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Noise and Dynamical Pattern Selection
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In pattern-forming systems, such as Rayleigh-Bénard convection or directional solidification, a larg
number of linearly stable, patterned steady states exist when the basic, simple steady state is unsta
Which of these steady states will be realized in a given experiment appears to depend on unobserva
details of the system’s initial conditions. We show, however, that weak, Gaussian white noise drive
such a system toward apreferred wave numberwhich depends only on the system parameters and is
independent of initial conditions. We give a prescription for calculating this wave number, analytically
near the onset of instability and numerically otherwise. [S0031-9007(96)00562-5]

PACS numbers: 47.54.+r, 02.50.Ey, 05.40.+j, 47.20.Hw
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The classic problem of pattern selection is that of p
dicting which of a large number of available steady sta
a system will ultimately reach under given experimen
conditions. In a typical example, that of directional s
lidification, there is a simple steady state of the system
which the solidification front is planar and advances in
the melt at a constant speed. By varying a control par
eter, one reaches a regime in which this state is line
unstable against all perturbations with wave numbers
given interval. In this regime the front settles into a sp
tially periodic, cellular shape. Ample evidence exists th
there is one such patterned steady state with each w
numberq in the interval of instability. Moreover, there i
a finite subrange of wave numbers for which the cellu
steady states are themselves linearly stable. The patter
lection question is then this: Into which of these pattern
states will the system restabilize in a given experiment

The answer to this question appears to be that the fi
wave number depends not only on the system parame
but also on the details of the initial conditions fro
which the system evolves. Since these details can
be observed in practice, the final wave number is
reproducible. We will argue in this Letter, however, th
among the possible steady-state wave numbers the
one which ispreferred, in the sense that subjecting th
system to weak, Gaussian white noise drives it tow
that wave number, and in the long-time limit that wa
number is overwhelmingly more probable than any oth
We will show how this preferred wave number can
calculated for one-dimensional systems.

Noise effects on pattern-forming systems have b
studied by many authors, although few have conside
the role of noise in readjusting the wave number of an
tablished, periodic pattern. Deterministic evolution fro
random initial conditions has been studied in amplitud
equations [1–3], and noise effects on the initial stages
pattern formation have been investigated in Bénard c
vection [4], dendritic growth [5,6], and cellular [7] an
dendritic [8] arrays in directional solidification. Sever
numerical studies of the Swift-Hohenberg equation (wh
0031-9007y96y77(1)y63(4)$10.00
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is relaxational) have all shown [9–13] that noise sele
the wave number which minimizes the underlying free e
ergy, as expected. In a series of papers which are par
larly relevant to our work, Kerszberg carried out nume
cal simulations of directional solidification with and with
out Gaussian white noise [14,15]. This is a system wh
has no underlying free energy. With noise added, the s
tem restabilized into a cellular state with a unique, rep
ducible wave number independent of initial condition
while without noise the final wave number depended
initial conditions.

The relaxational, or “gradient,” case is quite helpful f
motivating our calculations. Suppose we have a fin
one-dimensional system whose state is specified by giv
a set of amplitudesxk of Fourier modes of wave numbe
k, chosen so that the simple steady state of the syste
xk ; 0, and that the control parameter has been set so
this state is linearly unstable. (We will also take thexk to
be real, so that the pattern is left-right symmetric.) T
amplitudes evolve according to

dxk

dt
~ 2

≠Fsxd
≠xk

, (1)

where Fsxd is the free energy. This evolution alway
makesF decrease with time. A patterned steady st
with wave numberq will have xk nonzero only whenk is
an integer multiple ofq; let the value of the free energ
of this state beFsssqd. If we add noise of strengthe
to (1), it will produce occasional large fluctuations whic
take the system far enough out of the local free ene
minimum at the state of wave numberq that it then
relaxes to a different local minimum, with wave numb
q0. The relative probability of a transition fromq to
q0 versus a transition fromq0 back to q is proportional
to exph2fFsssqd 2 Fsssq0dgyej. That is, fluctuations are
more likely to take the system from a state of higher fr
energy to one of lower free energy than vice versa.
pattern-forming systems, the steady states near the e
of the band of stable wave numbers, which are alm
unstable, have higher free energies than states in
© 1996 The American Physical Society 63
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interior of the band, so noise drives the system away fr
those states and toward the absolute minimum of the
energy.

