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Exponential Divergence and Long Time Relaxation in Chaotic Quantum Dynamics
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Phase-space representations of the dynamics of the quantal and classical cat map are used to explore
guantum-classical correspondence iK aystem: Asi — 0, the classical chaotic behavior is shown to
emerge smoothly and exactly. The quantum dynamics near the classical limit displays both exponential
separation of adjacent distributions and long time relaxation, two characteristic features of classical
chaotic motion. [S0031-9007(96)00558-3]

PACS numbers: 05.45.+b, 03.65.Sq, 05.40.+j

Understanding the correspondence principle for boundvhich does not exist if one attempts to utilize, for ex-
conservative systems which are classically chaoti@mple, classical trajectories and quantum wave functions.
presents a serious challenge [1]. The classical system Ehe advantages of this approach are evident in the results
characterized by positivE entropy which is reflected, for below where operationally chaotic behavior is demon-
example, in the exponential divergence of initially nearbystrated in quantum mechanics.
trajectories and in the relaxation [2] of distributions in  The classical cat map is& system which corresponds
the long-term limit. By contrast, the quantum dynamicsto the classical dynamics of a kicked oscillator with Hamil-
is not even ergodic, and displays long time recurrencegonian [9] .

Current views on correspondence in conservative chaotic 2 2 B

systems range from simple belief in the correspondence H=p°/2p + ex’/2 Z 8(s = ¢/T) (1)
principle, to reliance on decoherence induced by couplin
to an environment [3], to calls for the overthrow of quan-
tum mechanics due to its purported inability to display
chaos in the correspondence limit [1]. Resolving this
controversy requires studies of quantum dynamics closg

to the classical limit, a task thus far made impossible byab —"hN, N integer) could be quantized, (b) the solutions

numerical difficulties ag — 0. . . L
In this Letter we demonstrate, using numerical results\noIated the uncertainty principle, and (c) the quantum

&{opagator thus obtained did not reduce to the classically
based on an exact quantum propagator [4], the approa dhaotic cat map in thé — 0 limit
to the classical limit of the chaotic Arnold cat [5]. P )

The nonsinaular character of our bhase space bropadat rA recently introduced [4] phase space quantization elim-
g . N rp P Propagalpled these problems and yielded an analytic quantum
as 1 — 0 allows direct insight into correspondence in

! : . ropagator. Specifically, the one time-step quantum prop-
this bounded chaotic system. In. particular, we Shomggation of the Wigner-Weyl representation of the quantal
that quantum mechanics does display chaosias

) 0 N o
0, including exponential divergence of initially nearby density operatop©(x, p; ) in phase spacér, p) is given

distributions and long time relaxation. The agreemenpy | %

between quantum and classical dynamics extends over pCx, p;T) = — Z anm(T)fn,m, 2)

longer times ag decreases [6]. ab , ="
Classical-quantum correspondence is best examined [{}here

in the Liouville picture classically and in some phase * 0

space representation of the density matrix (e.g., the p2, (1) = > Gn,m;k,1)p(0). 3)

Wigner representation [8]) quantum mechanically. This kl=—c

approach provides an overlap of objects and conce|pf§he propagato6G of the Fourier coefficients is given by

§=—%

estricted to a torue = x < a,0 = p < b. The proper
quantization of this system and its approach to the classical
limit has been extensively considered [4,9,10]. Early
uantizations [10] of this system were unsettling insofar
s (a) only a restricted class of classical tori (those with

1 1
G(n,m;k, l) _ ei#a(kl—nm)f de dy/e—iwf[(v+an)mod1]2/aeiﬂ'fvz/a
0 0

% 62771'(1—m)Ve—iﬂn[(v’+al)m0d1]2/aei#nu’z/aeZvTi(k—n)v” (4)

where = Th/ua € Z (the set of integers) ang = | exp2mi(np/a + mx/b)} is the Fourier expansion ba-
—eTa/b € Z obtain in scaling the original Hamiltonian sis. The Arnold cat map [5] corresponds to the choice
to the unit toruse = h/ab acts as a dimensionless form of = £ =1. Equation (4) can be integrated exactly [11]
Planck’s constant for this problem, ang,.(p,x) = to provide an analytic propagator for gl This result

0031-900796/77(1)/59(4)$10.00  © 1996 The American Physical Society 59



VOLUME 77, NUMBER 1

PHYSICAL REVIEW LETTERS

1dJdLy 1996

3162 Ta

1162

L

1] 3162

X

L

X

2

et 5 .

