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(Received 9 February 1996)

Current tests for nonlinearity compare a time series to the null hypothesis of a Gaussian
stochastic process. For this restricted null assumption, random surrogates can be constructed w
constrained by the linear properties of the data. We propose a more general null hypothesis allow
nonlinear rescalings of a Gaussian linear process. We show that such rescalings cannot be ac
for by a simple amplitude adjustment of the surrogates which leads to spurious detection of nonlin
An iterative algorithm is proposed to make appropriate surrogates which have the same autocorr
as the dataand the same probability distribution. [S0031-9007(96)00699-0]

PACS numbers: 05.45.+b
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The paradigm of deterministic chaos has become a
attractive concept for the study of the irregular time e
lution of experimental or natural phenomena. Nonlin
methods have indeed been successfully applied to l
ratory data from many different systems [1]. Howev
soon after the first signatures of low-dimensional chaos
been reported for field data [2], it turned out that nonl
ear algorithms can mistake linear correlations, in particu
those of the power law type, for determinism [3]. This h
lead, on the one hand, to more critical applications of
gorithms like the correlation dimension [4]. On the oth
hand, significance tests have been proposed which a
for the detection of nonlinearity even when for exam
a clear scaling region is lacking in the correlation integ
[5]. The idea is to test results against the null hypothe
of a specific class of linear random processes.

One of the most popular of such tests is the met
of “surrogate data” [6], which can be used with a
nonlinear statistic that characterizes a time series b
single number. The value of the nonlinear discriminat
statistic is computed on the measured data and comp
to its empirical distribution on a collection of Mont
Carlo realizations of the null hypothesis. Usually, the n
assumption we want to make is not a very specific o
like a certain particular autoregressive (AR) process.
would rather like to be able to test general assumptio
for example that the data is described bysomeGaussian
linear random process. Thus we will not try to find
specific faithful model of the data; we will rather desi
the Monte Carlo realizations to have the same lin
properties as the data. The authors of [7] call this
“constrained realization” approach.

In particular, the null hypothesis of autocorrelat
Gaussian linear noise can be tested with surrogates w
are by construction Gaussian random numbers but h
the same autocorrelations as the signal. Because o
Wiener-Khinchin theorem, this is the case if their pow
spectra coincide. One can multiply the discrete Fou
transform of the data by random phases and then
form the inverse transform (phase randomized surroga
0031-9007y96y77(4)y635(4)$10.00
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Equivalently, one can create Gaussian independent
dom numbers, take their Fourier transform, replace th
amplitudes with the amplitudes of the Fourier transfo
of the original data, and then invert the Fourier transfo
This is similar to a filter in the frequency domain. He
the “filter” is the quotient of the desired and the actu
Fourier amplitudes.

In practice, the above null hypothesis is not as inter
ing as one might like: Very few of the time series co
sidered for a nonlinear treatment pass even a simple
for Gaussianity. Therefore we want to consider a m
general null hypothesis including the possibility that t
data were measured by an instantaneous, invertible m
surement functionh which does not depend on timen. A
time serieshsnj, n ­ 1, . . . , N is consistent with this nul
hypothesis if there exists an underlying Gaussian lin
stochastic signalhxnj such thatsn ­ hsxnd for all n. If
the null hypothesis is true, typical realizations of a proc
which obeys the null are expected to share the same p
spectrum and amplitude distribution. But even within t
class defined by the null hypothesis, different proces
will result in different power spectra and distributions.
is now an essential requirement that the discrimina
statistics must not mistake these variations for deviati
from the null hypothesis. The tedious way to achieve t
is by constructing a “pivotal” statistics which is insen
tive to these differences. The alternative we will purs
here is the constrained realizations approach: The va
tions in spectrum and distribution within the class defin
by the null hypothesis are suppressed by constraining
surrogates to have the same power spectrum as well a
same distribution of values as the data.

In [6], the amplitude adjusted Fourier transfor
(AAFT) algorithm is proposed for the testing of th
null hypothesis. First, the datahsnj is rendered Gaussia
by rank ordering according to a set of Gaussian rand
numbers. The resulting seriess0

n ­ gssnd is Gaussian
but follows the measured time evolutionhsnj. Now
make phase randomized surrogates forhs0

nj, call them
hs̃0

nj. Finally, invert the rescalingg by rank ordering
© 1996 The American Physical Society 635
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hs̃0
nj according to the distribution of the original dat

s̃n ­ gss̃0
nd.

