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Localization Transitions in Non-Hermitian Quantum Mechanics

Naomichi Hatano* and David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 15 March 1996)

We study the localization transitions which arise in both one and two dimensions when qua
mechanical particles described by a random Schrödinger equation are subjected to a constant im
vector potential. A path-integral formulation relates the transition to flux lines depinned from colu
defects by a transverse magnetic field in superconductors. The theory predicts that, close
depinning transition, the transverse Meissner effect is accompanied by stretched exponential rel
of the field into the bulk and a diverging penetration depth. [S0031-9007(96)00677-1]

PACS numbers: 74.60.Ge, 05.30.Jp, 72.15.Rn
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Although forbidden in conventional quantum mecha
ics, exponentiated non-Hermitian quantum Hamiltonia
do appear in the transfer matrices of classical statistical m
chanics problems. A nonequilibrium process can be d
scribed as the time evolution of a non-Hermitian syste
[1]. Another example is theXXZ spin chain mapped onto
the asymmetric six-vertex model [2].

In this Letter, we investigate a non-Hermitian quantu
Hamiltonian with randomness. The study is motivate
by a mapping of flux lines in a (d 1 1)-dimensional su-
perconductor to the world lines ofd-dimensional bosons.
Columnar defects in the superconductor, which were
troduced experimentally in order to pin the flux lines [3
give rise to random potential in the boson system [4]. A
though the field componentHz parallel to the columns
acts as a chemical potential for the bosons, the compon
perpendicular to the columns results in a constant ima
nary vector potential [5].

We study localization in this simple example of non
Hermitian quantum mechanics, and show how flux lin
are depinned from columnar defects by an increas
perpendicular magnetic fieldH'. It is generally believed
that all eigenstates are localized in conventional on
and two-dimensional noninteracting quantum systems w
randomness. On the other hand, it is almost obvious th
flux line is depinned from defects by a strong perpendicu
field component. This indicates that the present no
Hermitian system has extended states in a largeH' region,
and that there must be a delocalization transition a
certain strength ofH'.

The non-Hermitian Hamiltonian treated hereafter has t
form H ; sp 1 ihd2ys2md 1 V sxd, wherep ; sh̄yid===
andV sxd is a random potential. The non-Hermitian fiel
h originates in the transverse magnetic field ash ­
f0H'y4p. The flux quantumf0 ­ 2p h̄cy2e plays the
role of a charge and the non-Hermitian factori ­

p
21

arises from the mapping onto imaginary time quantum m
chanics [4,5]. Figure 1 shows a vortex whose “world line
is described by this Hamiltonian with periodic bounda
conditions in one dimension. The massm is equivalent
to the tilt modulus of the flux line. The Planck parame
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ter h̄ corresponds to the temperature of the supercond
tor, while the inverse temperature of the quantum syste
corresponds to the thicknessLt of the sample alongHz .
Interactions between many particles (or flux lines) can
treated approximately by forbidding multiple occupanc
of localized states in a tight-binding model (see below
[4]. Interactions in the delocalized regime are describ
by a non-Hermitian boson Hubbard model, and will be di
cussed in a future publication [6].

Since the fieldh acts as a vector potential, we defin
the current operator asJ ; 2i≠H y≠h ­ sp 1 ihdym.
The imaginary part of the current describes the tilt slop
of a flux line. To see this, note first that the positio
of the flux line x at the distancet from the bottom sur-
face of the superconductor is given bykxlt ; Z21 3

kcf je2sLt2tdH y h̄xe2tH y h̄jc il, where c i and cf de-
scribe boundary conditions at the bottom and top su
faces (t ­ 0, Lt) of the superconductor, respectively

FIG. 1. One flux line (wavy curve) induced by the fieldHz
and interacting with columnar pins in a cylindrical supercon
ducting shell with radial thickness smaller than the penetrati
depth of the defect-free material. The fieldH' is generated by
the currentI threading the ring.
© 1996 The American Physical Society
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The partition function isZ ; kcf je2LtH y h̄jc il. The
commutation relationfH , xg ­ 2ih̄J leads immediately
to s≠y≠td kxlt ­ 2ikJlt ­ ImkJlt .

The total displacement of the flux line between t
bottom and the top surfaces is given bykxlLt

2 kxl0 ­
h̄s≠y≠hd lnZ ­ Im

RLt

0 kJlt dt. This quantity is an indi-
cator of the delocalization transition; the transverse d
placement of a flux line must be order of the system s
when it is depinned.

