid up to a ma
mum wave vector, which is the half of the locationqm of
the so-called first sharp diffraction peak (FSDP) [6], t
transverse branch saturates at a characteristic frequ
vc, which tends to zero at the glass transition. We int
pret these results in terms of the Thorpe model [7], wh
describes a glass like a solid containing finite liquid clu
ters. We suggest that the transverse phonons are abso
for frequencies larger than the smallest eigenfrequenc
the largest cluster. Therefore for the first time a satisfy
picture of the classical low frequency modes of glasse
given. We confirm the earlier ideas that the BP is due
resonant modes of finite clusters [4], but we make this
gument much more precise by invoking the resonant s
tering of transverse phonons only. Furthermore, on
basis of this approach, we can make some conjecture
the shape of the BP and its behavior at the glass transit

We performed computer simulations on a system
N soft spheres interacting via an inverse sixth pow
potential [8]:
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To simplify the calculations the potential was cut off
rys ­ 3, and A and B were chosen so that both th
potential and the force are zero at the cutoff. In ord
to give some physical meaning to the simulations,
choose fore and s the Lennard-Jones (LJ) values o
argon: e ­ 0.0103 eV, s ­ 3.405 Å. The mass of the
particles was determined using the standard LJ unit of ti
t ­ sms2yed1y2 and is equal to 40 amu [9], whereas th
time step isDt ­ 0.004t. The simulations are considerin
N ­ 1000 atoms in a cube of edgeL, with periodic
boundary conditions (PBC) at a densitysNyL3ds3 ­ 1,
but we have checked on a few larger systems that
results are almost insensitive to the size. The glass c
figurations were obtained by quenching a well-equilibrat
initial liquid sample obtained by melting a simple cub
crystal using constant energy-molecular dynamics a
temperature of about 50 K well above the melting te
perature which is known to be about 25 K [8]. After fu
equilibration of the liquid (during 1000 iterations) th
system was cooled down toT ­ 0 K at a quench rate
of 1012 Kys (lasting 15 000 iterations). Configuration
during the quenching process were saved every 1000 it
tions and used as input for preparing samples of vari
temperatures. The temperature was determined aft
relaxation time of 5000 time steps, after which it w
observed to be reasonably constant.

After that relaxation period, relevant physical quantiti
were calculated. The results for the two-point correlati
curve and its Fourier transformSsqd, as well as for
the diffusion constant, will be reported elsewhere. W
found that Ssqd presents a sharp maximum atqms .
7.5 roughly independent onT . The behavior of the
diffusion constant permits us to locate the glass transit
temperature between 10 and 15 K. Here we report on
phonon spectrum that we have determined by calcula
the following quantities:

Vask, td ­
X

i

ua?vi cossk?rid , (2)

where ri and vi are the time dependent positions an
velocities, respectively, for theith atom. The polarization
© 1996 The American Physical Society 675
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vectors are defined such asu1 ­ kyk in the longitudinal
case, whileu2 andu3 form a direct orthogonalized bas
with u1 in the transverse case. Note that (2) is not a t
spatial Fourier transform, as the plane waves expik?ri

are not orthogonal. However, they satisfy the pseu
orthogonalization relation:X

i

exps2ik?rid expsik0?rid ~ Ssjk 2 k0jd . (3)

As theSsqd peak is quite sharp, the glass can be cons
ered as pseudoperiodic on quite large distances [6]. T
is why we can speak of phonons in glasses.

During 2000 time steps we have calculated the tim
Fourier transformsVask, vd of the Vask, td’s that we
have averaged over the direction ofk for a given k ­
jkj, assuming isotropy. They generally exhibit a bro
maximum at anv value that definesvskd with some
half-width Dvskd. The determination of bothvskd and
Dvskd has been done for several values ofk up toqmy2,
and some typical results are shown in Figs. 1(a) a
1(b) for T ­ 0.30 and 30 K, below and above the gla
temperature, respectively. Even if the results are q
scattered, some general features can be observed in
figures. Despite the width due to disorder (larger in t
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liquid case) the longitudinal branch looks like the one
a crystal, saturating atqmy2, confirming that the system
is pseudoperiodic, even atT ­ 30 K. The transverse
branch, which disappears in the liquid phase, appears t
highly anomalous in the glass case. In an ordinary so
it should roughly go like the longitudinal branch divide
by

p
3. Here vskd saturates at a characteristic val

vc, which vanishes at the glass transition. Correlative
the width Dvskd does not stay almost constant (as
the longitudinal case) but increases withk. We have
performed other calculations at various temperatures.
variation with T of some characteristic features of th
spectrum, namely, the slopes of the branches estimate
k ­ 0, VL andVT , as well asvc, are shown in Fig. 2. One
sees that, whileVL is roughly independent onT , bothVT

andvc, which are very small in the liquid phase, vary in
very limited region of temperature aroundTg and saturate
in the glass phase. The typical length2pVT yvc built with
these saturation values is about 10 Å consistent with
previous estimations for the resonant clusters size [4].

The results obtained forT . Tg correspond to wha
is usually known for a liquid, namely, that the longitu
dinal modes can propagate (with attenuation), while
transverse modes cannot. This is due to the existenc
s
FIG. 1. Numerical results forvskd (top) andDvskd (bottom) forT ­ 0.30 K (a) andT ­ 30 K (b). Closed and open circle
correspond to transverse and longitudinal modes, respectively. The arrow indicatesk ­ qmy2.
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FIG. 2. Plot of the slopes at the origin of the transver
(closed circles) and longitudinal (open circles) phonon branch
andvc (squares) as a function ofT .

a nonzero viscosityh in the liquid phase. A transverse
phonon of frequencyv and wave vectork would create
a shear force per unit volumef ­ 2hk2v, where the rate
of displacement of matterv is perpendicular here tok.
Therefore, from the first principle of dynamics,f ­ ivmv
(wherem is the volumic mass), one gets the well-know
dispersion relationiv ­ 2shymdk2, leading to a pure
imaginary frequency (relaxation mode)Dv ­ shymdk2.
If one forgets ak-independent width that we can attribut
to disorder this relation turns out to be quite well verifie
by our numerical results and leads toh . 5 3 1024 P , a
reasonable value for a model liquid argon [10]. Note th
apparentlyDv increases also withk in the longitudinal
case. This might be explained by some coupling betwe
longitudinal and transverse modes due to disorder, wh
can hardly be neglected in the liquid case.

