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Highly Accurate Solution for a Hydrogen Atom in a Uniform Magnetic Field
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The highly accurate series solution for a hydrogen atom in a uniform magnetic field of arbitrary
strength is obtained. It is derived in the form of a power series in two variables, the radius and
the sine of the cone angle, with explicit recurrent relations for the coefficients of the power series.
As an illustration, a brief list of energy values with accuracy10212 hartree for the magnetic field
0 , Bysm2

ee3cyh̄3d # 4000 and pictures of selected anticrossings in the chaotic region of the spectrum
are presented. [S0031-9007(96)00716-8]
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The problem of the hydrogen atom in a uniform ma
netic field attracts attention of physicists from the ea
days of quantum mechanics. The interest in this prob
is caused by numerous occurrences of the quadratic
man effect in astronomy and astrophysics [1–3], solid s
physics [4–6], atomic spectroscopy [7], and investigati
of quantum chaos [8,9].

It is well known that the magnetic field completely d
stroys the supersymmetry of the field-free Coulomb pr
lem, making the separation of variables impossible. In
low-field regime the problem can be treated by the us
perturbation theory methods. The behavior of the sp
trum in this region is essentially defined by the existenc
the approximate symmetry of the problem [8,10,11]. In
opposite limit of extremely strong magnetic field the so
tion is substantially facilitated by using the adiabatic a
proximation [4,12]. However, in the intermediate regio
where the magnetic and Coulomb interactions are com
rable, the problem is extremely complicated. Each step
wards the better understanding of the problem was alw
accompanied by immense difficulties. The problem w
treated by numerous methods, including variational me
ods [13–15], eigenvalue analysis [12,16–18], semiana
cal methods [19], the dimensional perturbation theory [2
and fully numerical methods, including the Hartree-Fo
like schemes [21] and the finite element method [22].

In this paper we present a new approach to the prob
which, in particular, provides solution in the intermedia
region of the magnetic field strength with any desira
accuracy. We consider the nonrelativistic formulation a
derive a rigorous series expansion of the wave functio
the one-body approximation. The wave function is giv
by a double series in two variables, the radius and the
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of the cone angle. All nondiagonal terms of the series
explicitly expressed via recurrent relations, and diago
terms are linked to the boundary condition at infinity. T
solution of the problem is thus reduced to the soluti
of a truncated system of algebraic equations. Since
knowledge of the analytical structure of the series allo
efficient calculation of solution with very high numerica
precision, the obtained solution is in a sense equivalen
ordinary special functions.

In order to illustrate the obtained solution we prese
energy values calculated with precision10212 hartree for
the low-lying states in the magnetic field range up
1013 G and for highly excited states in the chaotic regim
The precision of the reported results is better than t
of most of the calculations published before and prov
applicability of our solution to all field strengths and,
particular, to the chaotic region.

It is well known that for fields below1013 G relativis-
tic corrections are negligible [14], and the spin-orbit co
pling is small if Bn3 . 105 G [23]; the motion of the
nucleus can be accounted for by a constant shift in
ergy [24]. Therefore, we consider the one-body problem
the nonrelativistic approximation. Introducing the sphe
cal system of coordinatessr , u, wd with the axis along the
field H ­ sH cosu, 2H sinu, 0d, taking A ­

1
2 H 3 r ­

s0, 0, 1
2 Hr sinud, and choosing the atomic system of un

h̄ ­ me ­ e ­ 1, we present the total wave function as

Csr , u, wd ­ eimwsr sinudjmjsr cosudncsr , ud , (1)

wherem is the magnetic quantum number andn is thez
parity. The Schrödinger equation becomes
crr 1 2
jmj 1 n 1 1

r
cr 1

1
r2

cuu 1
1
r2

fs2jmj 1 1d cotu 2 2n tanugcu ­

∑
1
4

g2r2 sin2u 2
2
r

2 s1 1 jmjdg 1 2Eb

∏
c .

(2)
y
The total energy is expressed via the parameterEb ­ s1 1 m 1 jmjdgy2 2 E, coinciding with the binding energ
E ­ gy2 2 E for m # 0, and the magnetic field is given byg ­ HyH0, H0 ­ m2

ee3cyh̄3 ­ 2.35 3 109 G.
© 1996 The American Physical Society 619
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We look for the solution of Eq. (2) in the form of
power series inr with coefficients which depend ont ­
sinu, csr , ud ­

P`
i­0 fistdri. Substituting this expansion

into the Schrödinger equation (2), we obtain [ifn , 0,
then by definitionfnstd ; 0]

s1 2 t2df 00
i 1

2jmj 1 1
t

f 0
i 2 2sjmj 1 n 1 1dtf 0

i

1 isi 1 2jmj 1 2n 1 1dfi

­
1
4

g2t2fi24 1 ´fi22 2 2fi21 , (3)

where´ ­ 2Eb 2 sjmj 1 1dg. This equation is a non
homogeneous linear differential equation, and any so
tion of (3) may be presented as the sum of a particu
integral, which we denoteGistd, and any complementar
function Fistd. We start from the homogeneous equati
corresponding to Eq. (3) and look forFistd in the form
Fistd ­

