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This study reports the first measurement of the azimuthal decorrelation between jets with
pseudorapidity separation up to five units. The data were accumulated using the DO detector during
the 1992-1993 collider run of the Fermilab Tevatron/at= 1.8 TeV. These results are compared to
next-to-leading order (NLO) QCD predictions and to two leading-log approximations (LLA) where the
leading-log terms are resummed to all orderain The final state jets as predicted by NLO QCD show
less azimuthal decorrelation than the data. The parton showering LLA Monte @zloiG describes
the data well; an analytical LLA prediction based on Balitsky-Fadin-Kuraev-Lipatov resummation shows
more decorrelation than the data. [S0031-9007(96)00594-7]
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PACS numbers: 13.87.—a, 12.38.Qk, 13.85.Hd

Correlations between kinematic variables in multijeting order. Starting with the highedf; seed tower, a
events provide a simple way to study the complex topoloprecluster was formed from all calorimeter towers with
gies that occur when more than two jets are present iR < 0.3, where R = \/An? + A¢? was the distance
the final state [1-3]. For example, in dijet events the twabetween tower centers. If a seed tower was included in
jets exhibit a high degree of correlation, being balanced precluster, it was removed from the list. This joining
in transverse energyE{) and back to back in azimuth was repeated until all seed towers became elements of
(¢). Deviations from this configuration signal the pres-a precluster. After calculating th€; weighted center
ence of additional radiation. Theoretically this radiationof the precluster, the radius of inclusion was increased
is described by higher order corrections to the leading orto 0.7 about this center with all towers in this cone be-
der graphs. Using the four-momentum trangferin the  coming part of the jet. A new jet center was calculated
hard scattering as the characteristic scale e@dAp [4]  using theE; weighted tower centers. This process was
evolution in 92, these corrections have been calculatedepeated until the jet axis moved less than 0.00% i
analytically to next-to-leading order (NLO) in perturba- space between iterations. The final j&t was defined
tive QCD [5,6]. In addition, they are approximated to all as the scalar sum of thE; of the towers; its direction
orders by using a parton shower approach, lfeRwiG  was defined using the DO jet algorithm [12] which dif-
[7]. Both NLO QCD andHERWIG correctly model many fers from the Snowmass algorithm [13]. If any two jets
aspects of jet physics [8,9]. However, there can be morghared more than half of the, of the smallerEr jet, the
than one characteristic scale in the process. Similar tfets were merged and the jet center recalculated. Other-
deep inelastic lepton-hadron scattering at small Bjotken wise, any ambiguities in the overlap region were resolved
and largeQ?, hadron-hadron scattering at large partonicby assigning the energy of a given cell in the shared re-
center of mass energies)(may require a different theo- gion to the nearest jet. Jet reconstruction was over 95%
retical treatment. Instead of just resumming the standardfficient for jets withEr > 20 GeV. Jet energy resolu-
terms involving InQ?, large terms of the type (§/Q?%)  tion was 10% at 50 GeV, and jet position resolution was
have to be resummed as well using the Balitsky-Fadintess than 0.03 in botly and¢.

Kuraev-Lipatov (BFKL) technique [10]. Del Duca and Accelerator and instrumental backgrounds were re-
Schmidt have done this and predict a different pattern ofmoved by cuts on the jet shape. The efficiency for these
radiation, which results in an additional decorrelation incuts was greater than 95%. Based on Monte Carlo simu-
the azimuthal angle between two jets, as their distance itations, residual contamination from backgrounds was es-

pseudorapidityAn ~ In(s/Q?)] is increased [2]. timated to be less than 2%. The jet transverse energy was
In this study, the jets of interest are those most widelycorrected for energy scale, out-of-cone showering, and un-
separated in pseudorapidifyy = — In[tan(#/2)], where derlying event. This correction was based on minimizing

0 is the polar angle of the jet with respect to the pro-the missing transverse energy in direct photon events [14].
ton beam. The DO detector [11] is particularly suited Small pseudorapidity biase$ § = 0.03), caused by the
for this measurement owing to its uniform calorimet- jet algorithm, were also corrected [15].

ric coverage to|n| < 4.0. The uranium-liquid argon A representative multijet event configuration is shown
sampling calorimeter facilitates jet identification with in Fig. 1. From the sample of jets withr > 20 GeV

its fine transverse segmentatiof.l( X 0.1 in Axn X
A¢). Single particle energy resolutions até%/E
and50%/+/E (E in GeV) for electrons and pions, respec-
tively, providing good jet energy resolution.

