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Photon Correlation Spectroscopy
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A spectroscopic technique for observing excited state resonances in nonperturbative cavity
QED is proposed. The feasibility of experiments is demonstrated by a quantum trajectory
simulation. [S0031-9007(96)00715-6]
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A two-state atom interacting with a resonant mode offinesse Fabry-Pérot cavities [4], and standard nonlinear
the radiation field is the elementary system underlying thespectroscopy might be used to detect two-quanta or three-
Planck hypothesis and the Einstein theory of spontaneouguanta entangled-state resonances. Such measurements
and stimulated emission. In its modern conception thdace a unique set of difficulties, however. In a standing-
physics of this system is more subtle, however, than eithevave TEM,; mode, the dipole coupling constant varies
Planck or Einstein anticipated. According to quantumwith the position of the atom as
mechanics, the interaction produces eigenstates which 22
entangle the atom with the field. For excitation/by= 1 g(r,0) = gmaxCoPe "0, 0 =2mz/A, (1)
quanta there are two such states with enerdigs =  where 7 locates the atom along the cavity axis,=
Ey + h(nwo = /ng), where E, is the energy of the (x2 + y2)1/2 js the distance of the atom from the cavity
ground state,w, is the resonance frequency, agdis  axis, andw, is the mode waist. Because of the small
the dipole coupling constant. While these eigenstates anglavelength (and short photon lifetime) eliminating this
eigenenergies have been known for three decades, aRdriation is very difficult in an optical cavity. We analyze
have been featured in numerous theoretical publicationshe consequences of the spatial variationgdor atoms
as Jaynes and Cummings recognized in their semingjroduced in an atomic beam and propose a spectroscopic
work on the problem, observable consequences of thgchnique to overcome the difficulties it creates. We
atom-field entanglement are extremely difficult to detecidemonstrate the feasibility of experiments with a quantum
[1]. In particular, a direct spectroscopic observation oftrajectory simulation.
the entangled-state resonances is only now becoming aThe atomic beam travels in the direction and in-
reasonable proposition. tersects the cavity axis at = 0. The beam extends

Observations of the ground of first excited state doublef distanceM A/2 along the cavity axis M an inte-
were first reported for atomic systems [2—5], and recentlyyer) and to infinity in the plane perpendicular to the
also for semiconductor heterostructures [6—8]. This douaxis. In this configuration, not onlyg, but even the
blet is a robust feature common to many systems, hownumber of interacting atoms is undefined, since the in-
ever. It arises from normal modes wherever two couteraction volume is not bounded. Our first task, there-
pled harmonic oscillators model the linear interaction before, is to define the conditions which correspond to one
tween the radiation field and matter. Most importantly, itisatom interactions. To this end it is convenient to intro-
predicted by a semiclassical calculation (no atom-field enduce the finite volumeV comprised of theM discon-
tanglement) without diagonalizing any quantum Hamilton-nected regions—each centered on an antinode—enclosed
ian. The above spectrum is characterized by.{fwe the by the surfaceg(r,8)/gmax = F < 1; thus, 0 = |0] =
signature of its excited states. None of the quoted expegos! F, 0 < r2/w? =< In(co®/F), and
iments involve systems which possess this excited state X
spectrum. _ 2 _

The system of one atom interacting with one mode of V= MAwI(F), I(F) fF dx
the radiation field has been realized using Rydberg atomgjearly v — = asF — 0.

and superconducting microwave cavities. Here the Rabi | thjs system a ground to first excited state doublet
nutation in a few-photon field contains information on gpnears for atomic beam densities above a minimum set
the excited state spectrum, and while early experimentgy the atomic and cavity linewidths [2—4]. The splitting

measured time series that are too short to allow splittingrequency is determined by the effective (collective) dipole
frequencies to be determined [9], a recent experimer{oypling constant

with circular Rydberg states is able to determine these
frequencies [10]. In this Letter we are concerned with . . R
the optical frequency regime. At optical frequencies few- 8¢t — VNer gmaxs Netr = ]Zl cos e,
photon nonperturbative interactions are possible in high 3)

cos ! x
-

()

N
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whereN is the number of atoms ii. g.¢ iS a stochas- 3
tic variable due to the time dependence of the atomic
positions—x;(r) = v;(t — 1;), y;(t) =", 6,(r) = 6°, =
where v;, t;, y?, and 0? are all random variables. Of th 2
course, withF # 0, N also fluctuates in time, but these =
fluctuations become negligible a8 — 0. For atoms E
created independently and randomly, at constant rate, in T
each velocity classy obeys a Poisson distribution and the ¥ 1
atoms are uniformly distributed in space. We therefore &
expand the probability density f@t¢ in the form
N
P(gett) = % % e NP(gerr N, (4) 0

geft / 9max

whereN is the mean ofV andP(g.ss | N) is a conditional

probability density—in particular, for one atom, uniformly -~ 4

distributed inV, Eq. (1) gives L
—1

— I1(F)"! cos (geff/gmax),

8eff
F. The mean oV is

Distribution of ger: (i) Nog = 1, F = 0.1; (ii)
No = 0.02, F = 0.01.

