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Highly Accurate Solution for a Hydrogen Atom in a Uniform Magnetic Field
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The highly accurate series solution for a hydrogen atom in a uniform magnetic field of arbitrary
strength is obtained. It is derived in the form of a power series in two variables, the radius and
the sine of the cone angle, with explicit recurrent relations for the coefficients of the power series.
As an illustration, a brief list of energy values with accurakfy '> hartree for the magnetic field
0 < B/(m2e3c/h*) = 4000 and pictures of selected anticrossings in the chaotic region of the spectrum
are presented. [S0031-9007(96)00716-8]

PACS numbers: 32.60.+i, 02.30.Jr, 03.65.Ge, 97.60.Jd

The problem of the hydrogen atom in a uniform mag-of the cone angle. All nondiagonal terms of the series are
netic field attracts attention of physicists from the earlyexplicitly expressed via recurrent relations, and diagonal
days of quantum mechanics. The interest in this problenterms are linked to the boundary condition at infinity. The
is caused by numerous occurrences of the quadratic Zeselution of the problem is thus reduced to the solution
man effect in astronomy and astrophysics [1—3], solid statef a truncated system of algebraic equations. Since the
physics [4—6], atomic spectroscopy [7], and investigationknowledge of the analytical structure of the series allows
of quantum chaos [8,9]. efficient calculation of solution with very high numerical

It is well known that the magnetic field completely de- precision, the obtained solution is in a sense equivalent to
stroys the supersymmetry of the field-free Coulomb probeordinary special functions.
lem, making the separation of variables impossible. Inthe In order to illustrate the obtained solution we present
low-field regime the problem can be treated by the usuatnergy values calculated with precisio® > hartree for
perturbation theory methods. The behavior of the specthe low-lying states in the magnetic field range up to
trum in this region is essentially defined by the existence 010'* G and for highly excited states in the chaotic regime.
the approximate symmetry of the problem [8,10,11]. IntheThe precision of the reported results is better than that
opposite limit of extremely strong magnetic field the solu-of most of the calculations published before and proves
tion is substantially facilitated by using the adiabatic ap-applicability of our solution to all field strengths and, in
proximation [4,12]. However, in the intermediate region, particular, to the chaotic region.
where the magnetic and Coulomb interactions are compa- It is well known that for fields below0'* G relativis-
rable, the problem is extremely complicated. Each step taic corrections are negligible [14], and the spin-orbit cou-
wards the better understanding of the problem was alwaysling is small if Bn? > 10° G [23]; the motion of the
accompanied by immense difficulties. The problem waswcleus can be accounted for by a constant shift in en-
treated by numerous methods, including variational methergy [24]. Therefore, we consider the one-body problem in
ods [13-15], eigenvalue analysis [12,16—18], semianalytithe nonrelativistic approximation. Introducing the spheri-
cal methods [19], the dimensional perturbation theory [20]cal system of coordinates, 6, ¢) with the axis along the
and fully numerical methods, including the Hartree-Fock-field H = (H co9, —H sind, 0), taking A = %H Xr=

In this paper we present a new approach to the problenj, — ,,,, — ¢ — 1, we present the total wave function as
which, in particular, provides solution in the intermediate

region of the magnetic field strength with any desirable
accuracy. We consider the nonrelativistic formulation and
derive a rigorous series expansion of the wave function in
the one-body approximation. The wave function is giverwherem is the magnetic quantum number ands thez
by a double series in two variables, the radius and the ?inparity. The Schrddinger equation becomes

V(r,0,p) = ™ (rsing)™ (rco®) (r,0), (1)

m| + v+ 1 1 1 1 . 2
Y+ 2+ Sy T — [2lm| + 1) cotd — 2w tard iy = [Z y2rlsirtg — - 1+ |m|)y + 2Eb}¢/.

()

The total energy is expressed via the paraméer= (1 + m + |m|)y/2 — E, coinciding with the binding energy
E = y/2 — E for m = 0, and the magnetic field is given by = H/H,, Hy = m2e3c/h> = 2.35 X 10° G.
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We look for the solution of Eqg. (2) in the form of a (=20 [i + 2k + 2(Im] + v) + 1]
power series in- with coefficients which depend on= higiv2 = = 4k + D)k + [m| + 1) hiai
sing, ¢ (r,0) = >_, fi(t)r’. Substituting this expansion 8)
into the Schrodinger equation (2), we obtain fif< 0,
then by definitionf, (1) = 0] aix =0 if 2k =i, and a; for 2k < i are given
2lm| + 1 by Eqg. (5) with j replaced by2k. The solution is
(1= 2)f + fff = 2(Iml + v + Dtf] completely determined by the infinite set of coefficients

{C,p} and the eigenvalueE,. Since the Schrodinger

equation is homogeneous, one of the coefficients can be
taken arbitrarily.