P`
j­0 bi,jtj . Substituting this expression into th

homogeneous equation, we obtain the following recurr
relation:

bi,j12 ­ 2
si 2 jd fi 1 j 1 2sjmj 1 nd 1 1g

s j 1 2d s j 1 2jmj 1 2d
bi,j . (4)

If j ! `, thenbi,j12ybi,j ­ 1, andFis1d ­ ` unless the
seriesFistd terminates at a finitej. It happens forj ­ i
and means that ifi is even thenbi,0 ­ Ci, bi,1 ­ 0, and
if i is odd thenbi,0 ­ 0, bi,1 ­ Ci. In both casesFistd is
the product of an unknown constantCi by a polynomial of
degreei with the lowest coefficient equal to unity, whic
we designate asHistd ­

Pi
j­0 hi,j tj .

We seek the particular integral of the nonhomogene
equation (3) in the formGistd ­

P`
j­0 ai,j tj . It can be

rigorously proven thatGistd is also a polynomial of degre
i, whose coefficients are given by the recurrent relation

si 2 jd si 1 j 1 2jmj 1 2n 1 1dai,j

1 s j 1 2d s j 1 2jmj 1 2dai,j12

­
1
4

g2di24,j22 1 ´di22,j 2 2di21,j , (5)

wheredi,j ­ ai,j 1 Ci,jhi,j andai,i can be taken as zero
(if i , 0 or j , 0, then ai,j ­ 0 and hi,j ­ 0). Since
the functioncsr , ud obeys the boundary condition on th
axis≠csr , udy≠uju­0 ­ 0, all the coefficientsai,j andbi,j

with odd j are also zeros. The final structure of soluti
is the following:

csr , ud ­
X̀
k­0

sin2ku
X̀

i­2k

Ai,2kri, (6)

Ai,2k ­

Ω
ai,2k 1 Cihi,2k , i ­ 2p ,
ai,2k , i ­ 2p 1 1 . (7)

HerehC2pj are unknown coefficients,hi,0 ­ 1,
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hi,2k12 ­ 2
si 2 2kd fi 1 2k 1 2sjmj 1 nd 1 1g

4sk 1 1d sk 1 jmj 1 1d
hi,2k ,

(8)

ai,2k ­ 0 if 2k $ i, and ai,2k for 2k , i are given
by Eq. (5) with j replaced by 2k. The solution is
completely determined by the infinite set of coefficien
hC2pj and the eigenvalueEb . Since the Schrödinge
equation is homogeneous, one of the coefficients can
taken arbitrarily.

In order to obtain boundary conditions we rewrite th
series (6) in the form

csr , ud ­
X̀
k­0

gksr sinud2kg2ksrd , (9)

whereg2ksrd ­ g2k
P`

i­2k Ai,2kri22k. Substitution of (9)
into Eq. (2) gives the following chain of equations:

g00
2k 1

2
r

s2k 1 jmj 1 n 1 1dg0
2k 1

µ
2
r

2 ´

∂
g2k

­
g

4
g2k22 2 4gsk 1 1d sk 1 jmj 1 1dg2k12 .

(10)

For any nonzero intensity of the field the asympto
behavior ofg0srd is given by [4]

g0srd , r1yk exps2krd, k ­
p

2Eb . (11)

Using Eq. (10), it can be proven that the same law d
scribes the asymptotic behavior of any functiong2ksrd.
Therefore, the boundary condition at infinity is

lim
r!`

g0
2ksrd

g2ksrd
­ 2k, k ­ 0, . . . , ` . (12)

The obtained set of boundary conditions is equivalent
the set of unknowns and is sufficient for the solution of t
problem.

To obtain quantitative results, we must reduce infin
parameters to finite values. First, we introduce a redu
solution FRsr , td, which joins the asymptote at a finit
radiusR,

g0
2ksRd 1 kg2ksRd ­ 0 , (13)

the indexk goes from 0 tò . The exact wave function is
given bycsr , td ­ limR!` FRsr , td.

Second, we must truncate the infinite set of coefficie
hC2pj at a finite cutoff index, sayl, such that the solution
satisfies only a finite set of conditions (13). This operati
can be performed in two different ways: either we put
zero allC2p with p . l or we put to zero radial functions
g2k with k . l. In terms of coefficientsC2p the second
method means thatC2p with p . l are determined by
the requirementa2p,2l12 1 C2ph2p,2l12 ­ 0. The second
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tes for
TABLE I. Binding energies (atomic units) of the ground state for various values of the field and of several excited sta
g ­ 1 (uncertainty is61 in the last digit). The third column shows correspondingR andl.

g Eb (ground state) Ryl State Eb sg ­ 1d Ryl

1 0.831 168 896 733 20.y20 2s0 0.160 468 982 634 43.y24
10 1.747 797 163 714 13.y21 2p0 0.260 006 615 944 39.y22

100 3.789 804 2363 05 8.4y24 2p21 0.456 597 058 424 25.y25
200 4.727 145 110 687 6.5y25 3d0

0 0.066 233 066 419 130.y18
500 6.257 087 674 681 5.2y25 3p0 0.090 224 511 338 78.y18

1000 7.662 423 247 755 5.2y25 3d21 0.206 567 363 860 39.y20
2000 9.304 765 082 770 4.4y25 3d22 0.353 048 025 149 33.y22
4000 11.204 145 206 603 3.9y26 4f23 0.299 968 970 495 34.y23
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scheme strongly reduces computational effort, beca
now we do not have to calculateai,2k andhi,2k with k . l.