P(gerr | 1)

=

5)
with Ny = 1 and Ng; = 0.02. We have subtracted

e N&(gerr) from P(ger) and renormalized to plot the
conditional distributionP(gess | N # 0). With N, = 1
a meang.sr =~ gmax IS defined by the peak in the dis-
tribution. The distribution is not, however, similar to
P(getr | 1), but has an approximate Gaussian form. This
form follows by the central limit theorem, indicating that
atoms inthe cylinder < wo/2; we quote it, following [4], ¢ . is realized from a sum over many atoms [Eq. (3)].
as a measure gfs. _ _ _With N = 0.02 the simulated distribution is a good
Clearly one atom interactions dom!nate at low aTQm"?approximation toP(gerr | 1); ONe-atom interactions domi-
beam densities. What, however, defines low densities iate. But here we encounter the real difficulty: the only
a quantitative way? Mathematically, a limit at (:onstantpea|< in the one atom distribution is the singularity at

1= geff/gmax

Negr = %NI(F)_I[F\/I — F2 + (1 — 2F%cos 'F],
(6)

with limz_g Negr — Ngff = paMAmww(/8, wherep, is
the atomic beam densityﬁgff is the average number of

@Aume is the easiest to take. Here, with< 1 constant,
Ny — 0asN — 0, and forN_ < 1 we may approximate
P(geit) by (1 — N)8(gett) + NP(getr | 1). But the con-

gett = 0.
Our proposal, photon correlation spectroscopye-
solves the difficulty. It relies on two main ideas: a scheme

dition N < 1 depends onF, and is certainly too restric- {5 excite the two-quanta entangled state resonances with
tive whenF is very small. The more meaningful limitis g well-definedgsr # 0, and a method of detection which
taken at constant density: — «, F — 0,with N < 1 s sensitive to the decay of two-quanta states. The ex-
constant. This limit is difficult to evaluate exactly, but citation scheme view®(g.s | 1) as a source of inhomo-

if gerr is not too small an approximation may be made.geneous broadening. A subpopulation of systems is then
Note that at low densities the probability to find two or

more atoms within a given distance of the cavity axis is B(2w0 +v2gy)
small; significant values qf.¢; are realized when one, and 0 9
only one, atom comes close to the axis. We therefore S€R[2wp—vZ (V2—1)gy]
P(geit | N) = NP(gesr | 1) to obtain A(2wo — v2g5)
0 8 cos'(gefr/gmax)
o 8eff '

7)
This expression is correct to lowest order A_ffff for
geft/ 8max > fof. The main error in the approximation
is that Eq. (7) is more singular at the origin than the ex-
act distribution, which is, of course, normalizable while
Eq. (7)is not. The approximate expression is sufficient for
our purposes. It shows that one-atom interactions domi
nate Whenlvgff < 1; at such densities the tail df(g.sr)
is proportional to the conditional distributiadP(gess | 1). 0

To llustrate these ideas Fig. 1 compares resultg|G. 2. Excitation of two-quanta entangled state resonances
for P(g.rr) obtained from Monte Carlo simulations in the presence of inhomogeneous broadening.

632

inhomogeneous

width 2v/2 Bgmaz

P(gerr) = lim NP(gese | 1) = N g,

hlwo + (V2 ~1)gf] ---
A(wo—9f) = =

inhomogeneous
width 2Agmae

C




VOLUME 77, NUMBER 4 PHYSICAL REVIEW LETTERS 22JLy 1996

selected using hole burning ideas. The details are illusthe first excited state. This yields the condition
trated in Fig. 2. Two lasers excite the atoms as they tra- |
verse the cavity, one with a fixed frequeney and the v/wo  _ \/Z 3(k + v/2)
other with a frequencyw, which is scanned; the laser %(K + v/2) 2

intensities define Rabi frequencieg2 £, and v2 E;, -
respectively. Asw, is scanned, three fwo-photon reso_Note that the speed must be significantly lower than