= — 2427 o —Df . . .

37 Bfica *+ 8fia = 2fi-1, ) In order to obtain boundary conditions we rewrite the

series (6) in the form

+i(i + 2|m| + 2v + 1)f;

wheree = 2E, — (lm| + 1)y. This equation is a non- .
homogeneous linear differential equation, and any solu- .

tion o? (3) may be presented as tﬂe sum of a pa)r/ticular ¥(r,0) = kZOYk(r Sing)* gac(r) 9)
integral, which we denot€;(r), and any complementary N ‘ o
function F;(r). We start from the homogeneous equationWheregai(r) =y~ 37, A;or~?*. Substitution of (9)
corresponding to Eq. (3) and look fdf;(z) in the form  into Eq. (2) gives the following chain of equations:
Fi(t) = Z;;O b; jt/. Substituting this expression into the 2 2
homogeneous equation, we obtain the following recurrentg?, + " 2k + |m| + v + 1)gh, + <7 - 8>g2k
relation:

_ 7
b — G =)L+ +2(ml + v) + l]b-» @ =y 8%2 T dy(k + 1) (k + |m| + 1)ga+2.
Lit2 (j+2)(j+ 2lm| + 2) o (10)

If j — o, thenb; ;+,/b;; = 1, andF;(1) = < unless the For any nonzero intensity of the field the asymptotic

seriesF;(¢r) terminates at a finitg. It happens forj = i  behavior ofgy(r) is given by [4]

and means that if is even therb;y = C;, b;; = 0, and

if i is odd thenb;y = 0, b;; = C;. In both case#;(r) is go(r) ~ pl/x exp(—kr), Kk =~2E. (12)

the product of an unknown constatit by a polynomial of

degreei with the lowest coefficient equal to unity, which Using Eq. (10), it can be proven that the same law de-

we designate aH;(t) = Z;=0 hijtl scribes the asymptotic behavior of any functigsn (r).
We seek the particular integral of the nonhomogeneou$herefore, the boundary condition at infinity is

equation (3) in the fornG; (1) = Z;LO a;;jt/. It can be ,

rigorously proven tha;(¢) is also a polynomial of degree lim gL(r) = —k, k=0,... 0. (12)

i, whose coefficients are given by the recurrent relation r—= gor(r)

N The obtained set of boundary conditions is equivalent to
@ = DG+j+2ml+ 20 + Dai, the set of unknowns and is su¥ficient for the sol(zltion of the
+ (j+2)(j + 2iml + 2)a;j+2 problem.
1, To obtain quantitative results, we must reduce infinite
= 4 YV dicaj2 + ediaj = 2di-1;, (5 parameters to finite values. First, we introduce a reduced
solution ®k(r,r), which joins the asymptote at a finite

whered; ; = a;; + C; ;h; ; anda;; can be taken as zeros radiusRr,
(if i<Oorj<o,thena;; =0 andh;; = 0). Since ,
the functiony (r, #) obeys the boundary condition on the 8u(R) + kgu(R) =0, (13)
axisay(r,0)/960ls—o = 0, all the coefficients; ; andb; ; _ o
with odd j are also zeros. The final structure of solutionthe indexk goes from 0 to=. The exact wave function is
is the following: given by (r,t) = limg_.. ®g(r, 1).
Second, we must truncate the infinite set of coefficients
— . - ; {C,,} at a finite cutoff index, say, such that the solution
Yir.0) = Z sire Z Aiakrs 6) satipsfies only a finite set of conditions (13). This operation
k=0 i=2k . ; )
can be performed in two different ways: either we put to

aisk + Cihing, i =2p, zero allC,, with p > [ or we put to zero radial functions

Aipk = {ai’% i=2p+1. (O gy withk > 1 Interms of coefficients,, the second
method means thaf,, with p > [ are determined by

Here{C,,} are unknown coefficients, o = 1, the requirement, »;+2 + Czphap2+2 = 0. The second
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TABLE I. Binding energies (atomic units) of the ground state for various values of the field and of several excited states for
v = 1 (uncertainty is=1 in the last digit). The third column shows correspondii@nd!.