(1

ila2

316 v (]

1

162

- {;]_:1

. o
o N 1.7 LU 1162

FIG. 1. Snapshots dip?(x, p,1)|. Densities are represented by five shadings of gray denoting five evenly spaced probabilities
between7 X 1075 to1 X 1075, (@)t =0, (b)t = 2T, (c)t = 4T, (d)t = 8T; a = 0.1 (Aa = Ab = 3.162).

contrasts with the classical propagator given by Eq. (2) bupoints are both more dense in the Fourier space and ex-
with an,m(T) replaced by the classical form

oo

pun(T) = D Geln,m;k,D)pii(0),

ki=—o

Ge(n,m;k,1) = 8.1).¢7-(n.m) -

Here¢ - (n,m) is the vector resulting from premultiply-

(5)

ing the vector(n, m) with the transposeb’ of the matrix
governing the point dynamics:

(ry) = (3 Jmoas
B <§ 1 +nn§

with ¥ = x/a, p = p/b.

)7

>mod1,

(6)

ist at smaller values dfn, m), indicating a far more sub-
stantial deviation from the classical evolution. (c) Even
though there are no such demonstrable fixed points for
irrational «, the propagator is a smooth function af
the qualitative conclusions from these arguments should
therefore extend to alt.

The evolution of distributions which are initially of the
Gaussian form

Nyexg—(x — axo)/Xoilexd—(p — Apo)* /A o;]
(7)

is displayed below. Her&/, is a normalization factor,
(Axo, Apg) specifies the location of the Gaussian of width
(Ao, Aop) in a phase space of dimensiodab. The

Note that, by contrast with the classical case, the quanvariable scaling factord can be used to approach the
tum propagatoG mixes contributions from alk,! com-
ponents to produce eaehm. It shares with the classical space A’ab increases andy = h/A%ab, the effective
propagator a fixed point diz, m) = (0,0). However, it
also has an infinite number of additional fixed points forby increasinga we approach the classical limit while
rationale = u/v; these lie in the quantal Fourier space atpreserving the ratioA>c, o, /A%ab) of the volume of the

all (wv, zv) with u,v,w,z € Z. These fixed points af-

classical limit. That s, ag increases the volume of phase

Planck’'s constant of the problem, decreases. Hence,

initial distribution to the volume of phase space. We note

fect the quantal evolution of a distribution in the following that we work in units such thdt = 1.
ways: (a) Near the classical limit(< 1 orv > u =
1), these fixed points are far out in the Fourier space, antlition [12] of the Wigner function fora = 10~!,1072,

hence affect structure at extremely small scales. Thusnd 107°.

Figures 1—-3 show gray-scale contour maps of the evo-

To simplify the presentation we report the

it is in the highly oscillatory regime (whether the struc- absolute value of the Wigner representation of the den-
ture is prepared initially or acquired during the evolution)sity. The Wigner-Weyl function forr = 1077 is always
that the dynamics will exhibit quantal evolution distinct positive definite and numericaligenticalto the classical
from the classical dynamics. (b) At larger, these fixed Liouville density over the indicated time scale. We note
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FIG. 2. Asin Fig. 1 but withe = 1072 (Aa = Ab = 10).
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FIG. 3. Asin Fig. 1 but withe = 1075 (Aa = Ab = 316.2).

that the classical dynamics is scale invariant; hence thies. The distance in phase space between the two dis-
classical phase-space figures are independeintaoid are  tributions is determined by the centroids: = [((x); —

the same for all three cases and identical todhe 1075 (x),)2 + (p)1 — { p)»)*]"/2, where(); denotes the aver-
case. The analytic results [4] ensure thatéhe- 0 limit ~ age over théth distribution(i = 1,2). The quantityA(z)

is indeed classical mechanics, but these computationsas evaluated both classically and quantum mechanically
allow a direct examination of the approach to this limit. for various values of:, b.