Let us first consider localized states in a small perp
dicular field. Assume the eigenfunctionscnsxd and the
eigenvalueś n are known forh ­ 0. For smallh the
right and left eigenvectors ofH are given bycR

n sx; hd ­
eh?xy h̄cnsx; h ­ 0d and cL

n sx; hd ­ e2h?xy h̄cp
nsx; h ­

0d. The energy eigenvaluén is unchanged under this
“imaginary” gauge transformation [7]. The imaginar
gauge transformation applies even to many-body eig
vectors of interacting systems [6]. However, the abo
wave functionscR

n andcL
n may diverge asjxj ! `, and

hence may not be normalizable. The normalizabil
condition is jhj , h̄kn, where kn is the inverse local-
ization length of the statecnsx; h ­ 0d. Then the wave
function [with the normalization

R
ddx cR

n sxdcL
n sxd ­ 1]

is approximately

cR
n sxd .

s
s2kndd

GsddVd
eh?sx2xndy h̄2knjx2xnj , (1)

wherexn is the localization center forh ­ 0 andVd is the
total solid angle of thed-dimensional space.

The pointjhj ­ h̄kn is the delocalization point of the
statecR

n : In the regionjhj $ h̄kn, the eigenfunction be-
comes extended. Hence we need to specify the boun
conditions in order to obtain a well-defined wave functio
in the thermodynamic limit.

Let us consider imposing the periodic boundary co
dition cR

n sLxy2, y, . . .d ­ cR
n s2Lxy2, y, . . .d, with the x

axis parallel toh. The one-dimensional periodic syste
is shown in Fig. 1. Except for theimaginary vector po-
tential, this setup is the flux-line analog of a mesosco
metal ring threaded by a solenoid. At the boundar
x ­ 6Lxy2, the wave function (1) has a mismatch of o
dere2skn2hyh̄dLx . In the regionh , h̄kn, this mismatch is
exponentially small, as is the change necessary to mee
periodic boundary condition. In the regionh $ h̄kn, how-
ever, the wave function changes drastically, and a comp
eigenvalue appears. To understand this point, cons
the casejhj ! `, a limit in which the random potentia
V sxd may be neglected [6]. The periodic boundary co
dition is satisfied only by the extended functioneik?x with
kn ­ 2nnpyLn , wherenn is an integer andLn is the sys-
tem size in thexn direction. (If a right eigenvector iseik?x,
the corresponding left eigenvector ise2ik?x.) The eigen-
value is complex:́ skd ­ sh̄k 1 ihd2y2m.

The imaginary part of an eigenvalue has the followi
meaning. The time evolution of an extended state is
scribed aseik?x2t´y h̄. This must actually be a function
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of k ? sx 2 t ImkJld , because the corresponding flux lin
has the tilt slope ImkJl. (The angular brackets here deno
the expectation value with respect to the state with ene
´.) We hence expect the relation Im´ . h̄k ? ImkJl ;
2h̄k ? s≠y≠hd Ré . Thus appearance of a complex eige
value is another indicator of the delocalization transition

It is instructive to solve the one-dimensional syste
with a single attractive impurity:H ; 2sh̄= 2 hd2y
2m 2 V0dsxd. We first solve H fsxd ­ ´fsxd for
x fi 0 to obtain the two degenerate solutionsf6sxd ­
e6ikx1hxy h̄, and then write the general solution a
c ­ Af1 1 Bf2. We impose the periodic boundar
conditioncsLxd ­ cs0d and the condition for the delta po
tential, c 0sLxd 2 c 0s0d ­ s2mV0yh̄2dcs0d. A nontrivial
solution arises wheneverkfcoshsLxhyh̄d 2 cossLxkdg 1

smV0yh̄2d sinsLxkd ­ 0. The ground state (the state whic
minimizes Ré) is localized only forh , h̄kgs ­ mV0yh̄.
All the other states are extended. The localized grou
state energy iś gs ­ 2mV 2

0 y2h̄2, and the wave function
takes the formcR

gssxd ­
p

kgs e2kgsjxj1hxy h̄ as Lx ! `.
The localization length in the direction ofh grows as
sh̄kgs 2 hd21, and the state goes through a delocalizati
transition ath ­ h̄kgs. The ground state forh . h̄kgs is
extended with the energy2h2y2m. The corresponding
flux line has the tilt slopehym, which is equal to the value
in the impurity-free case. The tilt slope of the groun
state has a jump at the delocalization point.