nances occur, selectively exciting subpopulations from th § required When transit broadening co_n'grlbutes _to the
P(gerr) distribution—two resonances selagt; = g = omogeneous W|dth. The latter holds fb;freff > 1, in
lw; — wol and the otheg.sr = (v2 — 1)gs. Thus, two- which case Eq. (8) is replaced y/wo < 3(k + y/2).
guanta entangled states are excited with well-defingd Thl_s meqL_JaIlty can be satisfied by a thermal atomic beam
To detect these states we make an analogy with partiVhile the inequality of Eq. (8) requires slowed atoms.
cle physics. There, unstable particle resonances are de-Figure 3 illustrates the resonant excitation of the
tected by correlating decay products. The signature of §round to first excited state transition by the fixed-
two-quanta entangled state is the emission of a photoffeduency laser, selectingey = |w; — wol = 0.5gmax
pair. Our proposal is to detect pairs of photons from the-igures 3(a) and 3(b) plot the conditioned photon number
cavity and measure the rate of these coincidences asexpectation{a'a)., along one quantum trajectory [11] as
function of ;. four atoms traverse the cavity at regular intervals of time.
The interpretation ofP (g« | 1) as a source of inho- For slowgd atoms, strong resonant photon scattering
mogeneous broadening is essential, but certainly not aCCurs twice during the passage of each atom [Fig. 3(a)].
ways valid. Individual atoms have random speeds = This g-selective excitation does not occur at thermal
4 Jé]m, wherew is the mean speed argis distributed ~ SP€€dS [Fig. 3(b)].

with probability densityp(£) = £e €. Clearly, for suf- To test our ideas we have caried out a numerical
ficiently low speeds the interpretation does hold:gag computation which combines a Monte Carlo simulation

changes in time, the system adiabatically follows, ex-Of the atomic beam W.ith a quantum trajector_y simulation
cited, on average, close to the steady state which woul f the photo_n scattering. The photons em|tte<_j thr0u9h
be reached withg.;; Strictly constant. With the pas- the cavity mirrors provide the data presented in Figs. 4

sage of many atoms the steady-state response for fixéacfg IE: ';'gtl#e 4 plck))ts thfe ngm%er of photon fcour:_ts,
gerr is averaged againg®(gerr | 1). This picture cannot 2Nd F19. € number or coincidences, as a funclion

hold at arbitrarily high speeds, however. The limit is©f @s: In (a) both lasers illuminate the atoms, in (b)
determined by the radiative lifetime (the rate to reachOnly the scanned-frequency laser illuminates the atoms,

; and the difference between (a) and (b) is plotted in (c).
fgiagéniﬁitao?ig?] th$hruaste O?;[e\r/vglﬁgf”g;?ngsssﬁgﬁl;o The spectra before taking the difference are dominated

change little compared \lNith the homogenleous Width—wé)y an inhomogeneously broadened peak centered on the
require mafldges/dil}[5(k + ¥/2)]7 < 2(k + v/2), 80 80

. (8)

&max

where2« andvy are the radiative widths of the cavity and " (a) . (b)
. . . I
atom, respectively, ané(;c + v/2) is the half-width of 2 w0 % 40
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FIG. 4. Number of photon counts versus scanned frequency
FIG. 3. Response of the conditioned photon number expecw,: (a) ZE;/x = 0.707, E;/k = 1.414; (b) E;/k =0,
tation as four atoms traverse the cavity: @a)= 10m/s, (b) ZE,/« = 1.414; (c) difference spectrum (a)-(b). During the
v = 300m/s, (c) time dependence gf;;. The parameters are simulation ~3600 atoms traverse the cavity at an average
wo = 40 um, k/27 = 0.65 MHz, gmax/k = 10, y/2k = speedv = 10m/s for each setting ob,. (v — wo)/k = —9
1, E//k = 1, (wy — wo)/k =5, andE,/k = 0. and the other parameters are those of Fig. 1(b) (ii) and Fig. 3.

633



VOLUME 77, NUMBER 4 PHYSICAL REVIEW LETTERS 22JLy 1996

4 4 atomic beam density, a realistic time window to select
7 @) 7 (b) photon pairs, and the sampling errors which result from
X 5 % 5l stochastic photon and atom counting processes. One
E E important idealization was, however, made. In place
3 8 of V we used an interaction volume bounded by a
0- 0 by mask in the(y,z) plane. The mask excludes atoms
20 0 20 40 20 0 20 40 that would pass far from the antinodes of the cavity
(ws = wo)/ (ws = wo)/x ; i i
mode. This strategy allowed us to increase the atomic
beam density, hence the size of the subpopulations
12 —(ﬁ—l)yf/nl (©) selected by hole burning, without adding more mul-
7 (V2= 1)g;/k tiatom interactions. In this way, the computation time
% 08 (VZ+)gs/n needed to achieve good statistics was reduced by an
*§ l | order of magnitude. We emphasize that it was numeri-
8 0.4- cal, not physical, considerations that suggested the use
|, '“”““ | |||||||” ||| of a mask. Nevertheless, since the distributiongof
0 ""':""”'““I t Il . “"'“""--'-; is changed with its use [Fig. 6(a)], we have checked the
-20 (0 y 20 40 simulation against a calculation which can be car-
W —wWo )/ K