The AAFT algorithm should be correct asymptotica
in the limit as N °! ` [8]. For finite N , however,
hs̃nj and hsnj have the same distributions of amplitud
by construction, but they do not usually have the sa
sample power spectra. One of the reasons is that the p
randomization procedure performed onhs0

nj preserves the
Gaussian distribution only on average. The fluctuati
of hs̃0

nj and hs0
nj will differ in detail. The nonlinearity

contained in the amplitude adjustment procedure (g is not
equal tog21) will turn these into a bias in the empirica
power spectrum. Such systematic errors can lead to f
rejections of the null hypothesis if a statistic is used wh
is sensitive to autocorrelations. The second reason is
g is not really the inverse of the nonlinear measurem
function h, and instead of recoveringhxnj we will find
some other Gaussian series. Even ifhsnj were Gaussian
g would not be the identity. Again, the two rescalin
will lead to an altered spectrum.

In Fig. 1 we see power spectral estimates of a clin
data set and of 19 AAFT surrogates. The data are ta
from data set B of the Santa Fe Institute time se
contest [9]. It consists of 4096 samples of the breath
of a patient with sleep apnea. The sampling interva
0.5 sec. The discrepancy of the spectra is significant
bias towards a white spectrum is noted: Power is ta
away from the main peak to enhance the low and h
frequencies.

The purpose of this Letter is to propose an alterna
method of producing surrogate data sets which have
same power spectrum and distribution as a given d
set. We do not expect that these two requirements
be exactly fulfilled at the same time for finiteN, except
for the trivial solution, a cyclic shift of the data s
itself. We will rather construct sequences which assu
the same values (without replacement) as the data

FIG. 1. Discrepancy of the power spectra of human bre
rate data (solid line) and 19 AAFT surrogates (dashed lin
Here the power spectra have been computed with a sq
window of length 64.
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which have spectra which are practically indistinguisha
from that of the data. We can require a specific maxim
discrepancy in the power spectrum and report a failure
this accuracy could not be reached.

The algorithm consists of a simple iteratio
scheme. Store a sorted list of the valueshsnj and
the squared amplitudes of the Fourier transform ofhsnj,
S2

k ­ j
PN21

n­0 snei2pknyN j2. Begin with a random shuffle
(without replacement)hss0d

n j of the data [10]. Now each
iteration consists of two consecutive steps. Firsthssid

n j
is brought to the desired sample power spectrum. T
is achieved by taking the Fourier transform ofhssid

n j,
replacing the squared amplitudeshS2,sid

k j by hS2
k j, and

then transforming back. The phases of the comp
Fourier components are kept. Thus the first step enfor
the correct spectrum but usually the distribution will b
modified. Therefore, as the second step, rank order
resulting series in order to assume exactly the val
taken byhsnj. Unfortunately, the spectrum of the resul
ing hssi11d

n j will be modified again. Therefore the tw
steps have to be repeated several times.

At each iteration stage we can check the remaining d
crepancy of the spectrum and iterate until a given accur
is reached. For finiteN we do not expect convergence i
the strict sense. Eventually, the transformation towards
correct spectrum will result in a change which is too sm
to cause a reordering of the values. Thus after rescal
the sequence is not changed.

In Fig. 2 we show the convergence of the iterati
scheme as a function of the iteration counti and the length
of the time seriesN . The data here were from a first orde
AR processxn ­ 0.7xn21 1 hn, measured throughsn ­
x3

n. The incrementshn are independent Gaussian rando
numbers. For eachN ­ 1024, 2048, . . . , 32768 we create
a time series and ten surrogates. In order to quan
the convergence, the spectrum was estimated byS2

k ­
j
PN21

n­0 snei2pknyN j2 and smoothed over 21 frequenc
bins, Ŝ2

k ­
Pk110

j­k210 S2
ky21. Note that for the generation

of surrogates no smoothing is performed. As the (relati
discrepancy of the spectrum at theith iteration we usePN21

k­0 sŜsid
k 2 Ŝkd2y

PN21
k­0 Ŝ2

k . Not surprisingly, progress
is fastest in the first iteration, where the random scram
is initially brought from its white spectrum to the desire
one (the initial discrepancy of the scramble was0.2 6

