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Multiple light scattering from thermal fluctuations is studied in single-domain nematic liquid crys
These systems are uniaxial so that diffusion of light may be anticipated to be anisotropic
polarization to persist in the diffuse regime, in sharp contrast with what is known for light diffu
in isotropic media. Our study enables us to do the first quantitative predictions of light diffusion
function of the scalar order parameter. [S0031-9007(96)00708-9]

PACS numbers: 42.70.Df, 61.30.Gd
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Since the pioneering work of de Gennes, it is know
that fluctuations in the dielectric constant of nematic liqu
crystals (and hence light scattering) are dominated
thermal fluctuations of the local director [1–3]. Spec
aspects of these fluctuations are their tensorial natur
well as their weak but long-range nature. Single lig
scattering experiments, both elastic [4] and quasiela
ones [5,6], have successfully been interpreted. Sev
theoretical studies have been carried out for multi
scattering in nematic states [7–9].

This Letter deals with the theory of light diffusion i
single-domain nematic liquid crystals. Diffusion is th
extreme limit of multiple scattering and sets in when t
medium is much bigger than the mean free path, typic
a millimeter in monodomain nematics. Experimental
it is not easy to create a single-domain nematic sam
exceeding this length. Nevertheless, the observation
coherent backscattering in oriented nematics has rece
been reported [10] in samples of 1 cm. The data se
consistent with diffusion theory using the de Genn
phase function for light scattering, although anisotropy
the diffusion could not be resolved. Future experime
will certainly try to resolve this interesting feature [11
in more detail. Our diffusion theory, obtained fro
Maxwell’s equations, may offer a theoretical suppo
In the diffusive regime only few observables rema
such as diffusion tensorDij , and “Stokes” correlator
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p
j l of the electric polarization vector. In most optic

media both diffusion tensor and Stokes correlator
necessarily isotropic (proportional todij). Single-domain
nematic liquid crystals offer a unique opportunity to stu
persisting and controlled anisotropy in multiple scatterin

We first state some rigorous results of light transp
theory that we shall mention without derivation, a
which serve as a starting point for our calculation
These results find their equivalent in electron transp
[12]. Microscopic treatments of scalar-wave transp
have been published [13], and a lot of progress has b
made concerning the vector character of light [14].
an infinite random medium the transport of the seco
rank tensorkEiE

p
kl in space and time is described by

four-rank tensorLijklst, rd [14]. If energy is conserved
its Laplace-Fourier transform has the asymptotic form

Likp,jlp0sV, q ! 0, vd ­
diksv, p, qddijsv, p0, qd
2iV 1 q ? Dsvd ? q

, (1)

where dik represents the eigentensor of the collisi
operator corresponding to the hydrodynamic eigenva
close to zero [14]. In time and space coordinates
equation is equivalent to the diffusion equation with
anisotropic diffusion tensorD. The reciprocity principle
guarantees the symmetric form ofLijkl on incident and
outgoing indices. The diffusion tensorD is given by a
Kubo-Greenwood type formula [12,13],
q ? Dsvd ? q ­
1

2pNsvd

X
p

hgsp, qd ? Gsv, pdGpsv, pd ? Lsp, qd 2 fq ? ≠p ReGsv, pdg ? Lsp, qdj , (2)
es,

y

in which the second-rank tensorLsp, qd ­ 2sp ? qdI 2

pq 2 qp and Nsvd represents the density of states p
unit volume with frequencyv. The bilinear second
rank tensorg describes angular correlations in multip
scattering as expressed by the integral equation,

gsp, qd ­ Lsp, qd 1
X
p0

gsp0, qd

? Gsv, p0dGpsv, p0d ? Up0psvd , (3)

in terms of the Bethe-Salpeter vertexUp0psvd and the
r
Dyson Green’s tensorGsv, pd [15]. For isotropic media
with weak disorder the famous Boltzmann result appli
gij ­ 2sp ? qddijys1 2 kcosuld, which makes the extinc-
tion length different from the mean free path.

The polarization of diffuse radiation is described b
the second-rank tensordij in Eq. (1). Perturbation theory
gives us

dsp, qd ­ 2
2v

pc0
ImGsv, pd 2

iv
pc0

gsp, qd

? Gsv, pdGpsv, pd . (4)
© 1996 The American Physical Society 639
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The first term is known as the spectral function in electr
transport theory. The second term represents a s
anisotropy in the specific intensity profile arising from
net energy flow, which in turn is due to a small energ
density gradient (in Fourier space expressed byq).