Extended states in the thermodynamic limit have a fo
close to the pure case. The leading term iseiknxy

p
Lx with

kn ­ npyLx, wheren is odd for h , h̄kgs, and is even
for h . h̄kgs. There is a reflection terme2iknx12hx in
the regionx , 0. The energy eigenvalue takes the sam
form as the pure system. The above solution shows t
a depinned flux line almost ignores the columnar defec

Now we move on to the case of random potential. F
the purpose of numerical calculations, it is convenie
to introduce the non-Hermitian tight-binding model. Th
second-quantized Hamiltonian is written in the form

H ; 2
t
2

X
x

dX
n­1

seh?eny h̄b
y
x1en

bx 1 e2h?en y h̄by
x bx1en

d

1
X

x
Vxby

x bx , (2)

where thehby
x , bxj are boson creation and annihilatio

operators [8], and thehenj are the unit lattice vectors
The hopping element is approximately given by [4]t ,
Vbind exps2

p
2mVbind ayh̄d, whereVbind is a typical bind-

ing energy of the columnar defect, anda is the lat-
tice spacing. We apply the periodic boundary conditio
bx1Nnen

­ bx for n ­ 1, 2, . . . , d, where Nn ; Lnya.
The complex eigenvalues in this non-Hermitian syste
always appear in conjugate pairs; if there is a comp
eigenvalue´ with a right eigenvectorcR, there is also
the eigenvalué p with the right eigenvectorscRdp. This
symmetry ensures that the partition functionZ is real.
571



VOLUME 77, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996

s-
ws
f

art
o-
to
is

he
n
as
ut-

d
ed

ost
ty
ain
e

m
the

d
on

ed
ly

at

l,

ar-

ues

d

d
age

ied
ity
se
t-

of
Another symmetry isH shdT ­ H s2hd. Because of
this symmetry, a right eigenfunction ofH shd equals the
left eigenfunction ofH s2hdwith the same eigenvalue
If Vx ; 0, the eigenvalues aré ­ 2t

Pd
n­1 cosfskn 1

ihnyh̄dag with kn ­ 2nnpyLn , where nn is an integer.
The eigenfunction takes the formcRsxd ~ expsik ? xd.
Numerical calculations forVx fi 0 were carried out as-
suming that the random potentialVx is uncorrelated in
space, and uniformly distributed in the rangef2D, Dg.
Results for random hopping models, withno site random-
ness, are qualitatively similar [6].

Figure 2(a) shows the eigenvalue spectrum ford ­ 1.
The real eigenvalues indicate localized states, while
complex eigenvalues indicate delocalized ones. As d
cussed above, the eigenvalues for the localized states

FIG. 2. (a) Iḿ vs Ré for a particular sample of thed ­ 1
tight-binding model withDyt ­ 1 and Lx ­ 1000a. Each
eigenstate is marked by1. Plots for differenth are offset for
clarity. (b) ImJ (fluxon tilt) vs Ré for the same sample as in
(a). The inset showska vs Ré for Dyt ­ 1, Lx ­ 500a, and
h ­ 0, averaged over one hundred samples binned with ene
window 0.04t. The dashed line indicates a particular value
hayh̄. The states below the dashed line become extended.
572
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indeed independent ofh. The behavior of the delocalized
states, on the other hand, is similar to impurity-free sy
tems except near the mobility edges. Figure 2(b) sho
the imaginary part of the current, or the tilt slope o
the corresponding flux line plotted against the real p
of the energy. The tilt slope has a jump at the m
bility edges as in the one-impurity case. The inset
Fig. 2(b) shows the inverse localization length for th
problem whenh ­ 0. (We calculated the approximate
inverse localization length from the second moment of t
wave function.) According to the delocalization criterio
hc ­ h̄k, a region of delocalized states should appear
h increases, first at the band center and then moving o
wards, as we observe.

In two dimensions we again find bands of localize
energies bounded by a mobility edge, although extend
and localized states are apparentlymixedin a complicated
way near the band center. Extended states again alm
ignore impurities. The case of an attractive impuri
shows that the localized ground state exists in a cert
region of smallh, and that the energy spectrum of th
extended states is close to the impurity-free case.

An interesting question in the two-dimensional rando
case is whether a delocalized state is extended in both
x andy directions, or extended only in the direction ofh.
We believe delocalization must occur inbothdirections: If
the fieldh is parallel to thex axis and a state is extende
in this direction, we may assume that the wave functi
has the approximate formL21y2

x eikxxfs yd in order to ac-
commodate periodic boundary conditions. This is inde
an eigenfunction of the partial Hamiltonian which has on
the kinetic term in thex direction. We then calculate the
effective Hamiltonian forfs yd in degenerate perturbation
theory, taking the kinetic term in they direction and the
random potential term as the perturbation. We find th
the effective Hamiltonian forfs yd has a random poten-
tial term of the formL21

x

R
V sx, yd dx. The width of the

probability distribution of this effective random potentia
however, vanishes asL21y2

x in the limit Lx ! `. The flux
line is a random walker in they direction, and hencefs yd
is an extended state. Delocalization in directions both p
allel and perpendicular toh is more readily observed nu-
merically forh along thediagonalof a square lattice than
for h parallel toex or ey [6].

