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Improved Surrogate Data for Nonlinearity Tests
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Current tests for nonlinearity compare a time series to the null hypothesis of a Gaussian linear
stochastic process. For this restricted null assumption, random surrogates can be constructed which are
constrained by the linear properties of the data. We propose a more general null hypothesis allowing for
nonlinear rescalings of a Gaussian linear process. We show that such rescalings cannot be accounted
for by a simple amplitude adjustment of the surrogates which leads to spurious detection of nonlinearity.
An iterative algorithm is proposed to make appropriate surrogates which have the same autocorrelations
as the datandthe same probability distribution. [S0031-9007(96)00699-0]

PACS numbers: 05.45.+b

The paradigm of deterministic chaos has become a veriquivalently, one can create Gaussian independent ran-
attractive concept for the study of the irregular time evo-dom numbers, take their Fourier transform, replace those
lution of experimental or natural phenomena. Nonlineatamplitudes with the amplitudes of the Fourier transform
methods have indeed been successfully applied to lab@f the original data, and then invert the Fourier transform.
ratory data from many different systems [1]. However, This is similar to a filter in the frequency domain. Here
soon after the first signatures of low-dimensional chaos hathe “filter” is the quotient of the desired and the actual
been reported for field data [2], it turned out that nonlin-Fourier amplitudes.
ear algorithms can mistake linear correlations, in particular In practice, the above null hypothesis is not as interest-
those of the power law type, for determinism [3]. This hasing as one might like: Very few of the time series con-
lead, on the one hand, to more critical applications of alsidered for a nonlinear treatment pass even a simple test
gorithms like the correlation dimension [4]. On the otherfor Gaussianity. Therefore we want to consider a more
hand, significance tests have been proposed which allogeneral null hypothesis including the possibility that the
for the detection of nonlinearity even when for exampledata were measured by an instantaneous, invertible mea-
a clear scaling region is lacking in the correlation integralsurement functio which does not depend on tine A
[5]. The idea is to test results against the null hypothesisime series{s,},n = 1,..., N is consistent with this null
of a specific class of linear random processes. hypothesis if there exists an underlying Gaussian linear

One of the most popular of such tests is the methodtochastic signafx,} such thats, = h(x,) for all n. If
of “surrogate data” [6], which can be used with anythe null hypothesis is true, typical realizations of a process
nonlinear statistic that characterizes a time series by which obeys the null are expected to share the same power
single number. The value of the nonlinear discriminatingspectrum and amplitude distribution. But even within the
statistic is computed on the measured data and comparethss defined by the null hypothesis, different processes
to its empirical distribution on a collection of Monte will result in different power spectra and distributions. It
Carlo realizations of the null hypothesis. Usually, the nullis nhow an essential requirement that the discriminating
assumption we want to make is not a very specific onestatistics must not mistake these variations for deviations
like a certain particular autoregressive (AR) process. Wérom the null hypothesis. The tedious way to achieve this
would rather like to be able to test general assumptionds by constructing a “pivotal” statistics which is insensi-
for example that the data is described symeGaussian tive to these differences. The alternative we will pursue
linear random process. Thus we will not try to find ahere is the constrained realizations approach: The varia-
specific faithful model of the data; we will rather design tions in spectrum and distribution within the class defined
the Monte Carlo realizations to have the same lineaby the null hypothesis are suppressed by constraining the
properties as the data. The authors of [7] call this asurrogates to have the same power spectrum as well as the
“constrained realization” approach. same distribution of values as the data.

In particular, the null hypothesis of autocorrelated In [6], the amplitude adjusted Fourier transform
Gaussian linear noise can be tested with surrogates whighAFT) algorithm is proposed for the testing of this
are by construction Gaussian random numbers but haveull hypothesis. First, the dafa,} is rendered Gaussian
the same autocorrelations as the signal. Because of th®y rank ordering according to a set of Gaussian random
Wiener-Khinchin theorem, this is the case if their powernumbers. The resulting serieg = g(s,) is Gaussian
spectra coincide. One can multiply the discrete Fouriebut follows the measured time evolutiofs,}. Now
transform of the data by random phases and then pemake phase randomized surrogates {dj}, call them
form the inverse transform (phase randomized surrogates)’}. Finally, invert the rescalingg by rank ordering

