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Localization Transitions in Non-Hermitian Quantum Mechanics

Naomichi Hatano* and David R. Nelson

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 15 March 1996

We study the localization transitions which arise in both one and two dimensions when quantum
mechanical particles described by a random Schrodinger equation are subjected to a constant imaginary
vector potential. A path-integral formulation relates the transition to flux lines depinned from columnar
defects by a transverse magnetic field in superconductors. The theory predicts that, close to the
depinning transition, the transverse Meissner effect is accompanied by stretched exponential relaxation
of the field into the bulk and a diverging penetration depth. [S0031-9007(96)00677-1]

PACS numbers: 74.60.Ge, 05.30.Jp, 72.15.Rn

Although forbidden in conventional quantum mechan-ter /i corresponds to the temperature of the superconduc-
ics, exponentiated non-Hermitian quantum Hamiltoniangor, while the inverse temperature of the quantum system
do appear in the transfer matrices of classical statistical mesorresponds to the thicknegs of the sample alondd,.
chanics problems. A nonequilibrium process can be delnteractions between many particles (or flux lines) can be
scribed as the time evolution of a non-Hermitian systemtreated approximately by forbidding multiple occupancy
[1]. Another example is th&XZ spin chain mapped onto of localized states in a tight-binding model (see below)
the asymmetric six-vertex model [2]. [4]. Interactions in the delocalized regime are described

In this Letter, we investigate a non-Hermitian quantumby a non-Hermitian boson Hubbard model, and will be dis-
Hamiltonian with randomness. The study is motivatedcussed in a future publication [6].
by a mapping of flux lines in ad( + 1)-dimensional su- Since the fieldh acts as a vector potential, we define
perconductor to the world lines af-dimensional bosons. the current operator ag = —idH /oh = (p + ih)/m.
Columnar defects in the superconductor, which were inThe imaginary part of the current describes the tilt slope
troduced experimentally in order to pin the flux lines [3], of a flux line. To see this, note first that the position
give rise to random potential in the boson system [4]. Al-of the flux linex at the distance- from the bottom sur-
though the field componertl. parallel to the columns face of the superconductor is given iy), = Z7' X
acts as a chemical potential for the bosons, the componety/ | =L~ /iy =73 /| iy - \where i and ¢/ de-
perpendicular to the columns results in a constant imagiscribe boundary conditions at the bottom and top sur-
nary vector potential [5]. faces ¢ = 0,L,) of the superconductor, respectively.

We study localization in this simple example of non-
Hermitian quantum mechanics, and show how flux lines
are depinned from columnar defects by an increasing
perpendicular magnetic fielH , . It is generally believed ,;—‘:— ——g——-:.:.\
that all eigenstates are localized in conventional one- 2
and two-dimensional noninteracting quantum systems with 18 L""'----...___C:-:':.'_w_:_ — In ;—""
randomness. On the other hand, it is almost obvious that ¢ 3;’

flux line is depinned from defects by a strong perpendicular
field component. This indicates that the present non-
Hermitian system has extended states in a |&fgeregion, T
and that there must be a delocalization transition at a
certain strength off | .

The non-Hermitian Hamiltonian treated hereafter has the
formH = (p + ih)>/(2m) + V(x), wherep = (h/i)V

]

andV(x) is a random potential. The non-Hermitian field ] 1

h originates in the transverse magnetic field las= - N
¢oH | /4. The flux quantumpy = 277ic/2e plays the \“'---....__ —\ '____...---"/
role of a charge and the non-Hermitian facio= +/—1 ¥

arises from the mapping onto imaginary time quantum me- , , )
chanics [4,5]. Figure 1 shows a vortex whose “world line” F1G- 1. One flux line (wavy curve) induced by the fiel,

is described by this Hamiltonian with periodic boundar and interacting with columnar pins in a cylindrical supercon-
IS y p yductmg shell with radial thickness smaller than the penetration