Spectra such as those in Fig. 2(a) at intermediate val
of h are relevant at low butfinite concentrations of
interacting flux lines, provided that we fill up the localize
states in order of increasing energy up to energy´ ­ m,
thus forbidding multiple occupancy of a single localize
state [4]. The system is then characterized by an aver
chemical potentialm ­ msHzd which controls the flux-
line density and separates occupied from unoccup
levels. Once this chemical potential exceeds the mobil
edge, however, we expect spiral trajectories and “Bo
condensation” of delocalized flux lines into the lowes
energy extended state; more sophisticated methods
dealing with interactions are then required [6,9].
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Consider the probability distribution of a flux line nea
a free surface. At the distancet from the bottom surface
of the superconductor this probability may be writte
Psx; td ; Z21kcf je2sLt2tdH y h̄jxl kxje2tH y h̄jc il, where
we assume free boundary conditions at the bottom
the top surfaces:jc il ­ jcfl ­

R
ddx0jx0l. In the

limit Lt ! `, the probability distribution of the mos
weakly bound flux line at the top surface is proportion
to the right eigenvector with the eigenvalué­ m,
Psx; Ltd ~ kxjcml ­ cR

msxd, while the distribution at
the bottom surface is proportional to the left eige
vector of the same state,Psx; 0d ~ kcmjxl ­ cL

msxd.
The distribution far from these surfaces is given
Psx; Lty2d ­ cR

msxdcL
msxd. In the localized regime, the

imaginary gauge transformation forcR
m andcL

m describes
the displacement of the flux line at the surfaces, wh
the bulk distribution Psx; Lty2d is independent ofh,
consistent with the transverse Meissner effect [4]. Th
statements are approximate because we have negle
excitations of occupied states. They are exact for
ground state. The displacement of the flux lines n
the top and bottom surfaces allows partial penetration
the transverse component of the magnetic field, charac
ized by a transverse London penetration depthtp.

In the case of one columnar defect (or a single impur
in a tight-binding model), the displacement of a flux lin
takes the formskxlt 2 kxl`d ? h , e2tD´1y h̄, whereD´1
is the energy gap between the localized ground s
and the extended first excited state. In the random c
with finite concentration of flux lines, we consider th
relaxation near a free surfacet ­ 0 of the most weakly
bound line to the highest-energy occupied state.
show below that, close to the delocalization transition,
displacement has the stretched exponential form

skxlt 2 kxl`d ? h ,
t!`

expf2astytpd1ysd11dg , (3)

wherekxl` is the center of the localized state in the bu
the overbar denotes the random average, the penetra
depth is given bytp ; gsmdh̄d11yfh̄ksmd 2 hgd , and
a is a constant of order of unity. Heregsmd and
ksmd are, respectively, the density of states and
inverse localization length at the chemical potential. No
that tp , j

d
', wherej' , 1ysh̄k 2 hd is the diverging

surface localization length near the transition.
For the derivation of the above, we expandPsx; td

with respect to the eigenfunctions. In the limitLt ! `,
we have Psx; td . kcmjxl

P0
n cnkxjcnle2tD´nyh̄, where

D´n ; ´n 2 m, kcmjxl ­ cL
msxd is the left eigenvector

describing the shifted probability distribution of the su
face, and thehcnj are certain constants coming from th
normalization factor. The summation

P0
n is restricted

to states with energieś . m. For h & h̄ksmd, many
r
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of these excited states will contribute to the relaxatio
process. The asymptotic form (1) for localized states no
leads to jkxlt 2 kxl`j ,

P0
n c̃ne2fny h̄, where fnstd ;

sh̄kn 2 h cosundrn 1 tD´n, rn ; jxn 2 xmj, cosun ;
h ? sxm 2 xndyjhjrn and thehc̃nj are additional constant
factors. Upon settinggsmdrd

n D´n , 1 [4], we find that
the two terms infn compete with each other; in othe
words, the further the flux line hops, the more the kin
energy costs, but the lower the binding energy of the st
n is. Minimizing fn with respect torn andun, we arrive
at Eq. (3). We expect that a similar relaxation proce
governs lines relaxing from the surface to all occupie
states with´ , m as t ! `. For d ­ 1 and randomly
distributed columnpositions,rare events such as excep
tionally small hopping matrix elements will alter Eq. (3
for very larget, similar to flux lines pinned by parallel,
randomly placed grain boundaries [10].

The behavior of the flux-line tilt modulus (inverse
boson superfluid density) and flux-flow resistivityabove
the mobility edge may be obtained [6] using the metho
of Ref. [9].
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