We shall apply these results to single-domain nem
liquid crystals, relying on four realistic assumptions
be mentioned below. The uniaxiality of the nematic ho
state (one optical axisn with dielectric tensoŕ ­ ´'I 1

´ann) gives rise to two modes of propagation, defin
as ordinary sOd and extraordinary sEd. They possess
orthonormal polarization vectorso and e with separate
dispersion lawsveyoskd and group velocitiesveyo [16].
In the first Born approximation (our first approximation
scattering of light is described by the static (four ran
correlation tensor [2,3],

Up,p1fsvd ­

µ
v

c0

∂4

kd´s0dd´sfdl

­
svyc0d4´2

akTyK1

f2 1 Asf ? nd2 1 1yj2

3
X

a­1,2

sean 1 nead sean 1 nead . (5)

We introduced unit vectorse1 ­ sf 3 ndyjf 3 nj, e2 ­
n 3 e1, and A ­ K3yK1 2 1; the elastic constants fo
splay, twist, and bend deformations areK1, K2, and K3

[17]. In the adopted “two-constant approximation”
the free energysK1 ­ K2d, our second approximation
polarization, and spatial aspects decouple convenien
A magnetic field induces a finite correlation lengthj ­p

K1yxaB2, typically 1 mm for 1 T, and much less than
the mean free path. This guarantees that a point
treatment of the fluctuations (our third approximation) c
be used. This approximation has explicitly been verifi
by us in the scalar-wave picture [18], for which it is eve
s
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possible to treat the long-range1yr structure factor of
the thermal fluctuations in the absence of magnetic fie
All these parameters can be related to the scalar o
parameterS ­

1
2 k3 cos2 u 2 1l of the nematic phase

One expects that on varying the order parameter,´a,
xa , S, and Ki , S2 [3], so that j ,

p
S and A ,

const. Although exceptions to these scaling relatio
exist, they can serve to understand our numerical res
as a function of the order parameter.

The Dyson Green’s tensor is

Gspd ­
ee

cos2defk2
e sp̂d 2 p2g 1 ikesp̂dy,esp̂d

1
oo

k2
o 2 p2 1 ikoy,osp̂d

; (6)

desp̂d is the angle between phase and group veloc
of the E wave. The polarization- and angle-depende
extinction length,eyosp̂d can be calculated numericall
[8,19]. The longitudinal field as well as its coupling t
theE mode are beyond the first Born approximation.

Our main task is to solve Eq. (3) for a nematic liq
uid crystal. EO interference can be neglected sin
´av,e,oyc0 ø 103 ¿ 1, implying that E and O waves
dephase between two collisions. This is our fourth and
nal approximation. Reciprocity imposes thatgijsp, qd ­
gjis2p, 2qd. Uniaxial symmetry allows the presence
two vectorsn ando ~ n 3 p̂ in this tensor. However, a
selection rules forOO polarization transitions guarantee
the ordinary vectoro to be absent. This leaves us with

gsp, qd ­ 2sp ? qdAsp, cd 2 pq 2 qp

1 sn ? pd sq ? ndBsp, cd . (7)
The symmetric tensorsA andB are even functions ofc ­
n ? p̂. From Eq. (3) we obtain a closed set of coupl
equations for the scalar variablese ? gsp̂, qd ? e ;
gesp̂, qd, o ? gsp̂d ? o ; gosp̂, qd,
gesp̂, qd ­ 2sv̂e ? qdcosde 1
Z d2p̂0

4p
FEEske, k0

edgesp̂0, qd 1
Z d2p̂0

4p
FEOske, k0

odgosp̂0, qd , (8a)

gosp̂, qd ­ 2sv̂o ? qd 1
Z d2p̂0

4p
FOEsko , k0

edgesp̂0, qd , (8b)
g

with phase functions

FEEske, k0
ed ­

k0
e,esk0

ed
4pke cos2d0

e
e0e0 ? Uke ,k0

e
svd ? ee ,

(9a)

FEOske, k0
od ­

k0
o,osk0

od
4pke

o 0o 0 ? Uke,k0
o
svd ? ee ,

(9b)

FOEsko , k0
ed ­

k0
e,esk0

ed
4pko cos2d0

e
e0e0 ? Uko ,k0

e
svd ? oo ,

(9c)

and the selection ruleFOOsko , k0
od ­ 0. Two choices

for q (p̂ and n) allow us to determine the four function
Aeyoscd, Beyoscd numerically (Fig. 1).
Uniaxial symmetry imposes thatDij ­ D'dij 1

sDk 2 D'dninj. Neglecting again EO interference,
Eq. (2) simplifies to

D'q2 1 sDk 2 D'd sq ? nd2 ­
c3

0

4pv2s´k 1 ´'d
p

´'

3

∑Z
d2 Sesv̂e ? qd,esp̂d

1
2

gesp̂, qd

1
Z

d2 Sosv̂o ? qd,osp̂d
1
2

gosp̂, qd
∏

. (10)

D' and Dk follow from Eq. (10) by separately choosin
q ­ n and integration over all angles ofq.
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FIG. 1. Solution of Eq. (8) in a nematic liquid crystal, ob
tained after 10 iterations. Shown areAoscd, Aescd, Boscd, and
Bescd, defined in Eq. (7) (́a ­ 20.2, ´' ­ 1.0, vjyc0 ­
63.7, anda ­ 20.254). We obtained for the diffusion tenso
Dk ­ 0.905Dscal and D' ­ 1.021Dscal, with Dscal the diffu-
sion constant obtained in the scalar theory.