Conditio_ns in one dimension. _The maasis equivalent  depth of the defect-free material. The figlil, is generated by
to the tilt modulus of the flux line. The Planck parame-the currentl threading the ring.
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The partition function isZ = (¢ |e L-H/ ). The ofk - (x — rIm{J)), because the corresponding flux line
commutation relatiop ,x] = —i/J leads immediately has the tilt slope IfJ). (The angular brackets here denote
to (0/07){x); = —i{J); = IM{J);. the expectation value with respect to the state with energy
The total displacement of the flux line between thes.) We hence expect the relation ém= ik - Im(J) =
bottom and the top surfaces is given &), — (x)o =  —/hk - (3/0h) Res. Thus appearance of a complex eigen-
h(9/0h)InZ = Im fé’(J% dr. This quantity is an indi- Value is another indicator of the delocalization transition.
cator of the delocalization transition; the transverse dis- It is instructive to solve the one-dimensional system
placement of a flux line must be order of the system sizavith a single attractive impurity:H = —(iV — h)*/
when it is depinned. 2m — Vod(x). We first solve H ¢(x) = e¢(x) for
Let us first consider localized states in a small perpenx # 0 to obtain the two degenerate solutiots. (x) =
dicular field. Assume the eigenfunctions (x) and the e~ *"/" and then write the general solution as
eigenvaluess, are known fork = 0. For smallh the ¥ = A¢+ + B¢p—. We impose the periodic boundary
right and left eigenvectors dH are given by X (x;h) =  conditions(L,) = ¢(0) and the condition for the delta po-
enx/hy (x;h = 0) and r(x;h) = e "/ Myr(x;h = tential, J'(Ly) — ¢'(0) = (2mVy/E?)(0). A nontrivial
0). The energy eigenvalue, is unchanged under this Solution arises whenevef{cosiL../h) — codL,k)] +
“imaginary” gauge transformation [7]. The imaginary (mVo/h?)sin(L.k) = 0. The ground state (the state which
gauge transformation applies even to many-body eigerminimizes Re) is localized only form < fikgs = mVy/h.
vectors of interacting systems [6]. However, the aboveAll the other states are extended. The localized ground-
wave functionsy® and - may diverge agx| — «, and  state energy is, = —mV§$/2k?, and the wave function
hence may not be normalizable. The normalizabilitytakes the formyR (x) = kg e “elI* /M as [, — o,
condition is |k| < hk,, where k, is the inverse local- The localization length in the direction df grows as
ization length of the state,(x;k = 0). Then the wave (fikes — h)~!, and the state goes through a delocalization
function [with the normalizationy d%x % (x)yL(x) = 1]  transition ath = fik,s. The ground state foF > ik, is
is approximately extended with the energy-#%/2m. The corresponding
flux line has the tilt slopé: /m, which is equal to the value
PR (x) = / (2K,)? h—x)/ =k e, | (1) in the impurity-free case. The tilt slope of the ground
" T'(d)Qy ’ state has a jump at the delocalization point.

Extended states in the thermodynamic limit have a form
wherex, is the localization center fdr = 0 and(), isthe  close to the pure case. The leading termis‘ /\/L, with
total solid angle of the/-dimensional space. k, = nar /L., wheren is odd forh < lkg, and is even

The point|k| = fik, is the delocalization point of the for 1 > likes. There is a reflection termp ~knx+2hx jn
statey: In the regionlh| = fik,, the eigenfunction be- the regionx < 0. The energy eigenvalue takes the same
comes extended. Hence we need to specify the boundafyrm as the pure system. The above solution shows that
conditions in order to obtain a well-defined wave functiona depinned flux line almost ignores the columnar defect.
in the thermodynamic limit. Now we move on to the case of random potential. For

Let us consider imposing the periodic boundary conthe purpose of numerical calculations, it is convenient
dition X (L./2,y,...) = ¢X(—L./2,y,...), with the x  to introduce the non-Hermitian tight-binding model. The
axis parallel toh. The one-dimensional periodic system second-quantized Hamiltonian is written in the form
is shown in Fig. 1. Except for thisnaginary vector po-

tential, this setup is the flux-line analog of a mesoscopic ¢ d he, it Cheuint
metal ring threaded by a solenoid. At the boundariesH = — > Z Z(e " hyte,by + e b ibyye,)
x = *L /2, the wave function (1) has a mismatch of or- xov=l