For a« = 0.1 (Fig. 1) the system is seen to be in the The time dependence & was found to be essentially
deep quantum regime. The propagating wave packetentical in classically and quantally propagated distribu-
shows only the barest resemblance to the classical resutipns over times up to eight steps, for thgb (and hence
and interference structures dominate. There is no relaxax) in the range shown. At early times, dependentagn
tion of the dynamics over the indicated time scale, and\ increases essentially exponentially (see Fig. 4) with in-
the expectation value of operators (not shown) oscillatereasing adherence to the classi&akentropy line asa
with large amplitude. Although not evident in this figure, is reduced. At times longer than that shown in FigA4,
the Wigner distribution has many positive and negativetends to decrease in a generally similar way quantum me-
regions. Fora = 0.01 (Fig. 2) the classical density chanically and classically, a consequence of saturation [15]
striations begin to appear, although still accompanied bynd relaxation in the finite size phase space. Wher
guantum effects. Various parts of the distributions appeaincreased, since there is no relaxatiancontinues to os-
to interfere with one another, giving interference fringes.cillate at larger times quantum mechanically, whereas the
Once again, relaxation is not evident after eight time stepglassical dynamics relaxes. The combination of short time
although a large coarse graining will result in a uniformexponential divergence and long time relaxation demon-
phase-space distribution. Separate calculations show thsirates the loss of information characteristic of chaos for
the expectation value of operators in thisegime display  both the classical and near-classical quantal dynamics.
small fluctuations about the equilibrium value. Finally, as
noted above, thee = 1073 result agrees exactly with the 4 . . . ; . . ;
figures from the classical evolution: The distribution has
relaxed [2] even over the short time scale shown. The |
approach to classical mechanics is clearly smooth and
devoid of singularities.

Relaxation is but one characteristic of chaotic motion,
evident at long times. Classical chaos, however, is typ-
ically manifested in the short time instability associated
with exponential divergence of adjacent trajectories. Stan-
dard arguments [13] imply that such exponential separation
is not possible in quantum mechanics. Here we demon-
strate that this is not the case; we have obtained similar
exponential divergence for compact phase sphstibu-
tions both classically and quantally close to the classical T ST
limit. In the absence of point trajectories and an appro- ' ' t (inunits of )
priate tangent space, we examine the time dependence piG. 4. Short time exponential separation of cen-
the distanceA between two nearby, initially well local- troids for a=b =500 (¢ =4 X 107%) (dashed),
ized Gaussians [14]; the results are shown in Fig. 4. Alsg = b = 2879 (a = 1.207 X 107°)  (solid), a=1b =

. . . . . . — -2 .
shown for comparison is a straight line with slope dic-10-37 (@ = 3.64 X 107%) (dotted). See text for other param
eters. Similar results are obtained by propagating the same