We argue here that the same thing happens in nongr
ent systems, i.e., ones in which the time evolution is giv
by

dxk

dt
 Fksxd, (2)

but theFk cannot be put into the form (1). To see thi
we first add noise to the dynamics to obtain the Lange
equation

dxk

dt
 Fksxd 1

p
e jkstd, (3)

where thejk are independent Gaussian random variab
with mean zero and unit variance,

kjkstd jk0 st0dl  dkk0 dst 2 t0d. (4)

The xk are then random variables, and a standard ar
ment [16] leads to the Fokker-Planck equation for the tim
evolution of their probability distribution. If (3) is a mix-
ing process [16], then this converges in the long-time lim
to a steady-state distributionPsssxd, which satisfies

2
≠

≠xk

∑
FksxdPsssxd 2

e

2
≠Pss

≠xk

∏
 0 . (5)

Here and below, repeated indices are to be summ
Since the noise terms in (3) are independent ofx, there
is no difference here between the Itô and Stratonov
interpretations.

In the weak-noise limite ! 0, we can solve (5) using
a WKB method [17]. Since probability distributions mu
be positive, we may write

Psssxd ; expf2Ssxdyeg (6)

so thatS plays a role similar to that of the free energ
in the gradient case; in fact, the exact solution of (
is S  2F in that case. Keeping only the zeroth
order approximation toS does not give an asymptoti
approximation to the functionPss —it neglects factors of
order unity in (6)—but it does give the controlling facto
in the leading behavior ofPss as e ! 0. Although we
will need to be careful ifS has singular points, this shoul
suffice for our purposes. From (5) we find that, to leadi
order ine, S satisfies

≠S
≠xk

∑
1
2

≠S
≠xk

1 Fksxd
∏

 0 . (7)

From this we see that any steady state of the determin
dynamics (2), i.e., a point where allFk vanish, is a
stationary point ofS. We will see below that a linearly
stable steady state of (2) is in fact a local minimum ofS.

We can also see that the functionSsxd plays the role
of F in a different sense. The deterministic evolution (
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never makesSsssxstdddd increase, since

dS
dt


≠S
≠xk

dxk

dt


≠S
≠xk

Fksxd

 2
1
2

≠S
≠xk

≠S
≠xk

# 0 . (8)

Thus even a nongradient system can be considered re
ational, since there is a functionSsxd which is nonincreas-
ing. In gradient systems, however, that function is ju
the free energy, which is generally easier to compute.

Equation (7) can be solved by the method of charac
istics, or equivalently by recognizing it as the Hamilto
Jacobi equation, with energy 0, for the Hamiltonian

H sp, xd ; 2
1
2 pkpk 2 pkFksxd. (9)

The characteristic curves are given by

Ùxk  2pk 2 Fksxd, Ùpk  pk0

≠Fk0

≠xk
, (10)

where overdots represent derivatives with respect to so
parametert. Along a characteristic,S is given by

ÙS  pk Ùxk  2pkspk 1 Fkd. (11)

Since we haveH  0, this becomesÙS  2spkpkdy2, so
S alwaysdecreasesalong a characteristic.

To find the preferred wave number, we need on
calculate Ssxd at each stable steady state of (2). T
wave number of the state with the lowest value ofS is the
preferred wave number: by (6), if the wave numbers
discrete, then all others are exponentially less proba
We do this by finding characteristics running from th
(unstable) simple steady statexk ; 0 to each stable
steady state. That this is possible comes from a coun
argument. Fixed points of (10) occur wherepk ; 0 and
Fksxd ; 0; linearizing about any fixed point gives

Ùdx  2dp 2 Mdx, Ùdp  MT dp , (12)

whereM is the matrix which gives the linear stability o
the deterministic dynamics (2),

Mkk0 
≠Fk

≠xk0

Ç
ss. (13)