0.01 for all cases and is not shown in Fig. 2). Fori $ 1,
the discrepancy of the spectrum decreases approxima
like 1yi until an N dependent saturation is reached. T
saturation value seems to scale like an inverse power oN
which depends on the process. For the data underly
Fig. 2 we find a 1y

p
N dependence, see Fig. 3. Fo

comparison, the discrepancy for AAFT surrogates did
fall below 0.015 for allN. We have observed simila
scaling behavior for a variety of other linear correlat
processes. For data from a discretized Mackey-Gl



VOLUME 77, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 1996

re
e
e

.

as

t
da
th

ed

T
n
o
u

n-
n
s
w
ic
th

t

sti-
of

s
um-
ter.
ce
e is
ns,

sed
er

aint

is
of
t

ich

he

ted
ided
ver,
the
ed
hin
the

ta,
ral
ng,
n

is
nous
test
or

the
al
se,
The
FIG. 2. Convergence of the iterative scheme to the cor
power spectrum while the distribution is kept fixed. First ord
AR process with nonlinear measurement. The curves w
obtained withN ­ 1024, 2048, . . . , 32768, counted from above
We also show the curve~1yi.

equation we found exponential convergence~exps20.4id
before a saturation value was reached which decre
approximately like1yN3y2. Although we found rapid
convergence in all examples we have studied so far,
rate seems to depend on both the distribution of the
and the nature of the correlations. The details of
behavior are not yet understood.

In order to verify that false rejections are inde
avoided by this scheme we compared the number
false positives in a test for nonlinearity for the AAF
algorithm and the iterative scheme, the latter as a fu
tion of the number of iterations. We performed tests
data sets of 2048 points generated by the instantaneo
monotonously distorted AR processsn ­ xn

p
jxnj, xn ­

0.95xn21 1 hn. The discriminating statistic was a no
linear prediction error obtained with locally consta
fits in two-dimensional delay space. For each te
19 surrogates were created and the null hypothesis
rejected at the 95% level of significance if the pred
tion error for the data was smaller than those of

FIG. 3. For the same process as used in Fig. 2 we show
saturation value of the accuracy for the above values ofN.
The straight line is~1y
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19 surrogates. The number of false rejections was e
mated by performing 300 independent tests. Instead
the expected 5% false positives we founds66% 6 5%d
false rejections with the AAFT algorithm. Figure 4 show
the percentage of false rejections as a function of the n
ber of iterations of the scheme described in this Let
The correct rejection rate for the 95% level of significan
is reached after about seven iterations. This exampl
particularly dramatic because of the strong correlatio
although the nonlinear rescaling is not very severe.

Let us make some further remarks on the propo
algorithm. We decided to use an unwindowed pow
spectral estimate which puts quite a strong constr
on the surrogates (the spectrum fixesNy2 parameters).
Thus it cannot be excluded that the iterative scheme
able to converge only by also adjusting the phases
the Fourier transform in a nontrivial way. This migh
introduce spurious nonlinearity in the surrogates in wh
case we can find the confusing result that there isless
nonlinearity in the data than in the surrogates. If t
null hypothesis is wrong, we expectmorenonlinearity in
the data (better nonlinear predictability, smaller estima
dimension, etc.). Therefore we can always use one–s
tests and thus avoid additional false rejections. Howe
spurious structure in the surrogates can diminish
power of the statistical test. Since an unwindow
power spectral estimate shows strong fluctuations wit
each frequency bin, it seems unnecessary to require
surrogates to haveexactlythe same spectrum as the da
including the fluctuations. The variance of the spect
estimate can be reduced, for example, by windowi
but the frequency content of the windowing functio
introduces an additional bias.

Let us finally remark that although the null hypothes
of a Gaussian linear process measured by a monoto
function is the most general we have a proper statistical
for, its rejection does not imply nonlinear dynamics. F

FIG. 4. Percentage of false rejections as a function of
number of iterations performed. Horizontal line: Nomin
rejection rate at the 95% level of significance. In this ca
seven iterations are sufficient to render the test accurate.
usual AAFT algorithm yields 66% false rejections.
637
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instance, noninstantaneous measurement functions (
sn ­ x2

nxn21) are not included and (correctly) lead to a r
jection of the null hypothesis, although the underlying d
namics may be linear. Another example is first differen
of the distorted output from a Gaussian linear process [

In conclusion, we established an algorithm to provi
surrogate data sets containing random numbers wit
given sample power spectrum and a given distribution
values. The achievable accuracy depends on the natu
the data and in particular the length of the time series.
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