tated by_theK_entropy of the c_Iassit_:aI_Cﬁt map; since the giciriputions classically. The straight line with a slope of
system is uniformly hyperbolic, this is exactly equal t0(.9624 shows classical exponential separation of adjacent point
the Lyapunov exponent of the underlying point dynam-trajectories.
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Finally, we note that the availability of an analytic [3] W. Zurek, Phys. Today6, 81 (1993); A.R. Kolovsky,
quantum propagator for & system allows a study Phys. Rev. Lett76, 340 (1996).
of the expected time dependence of classical-quantuni4] J. Wilkie and P. Brumer, Phys. Rev.49, 1968 (1994).
agreement as a function 6f Preliminary results suggest [5] V.1 Arnpld and_ A. Avez,Ergodic Problems of Classical
that increasing the value af does, in general, decrease 6] yﬁgt‘;ggs(éﬁgfoé‘é\sigze%’ég'a’;’agoc;rk' 1989).
s RS . n . Sruer Py s 4520 30
gree. er, greem P J. Chem. Phys82, 2330 (1985); C. Jaffé, S. Kanfer, and
stro_ng_l_y on various other factc')rs', mclydmg the nature of P. Brumer, Phys. Rev. Letfi4, 8 (1985).
the initial distribution. The variation within the quantum- [g] see S.R. De Groot and L.G. Suttorfpundations of
classical deviations for different initial conditions at a Electrodynamics(North-Holland, Amsterdam, 1972) for
given value ofe andt spans many orders of magnitude. an excellent review of the Wigner-Weyl technique.
Further studies on this issue await application of our [9] J. Ford, G. Mantica, and G.H. Ristow, Physica (Amster-
general quantization approach to classical maps which  dam)50D, 493 (1991).
have smallek entropy than the classical cat map. That[10] J.H. Hannay and M.V. Berry, Physica (Amsterdat),
is, the large value of the& entropy for the cat map 26_7 (1980); J.P. Keating, Ph.D. the3|s, University (_)f
forces relaxation of the dynamics over a rather short  Bristol, 1989 (unpublished); M. Degli Esposti, S. Graff,
time. Further, it also rapidly saturates the exponentia and S. Isola, Commun. Math. Phyi57, 471 (1995).
divergence (Fig. 4) which could otherwise extend to 11] J. Wilkie, Ph.D. dissertation, University of Toronto, 1994
g (Fig. 4)

iqnifi v . (unpublished).
significantly longer imes. [12] Wave packets were initialized in phase space, Fourier

In summary, although the literature suggests that demon- ~ {ransformed, and then propagated via Eq. (5) or Eq. (4)
strating quantum-classical correspondence becomes in- ysing a512 x 512 grid; various accuracy checks were
creasingly difficult (if not impossible [1,9]) with increasing performed using 4024 X 1024 sized grid. The classical
classical chaos, we have been able to show this correspon- Fourier trajectories are hyperbolic; thus the Fourier com-
dence in a classicat system. We have also shown how ponents leave any finite grid rapidly. This is the major
correspondence emerges smoothly from the quantal behav- source of computational error classically and in the quan-
iorasa — 0. These results make clear that the dynamics &l @ — 0 regime. Dynamics in the deep quantal regime
of distributions in the nonergodic quantal cat map display (@ — 1) do not exhibit any Fourier space hyperbolicity,
the essential attributes of the classikasystem as the sys- thus avoiding the associated accuracy problems.
tem approaches the classical limit. They constitute the firétl?’] J.S. Hutchinson and R.E. Wyatt, Phys. Rev23, 1567

. " (1981).
demonstration of the emergence of characteristically cla 4

. : . A One Gaussian has parametars- 1, xo =0.007 12, py =
sically chaotic behavior from quantum mechanically non-" = (00904, o, = 04153, o, = 0.3841; the second Gauss-

ergodic behavior as one approaches this limit. ian is identical except for, = 0.00702. The values of
This work was supported by the Natural Sciences and  « for this set of computations were chosen arbitrarily in
Engineering Research Council of Canada. the near-classical regime. The parameters for the Gauss-

ians were also chosen arbitrarily, constrained solely to
be initially well localized while satisfying the uncertainty

[1] J. Ford and G. Mantica, Am. J. Phy&0, 1086 (1992). principle.
[2] The term relaxation denotes the evolution of all initial [15] The distance between two centroids, or between two
distribution to the same stationary final distribution. In the point trajectories, is bounded due to the finite phase-space

case of the cat map, this is the constant distribution in volume. Reaching this limit is what we term saturation.
phase space.
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