If there areN amplitudesxk, then the phase spacesx, pd
is 2N dimensional; from (12) we see that there areN
(possibly generalized) eigenvectors at each fixed po
with eigenvalues which are the same as the stabi
eigenvalues of the corresponding deterministic stea
state, and anotherN eigenvectors with the negatives o
those eigenvalues—and allp components equal to 0
From (10), we see that thep ; 0 subspace of phase spac
is invariant, and (11) shows that following a trajecto
in this subspace would leaveS unchanged. Thus we
want characteristicsnot to be in this subspace. Howeve
the only eigenvectors coming out (i.e., having positi
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eigenvalues) from a fixed point which corresponds t
linearly stable steady state are those which lie in
p  0 subspace. Thus we cannot have a character
leaving such a fixed point; all nearby characterist
must be directed towards it. SinceS always decrease
along characteristics, a linearly stable steady state of
deterministic dynamics must then be a local minim
of S. However, the steady state atx  0 is not stable;
it has (at least) one linearly unstable direction for ea
fundamental wave numberq against which it is unstable
Correspondingly, for each suchq there is (at least)
one steady state which bifurcated from thex  0 state
as the control parameter was increased to its pre
value. It is then natural to expect that there will be o
characteristic running fromsx, pd  s0, 0d to each fixed
point corresponding to a linearly stable steady state.

To do the calculation numerically, it is useful to ha
the expression for the Lagrangian corresponding to
Hamiltonian (9):

L sx, Ùxd  2
1
2 f Ùxk 1 Fksxdg f Ùxk 1 Fksxdg. (14)

From (10), we see that on the characteristics this is e
to 2spkpkdy2, which in turn is equal toÙS. Thus we
can set up the calculation ofS at the steady state a
a minimization problem, using Hamilton’s principle: w
wish to find the trajectory which approachessx, pd 
s0, 0d as t ! 2`, approaches the steady statex (and
p  0) ast ! `, and minimizes

R
L dt. The resulting

minimum value is the value ofS for that particular steady
state. Minimizing this result in turn over the possib
fundamental wave numbersq gives the preferred wav
number. This procedure is made much easier by
fact that the structure of the deterministic equations (2
usually such that the multiples of any fundamental wa
numberq form an invariant subspace. This property
inherited by the equations (10) for the characteristics,
so only a relatively small number of modes must be k
for eachq.

When the control parameter is only slightly beyond
onset of instability of the simple steady state, it is poss
to calculate the preferred wave number analytica
Consider, for example, the nongradient equation

≠cy≠t  fg 2 s=2 1 1d2gc 2 c3 2 j=cj2c , (15)

which is a model for the order parameterc in Rayleigh-
Bénard convection [18]. Forg . 0 the steady statec ;
0 is linearly unstable against perturbations with wa
numbers withing1y2 of 1. For small positiveg, we
may write c  x1 cossqxd 1 x3 coss3qxd 1 · · ·, and we
generally expect thatx1 will be of order g1y2 and x3 of
orderg3y2. Inserting this ansatz into (15) gives

F1  sqx1 2 a11x3
1 2 a12x2

1x3 2 a13x1x2
3 2 · · · ,

F3  2js3qjxq 2 a31x3
1 2 a32x2

1x3 2 · · · , (16)

with sk  g 2 sk2 2 1d2, and all theaij being linear
in q2. Note thatsq is of orderg for q in the unstable
a
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range of wave numbers. To calculateS, we write the
equations (10) with the rescalings

x1  g1y2x, p1  g3y2p,

x3  g3y2y, p3  g5y2r . (17)

This reveals thatÙx and Ùp are of orderg, while Ùy and Ùr
are of order unity. Thusy andr follow the current values
of x andp:

y  2a31x3yjs3qj 1 Osgd,

r  2a12x2pyjs3qj 1 Osgd. (18)

We insert this into the Hamiltonian (9), and solveH  0
for p in terms of x. We can then integratep1 dx1 1

p3 dx3 from (0, 0) to the steady state of (16) to getS.
The result is

S  2
s2

q

2a11
2

a12a31s3
q

3js3qja3
11

2 Oss4
qd. (19)

(The s4
q term can be calculated, but is too lengthy

reproduce here.) Inserting the explicit expressions
the coefficients and minimizing overq yields the preferred
wave number,

q  1 2
g

32
2

37g2

24576
2

511g3

3145728
2 Osg4d. (20)

We could get higher order terms by including higher or
terms in (16); we would need to keep anx5 coss5qxd term
in c to do this consistently.