0031-900796/77(4)/635(4)$10.00 © 1996 The American Physical Society 635



VOLUME 77, NUMBER 4 PHYSICAL REVIEW LETTERS 22JLy 1996

{5/} according to the distribution of the original data, which have spectra which are practically indistinguishable

5, = g(3)). from that of the data. We can require a specific maximal
The AAFT algorithm should be correct asymptotically discrepancy in the power spectrum and report a failure if

in the limit as N — o [8]. For finite N, however, this accuracy could not be reached.

{5,} and{s,} have the same distributions of amplitudes The algorithm consists of a simple iteration

by construction, but they do not usually have the samscheme. Store a sorted list of the valugs} and

sample power spectra. One of the reasons is that the phagee squared amplitudes of the Fourier transforn{sqf,

randomization procedure performed 1)} preserves the S7 = | SN 5, ¢27%/N|2 Begin with a random shuffle

Gaussian distribution only on average. The quctuationsfwithout replacement{sflo)} of the data [10]. Now each
of {§,’1} anql {s,} will djffer in Qetail. The nonliqearity iteration consists of two consecutive steps. F{réi)}
contained in the amplitude adjustment procedgrés (not is brought to the desired sample power spectrum. This

equal tog~!) will turn these into a bias in the empirical , . ; bf(i)
power spectrum. Such systematic errors can lead to falds achieved by taking the Fourier transform i },

rejections of the null hypothesis if a statistic is used whichreplacing the squared amplitudés; '} by {s3}, and

is sensitive to autocorrelations. The second reason is thften transforming back. The phases of the complex
g is not really the inverse of the nonlinear measuremenkourier components are kept. Thus the first step enforces
function 4, and instead of recoverinfx,} we will find the correct spectrum but usually the distribution will be
some other Gaussian series. EVEI{IS},I} were Gaussian, modified. Therefore, as the second step, rank order the
¢ would not be the identity. Again, the two rescalingsresulting series in order to assume exactly the values
will lead to an altered spectrum. taken by{sn}. Unfortunately, the spectrum of the result-

In Fig. 1 we see power spectral estimates of a clinicalng {s,(fﬂ)} will be modified again. Therefore the two
data set and of 19 AAFT surrogates. The data are takesteps have to be repeated several times.
from data set B of the Santa Fe Institute time series At each iteration stage we can check the remaining dis-
contest [9]. It consists of 4096 samples of the breath raterepancy of the spectrum and iterate until a given accuracy
of a patient with sleep apnea. The sampling interval ids reached. For finit&/ we do not expect convergence in
0.5 sec. The discrepancy of the spectra is significant. Ahe strict sense. Eventually, the transformation towards the
bias towards a white spectrum is noted: Power is takegorrect spectrum will result in a change which is too small
away from the main peak to enhance the low and higho cause a reordering of the values. Thus after rescaling,
frequencies. the sequence is not changed.

The purpose of this Letter is to propose an alternative In Fig. 2 we show the convergence of the iteration
method of producing surrogate data sets which have thecheme as a function of the iteration couand the length
same power spectrum and distribution as a given datef the time serie®/. The data here were from a first order
set. We do not expect that these two requirements caAR processy, = 0.7x,—; + n,, measured through, =
be exactly fulfilled at the same time for finité, except x3. The increments), are independent Gaussian random
for the trivial solution, a cyclic shift of the data set numbers. For eacN = 1024,2048,...,32768 we create
itself. We will rather construct sequences which assuma time series and ten surrogates. In order to quantify
the same values (without replacement) as the data arttle convergence, the spectrum was estimatedSpy=

| SN2 spe2™ /N2 and smoothed over 21 frequency
bins, 5§ = fi,l(llo St/21. Note that for the generation

of surrogates no smoothing is performed. As the (relative)
discrepancy of the spectrum at thith iteration we use
NIEY — §02/ 3N 82, Not surprisingly, progress