ried through both with and without &y,z)-plane
FIG. 5. Number of photon coincidence counts [separatiormaSk- The calculation is based on a continued frac-
7 < 7. = 0.5(2k)"'] versus scanned frequeney,. The pa- tion solution of the master equation for one atom
rameters are those of Fig. 4. interacting with a cavity mode in the presence of
bichromatic excitation at fixedg.;r. Inhomogeneous

i broadening is included by taking an average against
::gzgggg f;i()que_nc(:uy;o.: ?Ij%/%:tq()ezssié tgﬁet;\:jc;,p\?v?l?n P(gerr [1) [12].  Although the features listed above are
resolved in Figs 5(a). After the difference is taken then® longer accounted for, the computation efficiency of
N ' . ; the method is superior to the simulation by orders of
photon coincidence spectrum [Fig. 5(c)] clearly showsma nitude
the three two-photon resonances identified by Fig. 2. 9 .b he oh incid
The peaks are shifted slightly, probably due to the Figure 6(b) compares the photon coincidence Spec-

motion of the atoms. The two-photon resonances are alj(r)a calculated with and without théy, z)-plane mask.

I . n the absence of the mask, all three two-photon reso-
apparent in Fig. 4(c), but are relatively small compare ances remain; but with the resolution of the resonance
with the background. Here the prominent features ard ’ S

) s at (v2 + 1)gerr reduced. This is caused by a growth
the two holes centered at frequencies — wo = *gy. f the resonance atv2 — 1) which follows from
These are Lamb dips. Thus, Lamb-dip spectroscopy ¢ : i 8effs . .

. . - the increased weight of the subpopulation selected with
provide a direct measurement of the ground to the firs — (V2 — 1)g, relative to that wit - Note
excited state doublet selected by the setting pf ﬁ%fgll_ the ooag fa reement betweerrllgetftl'cle_cggltinued frac-

The simulation - suggests that photon correlationtion (}:/éllcula?ion [cugr’ve (i) of Fig. 6(b)] and the quantum
spectroscopy is a feasible technique for cavity QEDra'ector simulation [Fi 5(c)]g. 9
experiments at optical frequencies. It includes the motior% 'Jl'his v)\//ork was su gc;rted b NSE under Grant No
of the atoms (and distribution of speeds), the occasionag PP y '

two- or three-atom interactions which occur at nonzero HY'921450.1' We thgnk B.F. W|el|nga for assistance
with the continued fraction calculation.

(a)

= @ [1] E.T. Jaynes and F.W. Cummings, Proc. IEBE, 89
* S (1963)
= % .
= 2 [2] M. G. Raizenet al.,Phys. Rev. Lett63, 240 (1989).
i g [3] Y. Zhu et al., Phys. Rev. Lett64, 2499 (1990).
E © [4] R.J. Thompsoret al., Phys. Rev. Lett68, 1132 (1992).
= [5] F. Bernardotet al., Europhys. Lettl17, 33 (1992).

. L ' ' [6] C. Weisbuchet al., Phys. Rev. Lett69, 3314 (1992).

2 0 20 40 [7] H. Wanget al., Phys. Rev. B51, 14713 (1995).
geﬁ‘/gmax (ws - WO)/IW

[8] S. Pauet al., Phys. Rev. B51, 14437 (1995).
FIG. 6. (a) Distribution of g.: (i) without a (y,z)-plane [9] G. Rempeet al., Phys. Rev. Lett58, 353 (1987).
mask, for Nfﬂ_ =0.02, F =0.01, (i) with a (y,z)-plane  [10] M. Brune et al., Phys. Rev. Lett76, 1800 (1996).
mask [|co®| = cog0.17), ly/wol = 0.5], for Ny, = 0.1,  [11] H.J. CarmichaelAn Open Systems Approach to Quantum
F = 0.01. (b) Corresponding photon coincidence spectra cal-  Optics, Lectures Notes in Physics Vol. M18 (Springer,
culated by the continued fraction method. The scale matches  Berlin, 1993).
the counting times used in Figs. 4 and 5. [12] B.C. Sanderst al., (unpublished).

634