We have carried out the analogous calculations for
Greenside-Cross equation [19] for Bénard convection,

≠cy≠t  fg 2 s=2 1 1d2gc 1 3j=cj2=2c . (21)

For small g we find that the preferred wave number
given by

q  1 2
g

4
2

101g2

1024
2

981g3

16384
2 Osg4d. (22)

In onespatial dimension, the Greenside-Cross equatio
a gradient system, and this result agrees with the ex
sion obtained by minimizing the free energy. Cross a
Meiron [13], in numerical simulations of deterministi
two-dimensional evolution with random initial condition
find that the system reaches a wave numberq ø 0.78 for
long times forg  1y2. For this value ofg, the Eckhaus
instability sets in atq ø 0.65. For g  1y2, Eq. (22)
givesq  0.843 (the first three terms give 0.850). The
results cannot be compared directly, since the num
ical simulation does not include noise. However,
large two-dimensional system should have the freed
to get closer to its preferred wave number than a o
dimensional system would without noise. It is encour
ing that both approaches give wave numbers significa
65
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e,
below the maximumq  1 of the linear growth rate, and
within 10% of each other.

In this Letter we have argued that pattern-formin
systems have a naturally preferred wave number, nam
that which the system would approach if it were subjec
to weak, additive, Markovian, Gaussian white noise. T
is not to say that the noise actually experienced by s
a system has any of these five properties; but Gaus
white noise is appropriate because it does not bias
system’s preference for a wave number, as colored no
for example, would do. The argument does sugge
however, that the role of noise is not limited to providin
the initial fluctuation which takes the system out of i
simple steady state and starts it evolving toward o
of its possible restabilized states, as is usually tak
(implicitly) to be the case. Rather it has a continuin
role in readjusting the wave number of the patterned st
generally through occasional large fluctuations whi
either create or destroy a cell, as was seen in Kerszbe
simulations [15].

An obvious question which needs to be addressed
the future is that of the rate at which the steady-st
probability distributionPss is established. It should be
possible to use the same classical-mechanics techni
to study this question as we have used above, since
stituting the time-dependent generalization of ansatz
into the Fokker-Planck equation leads directly to the tim
dependent Hamilton-Jacobi equation for the Hamilton
(9). Further work on this point is under way.

Other important issues arise when we model the no
to which a system is actually subjected, which may n
be additive, white, Gaussian, Markovian, or weak. F
instance, the relevant fluctuations might be in the value
the control parameter. If any of the first four properti
are lacking, then the appropriate Fokker-Planck equa
will not have the simple form (5). Even if the relevan
noise source is thermal, evolution equations of the fo
(2) often arise only after considerable manipulation
some more complex model which is written down fro
first principles. Thee in (3) may then be replaced b
something which depends onq and evenx. In all such
cases the subsequent calculations need to be mod
appropriately.

When the noise strength is finite, several importa
effects arise. One is that we may need the next hig
order correction to the leading-orderSsxd which we have
calculated. A second, related point is that the relev
probabilities to compare are not just the heights of t
peaks inPss, but the areas under the peaks—including n
just the exact steady states, but also perturbations of th
states. These effects have been seen by Kerszberg
who found that even in a gradient system the obser
wave number was not equal to the wave number wh
minimized the free energy when noise was included in
calculations. Finally, in an infinite system the possib
band of wave numbers is continuous, so that it is n
66
ly,
d
s
h

an
e
e,
t,

e
n

e,

’s

in
e

es
b-
)
-
n

e
t
r
f

n

f

ed

t
r

t
e
t
se
0],
d
h
s

t

true that one wave number has a probability which
exponentially larger than all others. Rather the probabi
expf2Ssqdyeg is appreciable for all wave numbers with
a range of ordere1y2 around the “preferred” wave numbe
Thus if the noise variance is larger than something of
order of the inverse square of the size of the system, t
there is still a range of possible wave numbers that
might observe even in the long time limit, albeit a ve
narrow range for finite but weak noise.

Finally, it would of course be far more satisfying
have a direct physical interpretation of the criterion f
the preferred wave number, rather than just a prescrip
for calculating it.
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