v E, (ground state) R/I State E, (y=1) R/I
1 0.831168896 733 20./20 250 0.160468 982 634 43./24
10 1.747797163714 13./21 2po 0.260006 615944 39./22
100 3.789 804 2363 05 8.4/24 2p- 0.456 597 058 424 25./25
200 4.727 145110687 6.5/25 3dy 0.066 233066 419 130./18
500 6.257 087 674 681 5.2/25 3po 0.090224511 338 78./18
1000 7.662 423247 755 5.2/25 3d_, 0.206 567 363 860 39./20
2000 9.304 765082770 4.4/25 3d-, 0.353048 025149 33./22
4000 11.204 145206 603 3.9/26 4f 0.299 968 970495 34./23

scheme strongly reduces computational effort, becaudast: for a givendR the differencel(E,)r+sr — (Ep)rl
now we do not have to calculatg,, andh; o, with k > 1. decreases witlR exponentially. This fact allows us to
In both cases we have+ 1 unknown coefficient€,,,  obtain an upper bound to the error of approximation and
p = 0,...,1, but due to the homogeneity of Eqg. (2) one to control the accuracy of the results.
of them may be taken arbitrarily, e.@y = 1. Hence, we Convergence of the described scheme can be substan-
have only/ + 1 unknowns/ coefficientsC,,, and energy tially accelerated by introducing an additional multiplier
E,. The truncated solution is required to satigf- 1  exp(— ;2 si?6) into the right-hand side of Eq. (1). The
boundary conditions (13) with running from 0 tol. whole procedure described above remains applicable with-
Let us take an indey, 0 = ¢ =/, and putC;, = 0  out any modifications, except that the right-hand side of
for p # ¢ and C, = 1. If we now compute alld;»;  Eq. (5) comprises a different sum of coefficients. The
according to (7) (we shall label theHiZk), then instead of combination of this scheme with the second method of

true radial functiong»(r) we obtain functionsys, (r) =  truncation allows one to compute energy levels evolv-
y kS i ALy ri72. Since Eq. (5) is lineargy (r) =  ing from the field-free states < 10 with accuracyl0~'

> o Cagwai(r), and boundary conditions take the form hartree using typically = 20, ..., 30. N .
(k=0,...,1 The above algorithm allows a very efficient tabulation

; ; of energies and wave functions with very high accuracy.
Z Czqwg;i(R) + K Z Czqwgk(R) —0. (14 Calc_ul_ation of the ground state energy fer= 1 with _
7=0 7=0 precision 107® hartree takes only a few seconds with

Summation ovei can be performed numerically, because? usual personal computer. In Table | we give, as an

in both methods terma; », r* decay rapidly wher — illustration, a short list of binding energies with precision
typically it must be exté’?lkded o~ 102-10° ' 10712 hartree. Extensive accurate tables will be published

: Isewhere.
We can directly solve the system (14,= 1,...,1, °© . . o
with respect to t)r/1el unknown ycoeffic(ieﬁsczp. The Energy levels for highly excited states up to principal

resulting left-hand part of (14) ak — 0, which we quantum number = 10 are shown on Fig. 1. Since the
designate as\(E,), nonlinearly depends ’Oﬂb and in developed method allows one to obtain the solution with

general differs from zero. Roots of the equati®d(E,) =
0 give the energy levels in the takénR approximation.
These roots can be found by an iterative method with any
desired precision.

As the cutoff indeX increases, the solution converges to a7
its limiting function®y(r, 7). The energy levels in the R 0.010 — \

n=6

approximation converge to the valueskrapproximation: g 0.009 |
lim—<(Ep);r = (Ep)g. Computations show that the dif- = 0008 2T
ference(Ey)i+1.8 — (Ep)irl €xponentially decreases with " 0007 L
[, making it possible to determine the upper bound to the n=9
error introduced by a finité. 0.006
Both methods give the energy levels,); and wave 0,005 bl
functions ®g(r,t) in the R approximation. For a good LSS ANNANG S
approximation to the exact solution the value ®fmust 0.0001 0.001 0.01
be, at least, larger than the distance from the nucleus to Y

the farthest extremum O,f th(_e wave _fP”Ct_iO”- !\IqmericaIFlG_ 1. Binding energy of hydrogen as a function of magnetic
calculations show that, if this condition is satisfied, thefield for several states in the intermediate regime = 0,
convergence of solution with the increasinglfs rather v = +1).
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