The data for this study, representing an integrated
luminosity of 83 nb™!, were collected during the 1992—
1993 pp collider run at the Fermilab Tevatron with a @ "
center of mass energy Qfs = 1.8 TeV. The hardware
trigger required a single pseudoprojective calorimeterg
tower 0.2 X 0.2in An X A¢)to have more than 7 GeV
of transverse energy. This trigger was instrumented for \L
|n] < 3.2. Events satisfying this condition were analyzed
by an on-line processor farm where a fast version of the
jet finding algorithm searched for jets wily > 30 GeV.
Jet reconstruction was performed using an iterative

fixed cone algorithm. First, the list of calorimeter towers n
with Er > 1 GeV (seed towers) was sorted in descend- FIG. 1. Typical event topology in multijet events.

L —
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and |n| = 3.0, the two jets at the extremes of pseu-at An = 5. Since the out-of-cone corrections depended
dorapidity were selected/{ and J, in Fig. 1) for this on the pseudorapidity of the jet and may not be well
analysis. One of these two jets was required to beinderstood at large pseudorapidities, the full size of the
above 50 GeV inEr to remove any trigger inefficiency. out-of-cone showering correction was included in the
The pseudorapidity difference\@y = |5, — 7,|) distri-  energy scale error band. This size of this error was
bution for events that pass the cuts is shown in Fig. 2less than 0.013. Uncorrelated systematic uncertainties
In Fig. 3, the azimuthal angular separatidn;- A¢/7  due to then bias correction and angular resolution were
(Ap = ¢1 — ¢»), is plotted for unit bins ofAn cen- included. This error was less than 0.002. The jet selection
tered atAn = 1, 3, and 5. Since each distribution is nor- cuts introduced a systematic uncertainty less than 0.007,
malized to unity, the decorrelation between the two mostvhich is independent of and . The uncertainty due
widely separated jets can be seen in either the relative dée jet position reconstruction was estimated by analyzing
cline near the peak or the relative increase in width as subset of the data, specifically events with a lakgg
An increases. using both Snowmass and DO jet finding algorithms; the
The decorrelation in Fig. 3 can be quantified in terms ofdifferences icog7 — A¢)) were less than 0.002.
the average value of cGs — A¢) [1]. Figure 4 shows Comparison of theory with data requires the connection
(cod7m — A¢)) vs An. For the data, the error bars of partons with jets. Since no attempt has been made
represent the statistical and point-to-point uncorrelatedo correct the data back to the parton level, the size of
systematic errors added in quadrature. In addition, théhe hadronization and calorimeter resolution effects were
band at the bottom of the plot represents the correlateshcluded as an additional systematic error. These effects
uncertainties of the energy scale and effects due twere estimated usingeRwWIG with a detector simulation
hadronization and calorimeter resolution. Also shown inbased onGEANT [17]. Jets before hadronization were
Fig. 4 are the predictions fromeERwIG, NLO QCD as compared with jets after both hadronization and detector
implemented inIETRAD [6], and the BFKL resummation simulation. In both cases a cone jet algorithm with
[2,16]. The errors shown for the three QCD predictionsa radius of 0.7 was used. Jets reconstructed using
are statistical only. partons and particles produced indistinguishable results
The systematic errors, especially the energy scaléor (cog7w — A¢)); the calorimeter smearing effects,
uncertainty, dominate the statistical errors for all;  although negligible fodn = 3, were~0.02 atAn =4
except forAn = 5. The jet energy scale uncertainty
is estimated to be 5%. The resulting uncertainty in
(cog7m — A¢)) varied from 0.002 atAn = 0 to 0.011
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the pseudorapidity interval increases, this calculation
predicts too much decorrelation. Also shown in Fig. 4
is the HERWIG prediction, where higher order effects are
modeled with a parton shower. These predictions agree
I with the data over the entire pseudorapidity interval range
; | ¢ } (0= An =<5).
(TR : [ In summary, we have made the first measurement of az-
imuthal decorrelation as a function of pseudorapidity sepa-

[ ==

T
[=]

<cos(m-Ad)>

o LT ration in dijet systems. These results have been compared

a7 D6 DATA i vyith various QCD.predictions. While thﬁETRAD_predic— .
' tions showed too little and the BFKL resummation predic-

2 IETRAINNLY o tions showed too much decorrelatioiERWIG describes

il A HERWIG the data well over the entir&»n range studied.
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