In both cases we havel 1 1 unknown coefficientsC2p,
p ­ 0, . . . , l, but due to the homogeneity of Eq. (2) on
of them may be taken arbitrarily, e.g.,C0 ­ 1. Hence, we
have onlyl 1 1 unknowns,l coefficientsC2p, and energy
Eb . The truncated solution is required to satisfyl 1 1
boundary conditions (13) withk running from 0 tol.

Let us take an indexq, 0 # q # l, and putC2p ­ 0
for p fi q and C2q ­ 1. If we now compute allAi,2k

according to (7) (we shall label themA
q
i,2k), then instead of

true radial functionsg2ksrd we obtain functionsw
q
2ksrd ­

g2k
P`

i­2k A
q
i,2k ri22k. Since Eq. (5) is linear,g2ksrd ­Pl

q­0 C2qw
q
2ksrd, and boundary conditions take the for

(k ­ 0, . . . , l)
lX

q­0

C2qw
q0
2ksRd 1 k

lX
q­0

C2qw
q
2ksRd ­ 0 . (14)

Summation overi can be performed numerically, becau
in both methods termsAi,2kri decay rapidly wheni ! `;
typically it must be extended toi , 102 103.

We can directly solve the system (14),k ­ 1, . . . , l,
with respect to thel unknown coefficientsC2p . The
resulting left-hand part of (14) atk ­ 0, which we
designate asDsEbd, nonlinearly depends onEb and in
general differs from zero. Roots of the equationDsEbd ­
0 give the energy levels in the takenl, R approximation.
These roots can be found by an iterative method with a
desired precision.

As the cutoff indexl increases, the solution converges
its limiting functionFRsr , td. The energy levels in thel, R
approximation converge to the values inR approximation:
liml!`sEbdl,R ­ sEbdR. Computations show that the dif
ferencejsEbdl11,R 2 sEbdl,Rj exponentially decreases wit
l, making it possible to determine the upper bound to
error introduced by a finitel.

Both methods give the energy levelssEbdR and wave
functions FRsr , td in the R approximation. For a good
approximation to the exact solution the value ofR must
be, at least, larger than the distance from the nucleu
the farthest extremum of the wave function. Numeric
calculations show that, if this condition is satisfied, t
convergence of solution with the increasing ofR is rather
se

e
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o

e

to
l

e

fast: for a givendR the differencejsEbdR1dR 2 sEbdRj
decreases withR exponentially. This fact allows us to
obtain an upper bound to the error of approximation a
to control the accuracy of the results.

Convergence of the described scheme can be subs
tially accelerated by introducing an additional multiplie
exps2 1

4 gr2 sin2ud into the right-hand side of Eq. (1). The
whole procedure described above remains applicable w
out any modifications, except that the right-hand side
Eq. (5) comprises a different sum of coefficients. Th
combination of this scheme with the second method
truncation allows one to compute energy levels evo
ing from the field-free statesn , 10 with accuracy10210

hartree using typicallyl ­ 20, . . . , 30.
The above algorithm allows a very efficient tabulatio

of energies and wave functions with very high accurac
Calculation of the ground state energy forg ­ 1 with
precision 1026 hartree takes only a few seconds wit
a usual personal computer. In Table I we give, as
illustration, a short list of binding energies with precisio
10212 hartree. Extensive accurate tables will be publish
elsewhere.

Energy levels for highly excited states up to princip
quantum numbern ­ 10 are shown on Fig. 1. Since the
developed method allows one to obtain the solution w

FIG. 1. Binding energy of hydrogen as a function of magne
field for several states in the intermediate regime (m ­ 0,
n ­ 11).
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FIG. 2. Pictures of the first anticrossings between levels w
m ­ 0, n ­ 11, and (a) n ­ 8 and n ­ 9; (b) n ­ 9 and
n ­ 10.

very high numerical precision, it is possible to resolve a
ticrossings of any terms. As an example, this is illustra
by Figs. 2(a) and 2(b) for the first anticrossings betwe
levels with principle quantum numbers 8, 9, and 9, 1
where the repulsion between levels becomes6 3 1027 and
9 3 1028 hartree, respectively. Our results show that
pulsion of first anticrossings between levels with adjac
principal quantum numbers exponentially decreases w
the increase ofn [8].

Since our approach to the problem employs the anal
cal structure of the wave function, it is free of sever
limitations inherent to approximate methods. First of a
the obtained solution works throughout the whole range
magnetic field strength including the intermediate regio
which is characterized by sharp changes in the localiza
of the wave functions and through which until now on
a limited number of excited states was traced. Seco
the character of convergence guarantees the precisio
results, which is especially important for excited states
the intermediate region, where no eigenvalue technique
establishing lower and upper bounds has been reporte
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