The results in the glass phase (T , Tg) can be simply
explained using the Thorpe model [7], which considers
glass like a solid containing liquid pockets of limited size
We can reasonably assume that the vibrational eigenmo
of these pockets form a quasicontinuum starting fro
the lowest frequency of the largest cluster that we c
vc. If a transverse phonon has a frequency larger th
vc, it is able to excite the resonances of some pocke
via the shear force mentioned above. Therefore suc
phonon should be strongly absorbed, and this expla
why vskd after a short linear regime saturates atvc,
while Dv roughly exhibits the samek2 behavior as in
the liquid case. Such an effect is analogous, in t
case of phonons, to the resonant scattering mechan
introduced almost 40 years ago by Friedel and Anders
(FA) [11] in order to explain the electronic propertie
of d impurities in s metals. Any analytical calculation
would need some modelization of the pocket structu
and this is not our purpose here. However, some gene
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qualitative features can be found from textbooks and/or
transposing the FA results by replacing electron energ
by squared frequencies. Imagine there would be only o
single resonant state at frequencyV and a band of itinerant
transverse phonons with density of statesgsvd. The
coupling (due to the viscosity) would produce a resonan
broadening traduced by a Lorentzian shape (inv2) for the
density of states of the localized state (which become
“virtual bound state” [11]) with a width proportional toh2

and togsVd. Correlatively, the density of states of th
itinerant transverse phonons should be depressed atv .
V due to the absorption. As, in our case, there are m
and more localized states available asv increases above
vc, the density of states of the phonons vanishes and
bound states becomes less broadened. A rough pictur
the resulting density of states is given in Fig. 3. Global
when comparing with a regular solid, modes from the t
of the transverse phonon band are transferred to lo
frequencies and get localized. This mechanism provid
a simple explanation of the mode excess observed in m
glasses, evidenced by the BP when plottinggsvdyv2 vs
v. From the above reasoning, one can explain why
BP is strongly asymmetric. Its abruptness atvc should be
related to the viscosity of the corresponding liquid, whi
on its large-v side its shape is related with the mass si
distribution of the pockets and the characteristics of th
resonance spectrum which extends up tovM , top of the
transverse phonon band.

Let us push further the Thorpe model by assumi
that the glass transition corresponds to the percolat
threshold for the pockets as, whenT increases, one need
the formation of a macroscopic liquid pocket to permit th
whole system to flow. In that case one can calculate
shape of the boson peak atTg assuming, like in percolation
theory [12], that the pockets are fractals with spect
dimensionds and are distributed in mass according
a power law m2t [12,13]. The density of states ca

FIG. 3. Sketch of the density of states for the transve
phonons (solid line) compared with their density of states
a regular solid (dashed curve). The mode excess (respons
for the boson peak) is shown by the dashed region.
677
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be obtained by multiplying the density of states for o
pocket (~ vds21) by the number of pockets of mass larg
than a mass proportional tov2ds . This reasoning gives
gsvdyv2 ~ v2a with a ­ 3 2 dst. Considering the
percolation valuest ­ 2.2 andds ­ 1.3, this givesa ­
0.14, a much lower value than thea exponent of order 1
experimentally observed on the right side of the BP [1
But, since these experiments have been done in the g
phase, i.e., below the percolation threshold of the liqu
pockets, the power law should be valid only in a limite
range of frequencies (vc ø v ø vM), and it is more
reasonable to considert ­ 2 andds . 1.1, as it is known
from the statistics of clusters (“animals” [12,13]) below th
percolation threshold leading a valuea . 0.8 closer to 1.
In this framework one could again speak of “fractons”
glasses as it was first proposed by Alexander and Orb
[15] but only for transverse phonons.

In conclusion, we have not only shown, prior to expe
ments, the acoustic phonon spectrum of glasses and
behavior through the glass transition, but we have giv
also a satisfactory interpretation of the boson peak.
have explained our results in the framework of the Thor
model which states that a glass is like a solid contain
finite liquid regions. An interesting feature of our theore
cal interpretation is that it conciliates the previous cont
dictory approaches, based either on cluster resonance
or on phonon localization [5], by adding some new k
ingredients which are the liquid character of the clust
and the special role played by the transverse phonons
might also be consistent with the “mode coupling” the
ries [16] of the glass transition, as, like in these theori
we have slow modes strongly varying with temperatu
(transverse phonons) coupled, via disorder, to fastT -
independent modes (longitudinal phonons). Note also
the liquid pockets can be viewed as unstable regions wh
the atoms can diffuse locally by hopping over potent
barriers. Therefore our picture is not different from th
one used in the two-level and soft-mode theories, exc
that we are not considering the quantum aspects (tun
ing) which appear at lower frequencies. We are prese
pursuing our numerical calculations to explore further t
implications of our model and to estimate the size dis
bution of the liquid pockets and its variation with quenc
rate and glass history.

We would like to acknowledge very interesting discu
sions with Jacques Pelous. Numerical calculations w
done at CNUSC (Centre Universitaire Sud de Calcu
Montpellier, France. One of us (P. J.) would like to tha
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