In Fig. 2 we displayD'yDscal, DkyDscal, andD'yDk

calculated numerically as a function of´ay´', with j and
A kept fixed;Dscal ­

1
3 yo,p

B is the diffusion constant ob-
tained in the scalar theory [20], with,p

B ­ 8pc2
0K1´'y

kT´2
av2. For ´ay´' ¿ 1, theE states can be verified to

dominate, and, since their frequency surface becomes
tened along the optical axis, this corresponds to aquasi-
1D case. This explains whyDk ¿ D'. For ´a , 0,
the O waves take the upper hand and we inferD' ø Dk.
The free energy influences the anisotropy of the dif
sion tensor as well:A . 0 tends to lower scattering alon
the optical axis, enhancing the relative importance ofDk.
This is particularly evident for the nematic PAA (Table I

It is convenient to discuss our results as a function of
scalar order parameterS, relying on the scaling relations o
Ki , ´a, andj discussed earlier. The calculations display
in Fig. 2 show that the anisotropy in diffusion is rath
insensitive to the correlation lengthj as long as it remains
less than the mean free path. AsA is supposed not to
depend onS, the only sensitive parameter is the dielect
anisotropy´a , S. In this way, Fig. 2 represents th
diffusion tensor as a function of the scalar order parame
We notice that the same scaling arguments lead to
prediction thatDscal will not be sensitive to the orde
-
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FIG. 2. Numerical solution of Eqs. (8) and (10). Left: Di
fusion constant parallel and perpendicular to optical a
expressed in scalar units, as a function of the dielec
anisotropy´ay´' (´' ­ 1 and A ­ 0.254). The curves for
vjyc0 ­ 63.7 and vjyc0 ­ 32.3 (dashed) essentially over
lap. The dashed lines have been obtained by ignoring ang
correlations in multiple scattering. For positive anisotrop
they differ considerably from the exact ones. Upon vary
the order parameterS, the only relevant change in diffusio
can be argued to come froḿa , S (see text). Right: the
ratio D'yDk as a function of the same dielectric anisotrop
Inset for comparison: kinematic anisotropyp of the group ve-
locity tensor kyiyjl ­ pdij 1 s1 2 3pdninj versus dielectric
anisotropy.

parameterS either, just as was predicted 25 years ago
the single scattering transmission [21]. It is interesti
to note that upon approaching the phase transitionsS !

0d none of our four assumptions seems to be violat
However, since the mean free path diverges asj ! 0,
other scattering mechanisms than thermal fluctuations
take over.

The polarization of the light can be represented
its Stokes correlatorkEisp 1 qy2dEp

ksp 2 qy2dl. In the
diffuse domain it equals, by Eq. (4), the second-ra
tensor diksp, qd. The total polarization can be define
as the ratio between the average electromagnetic en
density from E modes and the one fromO modes.
Since the electromagnetic energy density is proportio
to ´ ? kEEpl, we get

rsv, pd ; ´ ? dsv, pd ­ eedfv 2 vespdg

1 oodfv 2 vospdg 1 O sp, qd . (11)

Upon integration overp, the degree of polarization
becomes

re

ro
­

Z d2Se

jvej

¡Z d2So

jvoj
­

´k

´'

, (12)
erical
heory
a

TABLE I. Adopted input data for two common nematic liquid crystals (taken from Tables 3.1 and 3.2 of Ref. [2]), and num
values for the diffusion tenor of the lightsA ; K3yK1,2 2 1d; ,p

B denotes the transport mean free path predicted by the scalar t
given in the text;p is the kinematic anisotropy defined in Fig. 2. We assumed thatK1 ­ K2. All calculations are done using
vacuum wavelength of 500 nm.

´' ´a K1,2 A j T p D'yDscal DkyDscal D'yDk ,p
B

PAA 2.47 10.88 3.0 pN 2.17 2.2 mm 398 K 0.3214 1.61 2.82 0.57 0.28 mm
MBBA 5.40 20.70 3.2 pN 0.91 1.5 mm 299 K 0.3376 1.28 1.64 0.78 1.36 mm
641
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i.e., the ratio of number of microstates available. T
shows that long-range diffusion finally leads to equip
tition [22], as anticipated heuristically. Foŕ a , 0
O radiation dominates in the diffuse regime: For posit
anisotropies most radiation will beE.

In summary, we have calculated bulk diffusion ch
acteristics of light scattered from thermal fluctuatio
in oriented nematic liquid crystals. We calculated t
uniaxial anisotropy in diffusion tensor and the degree
polarization in the diffusive domain. Both unfamilia
properties, the functionsAeyosud and Beyosud intro-
duced in this work, in particular, are observable in
diffuse transmission. Within the diffusion approx
mation they determine the angular and polarizat
dependent transmission. The outcome may be comp
to multiple scattering experiments in nematic liqu
crystals, as a function of the order parameter.

We thank Jacques Prost and Georg Maret for stimu
ing discussions, and the GDR POAN for support.
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