— ”_h th . . . .
dere~(« '/ )LsIn the regiom: < /i, this mismatch is " Zbebe, 2)
exponentially small, as is the change necessary to meet the "

periodic boundary condition. In the regién= 7«,,, how-

ever, the wave function changes drastically, and a complewhere the{b!,b,} are boson creation and annihilation

eigenvalue appears. To understand this point, consid@perators [8], and théde,} are the unit lattice vectors.

the casgh| — o, a limit in which the random potential The hopping element is approximately given by 4}

V(x) may be neglected [6]. The periodic boundary con-Vy;,q eXp(—~/2mVying a/h), whereVy,g is a typical bind-

dition is satisfied only by the extended functiefi* with  ing energy of the columnar defect, andis the lat-

k, = 2n,m/L,, wheren, is an integer and., is the sys- tice spacing. We apply the periodic boundary conditions

tem size in thex, direction. (If aright eigenvector ig**, by+n,e, = by for v =1,2,...,d, where N, = L,/a.

the corresponding left eigenvectords’®*.) The eigen- The complex eigenvalues in this non-Hermitian system

value is complexe(k) = (hik + ih)?/2m. always appear in conjugate pairs; if there is a complex
The imaginary part of an eigenvalue has the followingeigenvalues with a right eigenvectows®, there is also

meaning. The time evolution of an extended state is dethe eigenvalues™* with the right eigenvecto(y?)*. This

scribed ase’**~7¢/" This must actually be a function symmetry ensures that the partition functidh is real.
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Another symmetry isH (k)T = H{ (—h). Because of indeed independent df. The behavior of the delocalized
this symmetry, a right eigenfunction &f (k) equals the states, on the other hand, is similar to impurity-free sys-
left eigenfunction of H (—h)with the same eigenvalue. tems except near the mobility edges. Figure 2(b) shows
If vV, =0, the eigenvalues are = —tZ‘jzlco{(k,, +  the imaginary part of the current, or the tilt slope of
ih,/h)a] with k, = 2n,7/L,, wheren, is an integer. the corresponding flux line plotted against the real part
The eigenfunction takes the form®(x) « exp(ik - x).  of the energy. The tilt slope has a jump at the mo-
Numerical calculations fol, # 0 were carried out as- bility edges as in the one-impurity case. The inset to
suming that the random potenti&) is uncorrelated in Fig. 2(b) shows the inverse localization length for this
space, and uniformly distributed in the ranfjeA,A].  problem whenkh = 0. (We calculated the approximate
Results for random hopping models, witb site random-  inverse localization length from the second moment of the
ness, are qualitatively similar [6]. wave function.) According to the delocalization criterion

Figure 2(a) shows the eigenvalue spectrumdo= 1.  h. = hk, a region of delocalized states should appear as
The real eigenvalues indicate localized states, while thé& increases, first at the band center and then moving out-
complex eigenvalues indicate delocalized ones. As diswards, as we observe.
cussed above, the eigenvalues for the localized states areln two dimensions we again find bands of localized
energies bounded by a mobility edge, although extended
and localized states are apparemtlixedin a complicated
way near the band center. Extended states again almost
ignore impurities. The case of an attractive impurity
shows that the localized ground state exists in a certain
region of smallk, and that the energy spectrum of the
extended states is close to the impurity-free case.

An interesting question in the two-dimensional random
case is whether a delocalized state is extended in both the
x andy directions, or extended only in the direction/of
We believe delocalization must occurinthdirections: If
the fieldh is parallel to ther axis and a state is extended
in this direction, we may assume that the wave function
has the approximate for; /2’ ¢( y) in order to ac-
commodate periodic boundary conditions. This is indeed
s . ‘ an eigenfunction of the partial Hamiltonian which has only
2 -1 0 1 2 the kinetic term in thec direction. We then calculate the

Re ¢/t effective Hamiltonian forp (y) in degenerate perturbation
theory, taking the kinetic term in the direction and the
: : : random potential term as the perturbation. We find that
(b) : ' the effective Hamiltonian fokb(y) has a random poten-
tial term of the formL_ ! [ V(x,y)dx. The width of the
probability distribution of this effective random potential,
however, vanishes ds. '/? in the limit L, — «. The flux
line is a random walker in the direction, and henceé ( y)
Re &/t is an extended state. Delocalization in directions both par-
allel and perpendicular th is more readily observed nu-
merically fork along thediagonalof a square lattice than
for h parallel toe, or e, [6].