is fastest in the first iteration, where the random scramble

is initially brought from its white spectrum to the desired

one (the initial discrepancy of the scramble wag =+

0.01 for all cases and is not shown in Fig. 2). FRoe 1,

the discrepancy of the spectrum decreases approximately

like 1/i until an N dependent saturation is reached. The

saturation value seems to scale like an inverse powar of

0 1 Hz which depends on the process. For the data underlying
frequency Fig. 2 we find al/+/N dependence, see Fig. 3. For

comparison, the discrepancy for AAFT surrogates did not

FIG. 1. Discrepancy of the power spectra of human breat L
rate data (solid line) and 19 AAFT surrogates (dashed Iines;}.aII below 0.015 for allv. ~ We have observed similar

Here the power spectra have been computed with a squa&caling behavior for a variety of_ othe_r linear correlated
window of length 64. processes. For data from a discretized Mackey-Glass
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19 surrogates. The number of false rejections was esti-
mated by performing 300 independent tests. Instead of
the expected 5% false positives we fou@®% =+ 5%)
false rejections with the AAFT algorithm. Figure 4 shows
the percentage of false rejections as a function of the num-
ber of iterations of the scheme described in this Letter.
The correct rejection rate for the 95% level of significance
is reached after about seven iterations. This example is
particularly dramatic because of the strong correlations,
although the nonlinear rescaling is not very severe.
- S Let us make some further remarks on the proposed
1 o 100 1000 algorithm. We decided to use an unwindowed power
lterations spectral estimate which puts quite a strong constraint
FIG. 2. Convergence of the iterative scheme to the correcon the surrogates (the spectrum fix€g2 parameters).
power spectrum while the distribution is kept fixed. First orderThys it cannot be excluded that the iterative scheme is
e e e e U5, /*Bble to converge only by alo adusiing the phases o
We also show the curvel/i. f[he Fourier tra_msform in a noqtnwal way. ThIS. mlght
introduce spurious nonlinearity in the surrogates in which
] ) case we can find the confusing result that theréess
equation we found exponential converger@xp(—0.4/))  poplinearity in the data than in the surrogates. If the
before a saturation value was reached which decr_easg@” hypothesis is wrong, we expegtore nonlinearity in
approximately like1/N*.  Although we found rapid the data (better nonlinear predictability, smaller estimated
convergence in all examples we have studied so far, thgimension, etc.). Therefore we can always use one—-sided
rate seems to depend on both the distribution of the dat@sts and thus avoid additional false rejections. However,
and the nature of the correlations. The details of thepyrious structure in the surrogates can diminish the
behavior are not yet understood. , power of the statistical test. Since an unwindowed
In order to verify that false rejections are indeedpower spectral estimate shows strong fluctuations within
avoided by this scheme we compared the number ofach frequency bin, it seems unnecessary to require the
false positives in a test for nonlinearity for the AAFT g rogates to havexactlythe same spectrum as the data,
algorithm and the iterative scheme, the latter as a funGpcjyding the fluctuations. The variance of the spectral
tion of the number of iterations. We performed tests onestimate can be reduced, for example, by windowing,
data sets of 2048 points generated by the instantaneously,t the frequency content of the windowing function
monotonously distorted AR process = ?Cnmy Xn = introduces an additional bias.
0.95x,-1 + m,. The discriminating statistic was a non- | et ys finally remark that although the null hypothesis
linear prediction error obtained with locally constantof 3 Gaussian linear process measured by a monotonous
fits in two-dimensional delay space. For each testfynction is the most general we have a proper statistical test
19 surrogates were created and the null hypothesis wagy, its rejection does not imply nonlinear dynamics. For
rejected at the 95% level of significance if the predic-
tion error for the data was smaller than those of the
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1000 N 10000 FIG. 4. Percentage of false rejections as a function of the
number of iterations performed. Horizontal line: Nominal
FIG. 3. For the same process as used in Fig. 2 we show thejection rate at the 95% level of significance. In this case,
saturation value of the accuracy for the above valuesVof seven iterations are sufficient to render the test accurate. The
The straight line is<1/+/N. usual AAFT algorithm yields 66% false rejections.
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