Im J/t

a: h=0,0.1 Spectra such as those in Fig. 2(a) at intermediate values
G b Fad ans | of h are relevant at low bufinite concentrations of
:0. e: 0.9 . . . . ) .
£10 g1l interacting flux lines, provided that we fill up the localized
. states in order of increasing energy up to enesgy w,
-2 -1 0 1 2 thus forbidding multiple occupancy of a single localized
Re ¢/t state [4]. The system is then characterized by an average

FIG. 2. (a) Im: vs Re: for a particular sample of theé = 1 ~ chemical potentialu = u(H;) which controls the flux-

tight-binding model withA/r =1 and L, = 1000a. Each line density and separates occupied from unoccupied
eigenstate is marked by. Plots for differentk are offset for  |eyels, Once this chemical potential exceeds the mobility
clarity. (b) Im/ (fluxon tilt) vs Res for the same sample as in edge, however, we expect spiral trajectories and “Bose

(@). The inset showsa vs Res for A/t = 1, L, = 500a, and d tion” of del lized flux Ii into the | i
h = 0, averaged over one hundred samples binned with energgPndensation” ol delocalized Tux fines Into the lowest-

window 0.04:. The dashed line indicates a particular value of€énergy extended state; more sophisticated methods of
ha/h. The states below the dashed line become extended. dealing with interactions are then required [6,9].
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Consider the probability distribution of a flux line near of these excited states will contribute to the relaxation
a free surface. At the distaneefrom the bottom surface process. The asymptotic form (1) for localized states now
of the superconductor this probability may be writtenleads to [(x), — (x)x| ~ >/ ¢,e /", where f,(r) =
P(x;7)=Z Nl |le LD H M xy (x|e~™H /B yiy, where  (lik, — hcod,)r, + TAe,, 1y = |x, — x,|, co, =
we assume free boundary conditions at the bottom andl - (x, — x,)/|k|r, and the{¢,} are additional constant
the top surfaces:|y’) = |¢/) = [d?x'|x'). In the factors. Upon setting(u)réAe, ~ 1 [4], we find that
limit L, — o, the probability distribution of the most the two terms inf, compete with each other; in other
weakly bound flux line at the top surface is proportionalwords, the further the flux line hops, the more the kink
to the right eigenvector with the eigenvalue= u, energy costs, but the lower the binding energy of the state
P(x;L;) < (x|ip,) = e/sz(x), while the distribution at nis. Minimizing f, with respect tar, andé,,, we arrive
the bottom surface is proportional to the left eigen-at Eq. (3). We expect that a similar relaxation process
vector of the same stateP(x;0) = (,lx) = :pﬁ(x). governs lines relaxing from the surface to all occupied
The distribution far from these surfaces is given bystates withe < u as7 — ». Ford = 1 and randomly
P(x;L./2) = e,//ff(x)gbﬁ(x). In the localized regime, the distributed columnpositions,rare events such as excep-
imaginary gauge transformation fg® andy. describes tionally small hopping matrix elements will alter Eqg. (3)
the displacement of the flux line at the surfaces, whilgfor very larger, similar to flux lines pinned by parallel,
the bulk distribution P(x;L,/2) is independent ofk, randomly placed grain boundaries [10].
consistent with the transverse Meissner effect [4]. These The behavior of the flux-line tilt modulus (inverse
statements are approximate because we have neglecte@son superfluid density) and flux-flow resistiviapove
excitations of occupied states. They are exact for théhe mobility edge may be obtained [6] using the methods
ground state. The displacement of the flux lines neaf Ref. [9].
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